Abstract

Retinal vascular diseases are a leading cause of blindness and visual disability. The advent of adaptive optics retinal imaging has enabled us to image the retinal vascular at cellular resolutions, but imaging of the vasculature can be difficult due to the complex nature of the images, including features of many other retinal structures, such as the nerve fiber layer, glial and other cells. In this paper we show that varying the size and centration of the confocal aperture of an adaptive optics scanning laser ophthalmoscope (AOSLO) can increase sensitivity to multiply scattered light, especially light forward scattered from the vasculature and erythrocytes. The resulting technique was tested by imaging regions with different retinal tissue reflectivities as well as within the optic nerve head.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004).
    [CrossRef] [PubMed]
  2. N. R. Burrows, I. A. Hora, Y. Li, J. B. Saaddine, and Centers for Disease Control and Prevention (CDC), “Self-reported visual impairment among persons with diagnosed diabetes—United States, 1997–2010,” MMWR Morb. Mortal. Wkly. Rep.60(45), 1549–1553 (2011).
    [PubMed]
  3. F. Musa, W. J. Muen, R. Hancock, and D. Clark, “Adverse effects of fluorescein angiography in hypertensive and elderly patients,” Acta Ophthalmol. Scand.84(6), 740–742 (2006).
    [CrossRef] [PubMed]
  4. A. S. Kwan, C. Barry, I. L. McAllister, and I. Constable, “Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience,” Clin. Experiment. Ophthalmol.34(1), 33–38 (2006).
    [CrossRef] [PubMed]
  5. T. Y. Chui, Z. Zhong, H. Song, and S. A. Burns, “Foveal avascular zone and its relationship to foveal pit shape,” Optom. Vis. Sci.89(5), 602–610 (2012).
    [CrossRef] [PubMed]
  6. J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010).
    [CrossRef] [PubMed]
  7. R. Ferguson, D. Hammer, A. Elsner, R. Webb, S. Burns, and J. Weiter, “Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope,” Opt. Express12(21), 5198–5208 (2004).
    [CrossRef] [PubMed]
  8. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011).
    [CrossRef] [PubMed]
  9. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011).
    [CrossRef] [PubMed]
  10. S. Makita, F. Jaillon, M. Yamanari, and Y. Yasuno, “Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging,” Opt. Express20(3), 2681–2692 (2012).
    [CrossRef] [PubMed]
  11. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009).
    [CrossRef] [PubMed]
  12. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008).
    [CrossRef] [PubMed]
  13. M. Hogan, J. Alvarado, and J. Weddell, in Histology of the Human Eye (W.B. Saunders, Philadelphia, 1971), pp. 523–606.
  14. D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
    [CrossRef] [PubMed]
  15. A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res.36(1), 191–205 (1996).
    [CrossRef] [PubMed]
  16. A. Elsner, M. Miura, S. Burns, E. Beausencourt, C. Kunze, L. Kelley, J. Walker, G. Wing, P. Raskauskas, D. Fletcher, Q. Zhou, and A. Dreher, “Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration,” Opt. Express7(2), 95–106 (2000).
    [CrossRef] [PubMed]
  17. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A27(11), A265–A277 (2010).
    [CrossRef] [PubMed]
  18. A. E. Elsner, A. Weber, M. C. Cheney, D. A. VanNasdale, and M. Miura, “Imaging polarimetry in patients with neovascular age-related macular degeneration,” J. Opt. Soc. Am. A24(5), 1468–1480 (2007).
    [CrossRef] [PubMed]
  19. American National Standard Institute, American National Standard for the Safe Use of Lasers, ANSI Z136.1–2007 (ANSI, New York, 2007).
  20. Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express3(7), 1647–1661 (2012).
    [CrossRef] [PubMed]
  21. S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, “Improved contrast of subretinal structures using polarization analysis,” Invest. Ophthalmol. Vis. Sci.44(9), 4061–4068 (2003).
    [CrossRef] [PubMed]
  22. A. Weber, M. Cheney, Q. Smithwick, and A. Elsner, “Polarimetric imaging and blood vessel quantification,” Opt. Express12(21), 5178–5190 (2004).
    [CrossRef] [PubMed]
  23. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007).
    [CrossRef] [PubMed]
  24. J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt.10(2), 024022 (2005).
    [CrossRef] [PubMed]
  25. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  26. S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci.47(5), 2080–2092 (2006).
    [CrossRef] [PubMed]
  27. P. Henkind, “Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative,” Br. J. Ophthalmol.51(2), 115–123 (1967).
    [CrossRef] [PubMed]
  28. M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. The large vessels,” J. Ultrastruct. Res.9(1-2), 10–28 (1963).
    [CrossRef] [PubMed]
  29. Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express16(17), 12746–12756 (2008).
    [CrossRef] [PubMed]
  30. A. T. Phan, A. Elsner, T. Y. Chui, D. VanNasdale, C. A. Clark, V. E. Malinovsky, and S. A. Burns, “In vivo microvascular changes in diabetic patients without clinically severe diabetic retinopathy,” presented at the 2012 ARVO Annual Meeting—Association for Research in Vision and Ophthalmology, Fort Lauderdale, FL, 5–10 May 2012.
  31. O. Y. Tektas, E. Lütjen-Drecoll, and M. Scholz, “Qualitative and quantitative morphologic changes in the vasculature and extracellular matrix of the prelaminar optic nerve head in eyes with POAG,” Invest. Ophthalmol. Vis. Sci.51(10), 5083–5091 (2010).
    [CrossRef] [PubMed]
  32. A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol.80(6), 696–702 (1968).
    [CrossRef] [PubMed]
  33. H. S. Chung, A. Harris, L. Kagemann, and B. Martin, “Peripapillary retinal blood flow in normal tension glaucoma,” Br. J. Ophthalmol.83(4), 466–469 (1999).
    [CrossRef] [PubMed]

2012 (3)

T. Y. Chui, Z. Zhong, H. Song, and S. A. Burns, “Foveal avascular zone and its relationship to foveal pit shape,” Optom. Vis. Sci.89(5), 602–610 (2012).
[CrossRef] [PubMed]

Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express3(7), 1647–1661 (2012).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, and Y. Yasuno, “Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging,” Opt. Express20(3), 2681–2692 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (3)

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010).
[CrossRef] [PubMed]

O. Y. Tektas, E. Lütjen-Drecoll, and M. Scholz, “Qualitative and quantitative morphologic changes in the vasculature and extracellular matrix of the prelaminar optic nerve head in eyes with POAG,” Invest. Ophthalmol. Vis. Sci.51(10), 5083–5091 (2010).
[CrossRef] [PubMed]

R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A27(11), A265–A277 (2010).
[CrossRef] [PubMed]

2009 (2)

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (2)

2006 (3)

F. Musa, W. J. Muen, R. Hancock, and D. Clark, “Adverse effects of fluorescein angiography in hypertensive and elderly patients,” Acta Ophthalmol. Scand.84(6), 740–742 (2006).
[CrossRef] [PubMed]

A. S. Kwan, C. Barry, I. L. McAllister, and I. Constable, “Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience,” Clin. Experiment. Ophthalmol.34(1), 33–38 (2006).
[CrossRef] [PubMed]

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci.47(5), 2080–2092 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt.10(2), 024022 (2005).
[CrossRef] [PubMed]

2004 (3)

J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004).
[CrossRef] [PubMed]

A. Weber, M. Cheney, Q. Smithwick, and A. Elsner, “Polarimetric imaging and blood vessel quantification,” Opt. Express12(21), 5178–5190 (2004).
[CrossRef] [PubMed]

R. Ferguson, D. Hammer, A. Elsner, R. Webb, S. Burns, and J. Weiter, “Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope,” Opt. Express12(21), 5198–5208 (2004).
[CrossRef] [PubMed]

2003 (1)

S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, “Improved contrast of subretinal structures using polarization analysis,” Invest. Ophthalmol. Vis. Sci.44(9), 4061–4068 (2003).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

H. S. Chung, A. Harris, L. Kagemann, and B. Martin, “Peripapillary retinal blood flow in normal tension glaucoma,” Br. J. Ophthalmol.83(4), 466–469 (1999).
[CrossRef] [PubMed]

1997 (1)

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
[CrossRef] [PubMed]

1996 (1)

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res.36(1), 191–205 (1996).
[CrossRef] [PubMed]

1968 (1)

A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol.80(6), 696–702 (1968).
[CrossRef] [PubMed]

1967 (1)

P. Henkind, “Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative,” Br. J. Ophthalmol.51(2), 115–123 (1967).
[CrossRef] [PubMed]

1963 (1)

M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. The large vessels,” J. Ultrastruct. Res.9(1-2), 10–28 (1963).
[CrossRef] [PubMed]

An, L.

Barry, C.

A. S. Kwan, C. Barry, I. L. McAllister, and I. Constable, “Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience,” Clin. Experiment. Ophthalmol.34(1), 33–38 (2006).
[CrossRef] [PubMed]

Beausencourt, E.

Bonesi, M.

Burns, S.

Burns, S. A.

T. Y. Chui, Z. Zhong, H. Song, and S. A. Burns, “Foveal avascular zone and its relationship to foveal pit shape,” Optom. Vis. Sci.89(5), 602–610 (2012).
[CrossRef] [PubMed]

R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A27(11), A265–A277 (2010).
[CrossRef] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express16(17), 12746–12756 (2008).
[CrossRef] [PubMed]

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, “Improved contrast of subretinal structures using polarization analysis,” Invest. Ophthalmol. Vis. Sci.44(9), 4061–4068 (2003).
[CrossRef] [PubMed]

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res.36(1), 191–205 (1996).
[CrossRef] [PubMed]

Burrows, N. R.

N. R. Burrows, I. A. Hora, Y. Li, J. B. Saaddine, and Centers for Disease Control and Prevention (CDC), “Self-reported visual impairment among persons with diagnosed diabetes—United States, 1997–2010,” MMWR Morb. Mortal. Wkly. Rep.60(45), 1549–1553 (2011).
[PubMed]

Cheney, M.

Cheney, M. C.

Choi, S. S.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci.47(5), 2080–2092 (2006).
[CrossRef] [PubMed]

Chui, T. Y.

T. Y. Chui, Z. Zhong, H. Song, and S. A. Burns, “Foveal avascular zone and its relationship to foveal pit shape,” Optom. Vis. Sci.89(5), 602–610 (2012).
[CrossRef] [PubMed]

Chung, H. S.

H. S. Chung, A. Harris, L. Kagemann, and B. Martin, “Peripapillary retinal blood flow in normal tension glaucoma,” Br. J. Ophthalmol.83(4), 466–469 (1999).
[CrossRef] [PubMed]

Clark, D.

F. Musa, W. J. Muen, R. Hancock, and D. Clark, “Adverse effects of fluorescein angiography in hypertensive and elderly patients,” Acta Ophthalmol. Scand.84(6), 740–742 (2006).
[CrossRef] [PubMed]

Constable, I.

A. S. Kwan, C. Barry, I. L. McAllister, and I. Constable, “Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience,” Clin. Experiment. Ophthalmol.34(1), 33–38 (2006).
[CrossRef] [PubMed]

Delori, F. C.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res.36(1), 191–205 (1996).
[CrossRef] [PubMed]

Deng, C.

Doble, N.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci.47(5), 2080–2092 (2006).
[CrossRef] [PubMed]

Dreher, A.

Dubra, A.

Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express3(7), 1647–1661 (2012).
[CrossRef] [PubMed]

Eliasoph, I.

A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol.80(6), 696–702 (1968).
[CrossRef] [PubMed]

Elsner, A.

Elsner, A. E.

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007).
[CrossRef] [PubMed]

A. E. Elsner, A. Weber, M. C. Cheney, D. A. VanNasdale, and M. Miura, “Imaging polarimetry in patients with neovascular age-related macular degeneration,” J. Opt. Soc. Am. A24(5), 1468–1480 (2007).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, “Improved contrast of subretinal structures using polarization analysis,” Invest. Ophthalmol. Vis. Sci.44(9), 4061–4068 (2003).
[CrossRef] [PubMed]

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res.36(1), 191–205 (1996).
[CrossRef] [PubMed]

Feeney, L.

M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. The large vessels,” J. Ultrastruct. Res.9(1-2), 10–28 (1963).
[CrossRef] [PubMed]

Feldstein, M.

A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol.80(6), 696–702 (1968).
[CrossRef] [PubMed]

Ferguson, D.

Ferguson, R.

Ferguson, R. D.

Fingler, J.

Fletcher, D.

Fraser, S. E.

Gee, B. P.

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

Geng, Y.

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

Götzinger, E.

Gray, D. C.

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

Haffner, S. M.

J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004).
[CrossRef] [PubMed]

Hamman, R. F.

J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004).
[CrossRef] [PubMed]

Hammer, D.

Hammer, D. X.

Hancock, R.

F. Musa, W. J. Muen, R. Hancock, and D. Clark, “Adverse effects of fluorescein angiography in hypertensive and elderly patients,” Acta Ophthalmol. Scand.84(6), 740–742 (2006).
[CrossRef] [PubMed]

Hardy, J. L.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci.47(5), 2080–2092 (2006).
[CrossRef] [PubMed]

Harris, A.

H. S. Chung, A. Harris, L. Kagemann, and B. Martin, “Peripapillary retinal blood flow in normal tension glaucoma,” Br. J. Ophthalmol.83(4), 466–469 (1999).
[CrossRef] [PubMed]

Henkind, P.

P. Henkind, “Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative,” Br. J. Ophthalmol.51(2), 115–123 (1967).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hogan, M. J.

M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. The large vessels,” J. Ultrastruct. Res.9(1-2), 10–28 (1963).
[CrossRef] [PubMed]

Hora, I. A.

N. R. Burrows, I. A. Hora, Y. Li, J. B. Saaddine, and Centers for Disease Control and Prevention (CDC), “Self-reported visual impairment among persons with diagnosed diabetes—United States, 1997–2010,” MMWR Morb. Mortal. Wkly. Rep.60(45), 1549–1553 (2011).
[PubMed]

Hu, X. H.

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt.10(2), 024022 (2005).
[CrossRef] [PubMed]

Hunter, J. J.

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

Jaillon, F.

Jones, S. M.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci.47(5), 2080–2092 (2006).
[CrossRef] [PubMed]

Kagemann, L.

H. S. Chung, A. Harris, L. Kagemann, and B. Martin, “Peripapillary retinal blood flow in normal tension glaucoma,” Br. J. Ophthalmol.83(4), 466–469 (1999).
[CrossRef] [PubMed]

Kelley, L.

Keltner, J. L.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci.47(5), 2080–2092 (2006).
[CrossRef] [PubMed]

Kempen, J. H.

J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004).
[CrossRef] [PubMed]

Kim, D. Y.

Klein, R.

J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004).
[CrossRef] [PubMed]

Kornzweig, A. L.

A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol.80(6), 696–702 (1968).
[CrossRef] [PubMed]

Kowalczyk, A.

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

Kunze, C.

Kwan, A. S.

A. S. Kwan, C. Barry, I. L. McAllister, and I. Constable, “Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience,” Clin. Experiment. Ophthalmol.34(1), 33–38 (2006).
[CrossRef] [PubMed]

Leitgeb, R. A.

Leske, M. C.

J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004).
[CrossRef] [PubMed]

Li, Y.

N. R. Burrows, I. A. Hora, Y. Li, J. B. Saaddine, and Centers for Disease Control and Prevention (CDC), “Self-reported visual impairment among persons with diagnosed diabetes—United States, 1997–2010,” MMWR Morb. Mortal. Wkly. Rep.60(45), 1549–1553 (2011).
[PubMed]

Liang, J.

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
[CrossRef] [PubMed]

Libby, R. T.

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

Lu, J. Q.

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt.10(2), 024022 (2005).
[CrossRef] [PubMed]

Lütjen-Drecoll, E.

O. Y. Tektas, E. Lütjen-Drecoll, and M. Scholz, “Qualitative and quantitative morphologic changes in the vasculature and extracellular matrix of the prelaminar optic nerve head in eyes with POAG,” Invest. Ophthalmol. Vis. Sci.51(10), 5083–5091 (2010).
[CrossRef] [PubMed]

Makita, S.

Martin, B.

H. S. Chung, A. Harris, L. Kagemann, and B. Martin, “Peripapillary retinal blood flow in normal tension glaucoma,” Br. J. Ophthalmol.83(4), 466–469 (1999).
[CrossRef] [PubMed]

Martin, J. A.

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010).
[CrossRef] [PubMed]

Masella, B. D.

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

McAllister, I. L.

A. S. Kwan, C. Barry, I. L. McAllister, and I. Constable, “Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience,” Clin. Experiment. Ophthalmol.34(1), 33–38 (2006).
[CrossRef] [PubMed]

Mellem-Kairala, M. B.

S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, “Improved contrast of subretinal structures using polarization analysis,” Invest. Ophthalmol. Vis. Sci.44(9), 4061–4068 (2003).
[CrossRef] [PubMed]

Merigan, W. H.

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

Miller, D. T.

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
[CrossRef] [PubMed]

Miura, M.

Moss, S. E.

J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004).
[CrossRef] [PubMed]

Muen, W. J.

F. Musa, W. J. Muen, R. Hancock, and D. Clark, “Adverse effects of fluorescein angiography in hypertensive and elderly patients,” Acta Ophthalmol. Scand.84(6), 740–742 (2006).
[CrossRef] [PubMed]

Mujat, M.

Musa, F.

F. Musa, W. J. Muen, R. Hancock, and D. Clark, “Adverse effects of fluorescein angiography in hypertensive and elderly patients,” Acta Ophthalmol. Scand.84(6), 740–742 (2006).
[CrossRef] [PubMed]

O’Colmain, B. J.

J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004).
[CrossRef] [PubMed]

Olivier, S. S.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci.47(5), 2080–2092 (2006).
[CrossRef] [PubMed]

Patel, A. H.

Petrig, B. L.

Pircher, M.

Qi, X.

Raskauskas, P.

Roorda, A.

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010).
[CrossRef] [PubMed]

Russell, S.

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

Saaddine, J. B.

N. R. Burrows, I. A. Hora, Y. Li, J. B. Saaddine, and Centers for Disease Control and Prevention (CDC), “Self-reported visual impairment among persons with diagnosed diabetes—United States, 1997–2010,” MMWR Morb. Mortal. Wkly. Rep.60(45), 1549–1553 (2011).
[PubMed]

Scholz, M.

O. Y. Tektas, E. Lütjen-Drecoll, and M. Scholz, “Qualitative and quantitative morphologic changes in the vasculature and extracellular matrix of the prelaminar optic nerve head in eyes with POAG,” Invest. Ophthalmol. Vis. Sci.51(10), 5083–5091 (2010).
[CrossRef] [PubMed]

Schwartz, D. M.

Scoles, D.

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

Simmons, R. B.

S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, “Improved contrast of subretinal structures using polarization analysis,” Invest. Ophthalmol. Vis. Sci.44(9), 4061–4068 (2003).
[CrossRef] [PubMed]

Smithwick, Q.

Song, H.

T. Y. Chui, Z. Zhong, H. Song, and S. A. Burns, “Foveal avascular zone and its relationship to foveal pit shape,” Optom. Vis. Sci.89(5), 602–610 (2012).
[CrossRef] [PubMed]

Sulai, Y. N.

Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express3(7), 1647–1661 (2012).
[CrossRef] [PubMed]

Szkulmowska, A.

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

Szkulmowski, M.

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

Szlag, D.

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

Tam, J.

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010).
[CrossRef] [PubMed]

Taylor, H. R.

J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004).
[CrossRef] [PubMed]

Tektas, O. Y.

O. Y. Tektas, E. Lütjen-Drecoll, and M. Scholz, “Qualitative and quantitative morphologic changes in the vasculature and extracellular matrix of the prelaminar optic nerve head in eyes with POAG,” Invest. Ophthalmol. Vis. Sci.51(10), 5083–5091 (2010).
[CrossRef] [PubMed]

Torzicky, T.

Tumbar, R.

VanNasdale, D. A.

Walker, J.

Wang, R. K.

Webb, R.

Weber, A.

Weiter, J.

Weiter, J. J.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res.36(1), 191–205 (1996).
[CrossRef] [PubMed]

Werner, J. S.

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011).
[CrossRef] [PubMed]

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci.47(5), 2080–2092 (2006).
[CrossRef] [PubMed]

Williams, D. R.

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
[CrossRef] [PubMed]

Wing, G.

Wojtkowski, M.

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

Wolfe, R.

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

Yamanari, M.

Yang, P.

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt.10(2), 024022 (2005).
[CrossRef] [PubMed]

Yasuno, Y.

Zawadzki, R. J.

Zhong, Z.

Zhou, Q.

Zotter, S.

Zou, W.

Acta Ophthalmol. Scand. (1)

F. Musa, W. J. Muen, R. Hancock, and D. Clark, “Adverse effects of fluorescein angiography in hypertensive and elderly patients,” Acta Ophthalmol. Scand.84(6), 740–742 (2006).
[CrossRef] [PubMed]

Arch. Ophthalmol. (1)

J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004).
[CrossRef] [PubMed]

Arch. Ophthalmol. (1)

A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol.80(6), 696–702 (1968).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express3(7), 1647–1661 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

BMC Ophthalmol. (1)

D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (1)

H. S. Chung, A. Harris, L. Kagemann, and B. Martin, “Peripapillary retinal blood flow in normal tension glaucoma,” Br. J. Ophthalmol.83(4), 466–469 (1999).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (1)

P. Henkind, “Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative,” Br. J. Ophthalmol.51(2), 115–123 (1967).
[CrossRef] [PubMed]

Clin. Experiment. Ophthalmol. (1)

A. S. Kwan, C. Barry, I. L. McAllister, and I. Constable, “Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience,” Clin. Experiment. Ophthalmol.34(1), 33–38 (2006).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010).
[CrossRef] [PubMed]

O. Y. Tektas, E. Lütjen-Drecoll, and M. Scholz, “Qualitative and quantitative morphologic changes in the vasculature and extracellular matrix of the prelaminar optic nerve head in eyes with POAG,” Invest. Ophthalmol. Vis. Sci.51(10), 5083–5091 (2010).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci.47(5), 2080–2092 (2006).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, “Improved contrast of subretinal structures using polarization analysis,” Invest. Ophthalmol. Vis. Sci.44(9), 4061–4068 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
[CrossRef] [PubMed]

J. Ultrastruct. Res. (1)

M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. The large vessels,” J. Ultrastruct. Res.9(1-2), 10–28 (1963).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt.10(2), 024022 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

MMWR Morb. Mortal. Wkly. Rep. (1)

N. R. Burrows, I. A. Hora, Y. Li, J. B. Saaddine, and Centers for Disease Control and Prevention (CDC), “Self-reported visual impairment among persons with diagnosed diabetes—United States, 1997–2010,” MMWR Morb. Mortal. Wkly. Rep.60(45), 1549–1553 (2011).
[PubMed]

Opt. Express (1)

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

Opt. Express (7)

A. Elsner, M. Miura, S. Burns, E. Beausencourt, C. Kunze, L. Kelley, J. Walker, G. Wing, P. Raskauskas, D. Fletcher, Q. Zhou, and A. Dreher, “Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration,” Opt. Express7(2), 95–106 (2000).
[CrossRef] [PubMed]

A. Weber, M. Cheney, Q. Smithwick, and A. Elsner, “Polarimetric imaging and blood vessel quantification,” Opt. Express12(21), 5178–5190 (2004).
[CrossRef] [PubMed]

R. Ferguson, D. Hammer, A. Elsner, R. Webb, S. Burns, and J. Weiter, “Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope,” Opt. Express12(21), 5198–5208 (2004).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express16(17), 12746–12756 (2008).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, and Y. Yasuno, “Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging,” Opt. Express20(3), 2681–2692 (2012).
[CrossRef] [PubMed]

Optom. Vis. Sci. (1)

T. Y. Chui, Z. Zhong, H. Song, and S. A. Burns, “Foveal avascular zone and its relationship to foveal pit shape,” Optom. Vis. Sci.89(5), 602–610 (2012).
[CrossRef] [PubMed]

Vision Res. (1)

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res.36(1), 191–205 (1996).
[CrossRef] [PubMed]

Other (3)

American National Standard Institute, American National Standard for the Safe Use of Lasers, ANSI Z136.1–2007 (ANSI, New York, 2007).

M. Hogan, J. Alvarado, and J. Weddell, in Histology of the Human Eye (W.B. Saunders, Philadelphia, 1971), pp. 523–606.

A. T. Phan, A. Elsner, T. Y. Chui, D. VanNasdale, C. A. Clark, V. E. Malinovsky, and S. A. Burns, “In vivo microvascular changes in diabetic patients without clinically severe diabetic retinopathy,” presented at the 2012 ARVO Annual Meeting—Association for Research in Vision and Ophthalmology, Fort Lauderdale, FL, 5–10 May 2012.

Supplementary Material (9)

» Media 1: AVI (3802 KB)     
» Media 2: AVI (3802 KB)     
» Media 3: AVI (3802 KB)     
» Media 4: AVI (3625 KB)     
» Media 5: AVI (3960 KB)     
» Media 6: AVI (3986 KB)     
» Media 7: AVI (3802 KB)     
» Media 8: AVI (3625 KB)     
» Media 9: AVI (3986 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The effect of aperture size and confocality on perifoveal microvasculature imaging. A, Spectralis infrared SLO fundus image of a 35 year old male. Asterisk indicates the fovea. The black box indicates the AOSLO imaging region located at ~10° from the fovea. B and C, AOSLO videos obtained using the small and large confocal apertures, respectively (Media 1 and Media 2), fine structures of the nerve fiber bundles were observed. However, capillaries were masked by the highly reflective nerve fiber layer. E and F, The corresponding standard error maps of B and C show a limited visibility of the capillaries. D, AOSLO video obtained using the large aperture with offset (6× Airy disk diameter horizontally and 4× Airy disk diameter vertically) (Media 3), capillaries were clearly seen due to the blockage of the direct specular reflection from the RNFL and increased detection of scattered light from the blood content. G, The standard error map calculated from the pre-truncated video of D.

Fig. 2
Fig. 2

The effect of varying confocality on retinal microvasculature imaging using the large aperture. Columns represent increasing amounts of vertical displacements of the aperture relative to the illumination spot. A, C, E, and G, Specular reflection from the RNFL decreases with increasing aperture displacement. Overall the reflectance image becomes more uniform in contrast and the erythrocytes within the capillaries become more visible with large displacement (Media 4). Michelson contrast was computed across the vessel wall as indicated by the black arrow in A (see text). B, D, F, and H, The standard error maps calculated from the pre-truncated videos for the conditions in the first row. Note the readily visible laminar flow pattern of erythrocytes in Media 4.

Fig. 3
Fig. 3

A, Spectralis infrared SLO fundus image of a 24 year old male. The black box indicates the AOSLO imaging region located at 1° from the optic disc. B, AOSLO registered video obtained using a large offset aperture with 6× Airy disk diameter horizontally. Individual erythrocytes moving through the capillaries were clearly visualized as indicated by the black arrows (Media 5). C, The standard error map calculated from the pre-truncated Media 5 shows the peripapillary capillary network.

Fig. 4
Fig. 4

5° × 5° montages obtained from a location superior to the optic nerve head in a 34 year old male showing, A, peripapillary RNFL obtained using small confocal aperture and, B, peripapillary capillary network obtained using a large offset aperture at the same region. C, The standard error map calculated from the data shown as an average in B shows the peripapillary capillary network. Arrow indicates the optic disc margin. Artery and vein are labeled as “A” and “V’, respectively. Scale bars = 300 µm.

Fig. 5
Fig. 5

A, Spectralis infrared SLO fundus image of a 22 year old male. The black box indicates the AOLSO imaging region located at the center of the disc. B, AOSLO registered video obtained at indicated region (Media 6). C, The standard error map calculated from the pre-truncated Media 6 showing the higher detectability of the flow over the lamina cribrosa.

Fig. 6
Fig. 6

A, Spectralis infrared SLO fundus image of a 25 year old male. The black box indicates the AOSLO imaging region located at the optic disc crescent B, AOSLO video obtained at indicated region (Media 7), blood vessels with various diameters were clearly visible. C, The standard error map calculated from the pre-truncated Media 7 showing the higher detectability of the flow over regions with highly scattering tissue below them.

Fig. 7
Fig. 7

Fine structure of peripapillary arterioles. A, A peripapillary arteriole located at 5° from the disc with a lumen diameter of 110 µm (Media 8) obtained with a displaced larger confocal aperture. White arrows indicate the three layers of the vessel wall. 1: Tunica adventitia; 2: Tunica media (smooth muscle); 3: Tunica intima. The thickness of the vessel wall varies from 12 to 18 µm along the vessel. 4: the lumen diameter of the peripapillary artery containing moving cells (Media 8). B, An arteriole with a 40 µm lumen diameter located at the optic disc crescent in a different subject (Media 9). The thickness of the vessel wall is 10 µm (black arrows) and 4.5 µm (white arrowheads) in the arteriole and its daughter branch, respectively.

Fig. 8
Fig. 8

Schematic diagram depicting the effect of offsetting the confocal aperture on the visibility of the capillaries. (A) A centered large aperture (10× the Airy disk diameter). Specular reflection from the RNFL (heavy arrows) decreases the contrast of the capillary. (B) Offset imaging mode with the confocal aperture displaced laterally with 1.5× radius. Specular reflection from the RNFL is blocked by the offset aperture, allowing more multiple scattered light (dashed arrows) to return back to the detector.

Metrics