Abstract

We apply phase-sensitive optical coherence tomography to image multiple nanoparticle species with two excitation wavelengths matched to their distinct absorption peaks. Using different modulation frequencies, multiple species collocated within the sample can be distinguished. In addition, we characterize single-pulse excitation schemes as a method to minimize bulk heating of the sample. We demonstrate this new scheme with B-mode photothermal measurements of tissue phantoms.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, “Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
    [CrossRef]
  3. R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by Dual-Wavelength Photothermal (DWP) OCT,” Opt. Express19(24), 23831–23844 (2011).
    [CrossRef] [PubMed]
  4. R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express2(3), 491–504 (2011).
    [CrossRef] [PubMed]
  5. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true- color spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
    [CrossRef]
  6. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express1(1), 310–317 (2010).
    [CrossRef] [PubMed]
  7. N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
    [CrossRef]
  8. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett.29(14), 1647–1649 (2004).
    [CrossRef] [PubMed]
  9. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett.28(17), 1546–1548 (2003).
    [CrossRef] [PubMed]
  10. E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
    [CrossRef] [PubMed]
  11. M. J. Crow, K. Seekell, S. Marinakos, J. Ostrander, A. Chilkoti, and A. P. Wax, “Hyperspectral Molecular Imaging of Multiple Receptors using Immunolabeled Plasmonic Nanoparticles,” J. Biomed. Opt.11, 116003 (2011).
  12. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008).
    [CrossRef] [PubMed]
  13. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of Optical Resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
    [CrossRef]
  14. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3(1), 33–40 (2004).
    [PubMed]
  15. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
    [CrossRef] [PubMed]
  16. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express14(15), 6724–6738 (2006).
    [CrossRef] [PubMed]
  17. A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, and T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express1(1), 2–16 (2010).
    [CrossRef] [PubMed]
  18. T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
    [CrossRef] [PubMed]
  19. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
    [CrossRef] [PubMed]

2012 (1)

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

2011 (4)

R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express2(3), 491–504 (2011).
[CrossRef] [PubMed]

R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by Dual-Wavelength Photothermal (DWP) OCT,” Opt. Express19(24), 23831–23844 (2011).
[CrossRef] [PubMed]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true- color spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

M. J. Crow, K. Seekell, S. Marinakos, J. Ostrander, A. Chilkoti, and A. P. Wax, “Hyperspectral Molecular Imaging of Multiple Receptors using Immunolabeled Plasmonic Nanoparticles,” J. Biomed. Opt.11, 116003 (2011).

2010 (3)

2008 (3)

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

2004 (2)

C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett.29(14), 1647–1649 (2004).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3(1), 33–40 (2004).
[PubMed]

2003 (1)

1998 (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of Optical Resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

1996 (1)

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, “Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Adler, D. C.

Agrba, P. D.

E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Asmis, R.

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of Optical Resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Balalaeva, I. V.

E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Baranov, S.

Barton, J.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3(1), 33–40 (2004).
[PubMed]

Bonesi, M.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

Boppart, S. A.

Bugrova, M. L.

E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Childs, D. T. D.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

Chilkoti, A.

M. J. Crow, K. Seekell, S. Marinakos, J. Ostrander, A. Chilkoti, and A. P. Wax, “Hyperspectral Molecular Imaging of Multiple Receptors using Immunolabeled Plasmonic Nanoparticles,” J. Biomed. Opt.11, 116003 (2011).

Chowdhury, S.

Crow, M. J.

M. J. Crow, K. Seekell, S. Marinakos, J. Ostrander, A. Chilkoti, and A. P. Wax, “Hyperspectral Molecular Imaging of Multiple Receptors using Immunolabeled Plasmonic Nanoparticles,” J. Biomed. Opt.11, 116003 (2011).

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Drezek, R.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3(1), 33–40 (2004).
[PubMed]

Dunn, A. K.

Duong, T. Q.

Dwelle, J.

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

Estrada, A.

Feldman, M. D.

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, and T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express1(1), 2–16 (2010).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true- color spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

Greenwood, P. D. L.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Groom, K. M.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

Halas, N.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3(1), 33–40 (2004).
[PubMed]

Halas, N. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of Optical Resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Hansen, M. N.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hirsch, L.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3(1), 33–40 (2004).
[PubMed]

Hogg, R. A.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

Hopkinson, M.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, S. W.

Huber, R.

Hugues, M.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

Izatt, J. A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, “Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

Johnston, K. P.

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, and T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express1(1), 2–16 (2010).
[CrossRef] [PubMed]

Kamensky, V. A.

E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Kazmi, S.

Kennedy, K.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

Khlebtsov, B. N.

E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Kiel, J.

Kiel, J. W.

Kirillin, M. Yu.

E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, “Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

Krstajic, N.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, “Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

Kuranov, R.

Kuranov, R. V.

Lee, M. H.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3(1), 33–40 (2004).
[PubMed]

Lee, T. M.

Li, X.

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

Lin, A.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3(1), 33–40 (2004).
[PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Loo, C.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3(1), 33–40 (2004).
[PubMed]

Lowery, A.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

Luo, W.

Ma, L. L.

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, and T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express1(1), 2–16 (2010).
[CrossRef] [PubMed]

MacNeil, S.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

Mancuso, J. J.

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

Marinakos, S.

M. J. Crow, K. Seekell, S. Marinakos, J. Ostrander, A. Chilkoti, and A. P. Wax, “Hyperspectral Molecular Imaging of Multiple Receptors using Immunolabeled Plasmonic Nanoparticles,” J. Biomed. Opt.11, 116003 (2011).

Marks, D. L.

Matcher, S. J.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

McElroy, A. B.

Milner, T. E.

Oldenburg, A. L.

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of Optical Resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Orlova, A. G.

E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Ostrander, J.

M. J. Crow, K. Seekell, S. Marinakos, J. Ostrander, A. Chilkoti, and A. P. Wax, “Hyperspectral Molecular Imaging of Multiple Receptors using Immunolabeled Plasmonic Nanoparticles,” J. Biomed. Opt.11, 116003 (2011).

Paranjape, A. S.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qiu, J.

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express2(3), 491–504 (2011).
[CrossRef] [PubMed]

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true- color spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express1(1), 310–317 (2010).
[CrossRef] [PubMed]

Salvaggio, A.

Sapozhnikova, V.

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seekell, K.

M. J. Crow, K. Seekell, S. Marinakos, J. Ostrander, A. Chilkoti, and A. P. Wax, “Hyperspectral Molecular Imaging of Multiple Receptors using Immunolabeled Plasmonic Nanoparticles,” J. Biomed. Opt.11, 116003 (2011).

Shams Kazmi, S. M.

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

Shirmanova, M. V.

E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Sirotkina, M. A.

E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Sitafalwalla, S.

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, “Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

Skala, M. C.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Smallwood, R.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

Smith, L. E.

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

Sokolov, K. V.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Suslick, K. S.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Toublan, F. J.

Villard, J. W.

Wang, H.

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, “Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

Wang, T.

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, and T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express1(1), 2–16 (2010).
[CrossRef] [PubMed]

Wax, A.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true- color spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express1(1), 310–317 (2010).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Wax, A. P.

M. J. Crow, K. Seekell, S. Marinakos, J. Ostrander, A. Chilkoti, and A. P. Wax, “Hyperspectral Molecular Imaging of Multiple Receptors using Immunolabeled Plasmonic Nanoparticles,” J. Biomed. Opt.11, 116003 (2011).

Wei, A.

West, J.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3(1), 33–40 (2004).
[PubMed]

Westcott, S. L.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of Optical Resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Willsey, B.

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true- color spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

Xu, C.

Ye, J.

Zagaynova, E. V.

E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Zweifel, D. A.

Biomed. Opt. Express (3)

Chem. Phys. Lett. (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of Optical Resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, “Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

N. Krstajic, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010).
[CrossRef]

J. Biomed. Opt. (2)

M. J. Crow, K. Seekell, S. Marinakos, J. Ostrander, A. Chilkoti, and A. P. Wax, “Hyperspectral Molecular Imaging of Multiple Receptors using Immunolabeled Plasmonic Nanoparticles,” J. Biomed. Opt.11, 116003 (2011).

T. Wang, J. J. Mancuso, V. Sapozhnikova, J. Dwelle, L. L. Ma, B. Willsey, S. M. Shams Kazmi, J. Qiu, X. Li, R. Asmis, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles,” J. Biomed. Opt.17(3), 036009 (2012).
[CrossRef] [PubMed]

Nano Lett. (2)

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true- color spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Med. Biol. (1)

E. V. Zagaynova, M. V. Shirmanova, M. Yu. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Technol. Cancer Res. Treat. (1)

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3(1), 33–40 (2004).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the phase-sensitive photothermal SDOCT system (b) Typical OCT B-mode image of human epithelium (c) Measured absorption spectra of gold (60 nm diameter) and silver (40 nm diameter) nanospheres (d) Sample preparation

Fig. 2
Fig. 2

(a) Measured phase from the agar sample without photothermal modulation. (b) Measured phase (inset) and Fourier transforms of the measured phase from the agar sample with simulations amplitude modulation of excitation for gold and silver nanoparticles. (c) Measured phase with amplitude modulation of gold nanoparticles and the measured phase (inset) at equilibrium, showing sample heating. (d) Measured phase with a 400 μs width single-pulse excitation and measured phase with a 400 μs width pulse excitation with repetition period of 1 second. Note the phase rapidly returns to baseline after excitation.

Fig. 3
Fig. 3

(a) Amplitude in Fourier domain for different concentrations of gold and silver nanoparticles (N = 5 measurements for each point) (b) Measured SNR for different pulse duration (gold nanoparticles, N = 5)

Fig. 4
Fig. 4

(a) Tissue phantom scheme showing a region containing nanoparticles and a region without nanoparticles (b) A typical OCT B-mode image of the tissue phantom (c) Measured phase response to the single-pulse excitation in the ROI containing gold nanoparticles and measured phase response to the single-pulse excitation in the ROI without gold nanoparticles (d) A typical OCT b- mode image of the tissue phantom false colored (e) B-mode time scan of the tissue phantom

Metrics