Abstract

An optical method is presented that allows the measurement of the triplet lifetime of a fluorescent molecule. This is a characteristic specific to each fluorophore. Based on differences in triplet lifetimes of two fluorescent species (autofluorescence versus label), this novel approach measures relative quantities of a transmembrane receptor and associated fluorescently labeled ligand during its recycling in living cells. Similarly to fluorescence-lifetime based methods, our approach is almost insensitive to photobleaching. A simple theory for unmixing two known triplet lifetimes is presented along with validation of the method by measurements of transferrin recycling in a model system based on chinese hamster ovarian cells (CHO). Transferrin is the delivery carrier for Fe3+ to the cell.

© 2012 OSA

PDF Article
OSA Recommended Articles
Observation of nanoparticle internalization on cellular membranes by using noninterferometric widefield optical profilometry

Chun-Chieh Wang, Chia-Wei Lee, Chia-Yun Huang, Jiunn-Yuan Lin, Pei-Kuen Wei, and Chau-Hwang Lee
Appl. Opt. 47(13) 2458-2464 (2008)

A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging

Simon P. Poland, Nikola Krstajić, James Monypenny, Simao Coelho, David Tyndall, Richard J. Walker, Viviane Devauges, Justin Richardson, Neale Dutton, Paul Barber, David Day-Uei Li, Klaus Suhling, Tony Ng, Robert K. Henderson, and Simon M. Ameer-Beg
Biomed. Opt. Express 6(2) 277-296 (2015)

Quantitative tomographic imaging of intermolecular FRET in small animals

Vivek Venugopal, Jin Chen, Margarida Barroso, and Xavier Intes
Biomed. Opt. Express 3(12) 3161-3175 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Geissbuehler, T. Spielmann, A. Formey, I. Märki, M. Leutenegger, B. Hinz, K. Johnsson, D. Van De Ville, and T. Lasser, “Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5),” Biophys. J. 98, 339–349 (2010).
    [Crossref] [PubMed]
  2. T. Sandén, G. Persson, P. Thyberg, H. Blom, and J. Widengren, “Monitoring kinetics of highly environment sensitive states of fluorescent molecules by modulated excitation and time-averaged fluorescence intensity recording,” Anal. Chem. 79, 3330–3341 (2007).
    [Crossref] [PubMed]
  3. W. Rumsey, J. Vanderkooi, and D. Wilson, “Imaging of phosphorescence: A novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988).
    [Crossref] [PubMed]
  4. J. Vanderkooi, G. Maniara, T. Green, and D. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262, 5476–5482 (1987).
    [PubMed]
  5. G. Baravalle, D. Schober, M. Huber, N. Bayer, R. Murphy, and R. Fuchs, “Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature,” Cell. Tissue Res. 320, 99–113 (2005).
    [Crossref] [PubMed]
  6. H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug delivery,” Med. Res. Rev. 22, 225–250 (2002).
    [Crossref] [PubMed]
  7. B. Alberts, Molecular Biology of the Cell (Garland Science - Taylor&Francis group, 2008).
  8. D. Sheff, L. Pelletier, C. O’Connell, G. Warren, and I. Mellman, “Transferrin receptor recycling in the absence of perinuclear recycling endosomes,” J. Cell Biol. 156, 797–804 (2002).
    [Crossref] [PubMed]
  9. Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
    [Crossref] [PubMed]
  10. P. Friden, L. Walus, G. Musso, M. Taylor, B. Malfroy, and R. Starzyk, “Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier,” Proc. Natl. Acad. Sci. USA 88, 4771–4775 (1991).
    [Crossref] [PubMed]
  11. E. Daro, P. Van Der Sluijs, T. Galli, and I. Mellman, “Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling,” Proc. Natl. Acad. Sci. USA 93, 9559–9564 (1996).
    [Crossref] [PubMed]
  12. J. Gruenberg and F. Maxfield, “Membrane transport in the endocytic pathway,” Curr. Opin. Cell Biol. 7, 552–563 (1995).
    [Crossref] [PubMed]
  13. R. Ghosh, D. Gelman, and F. Maxfield, “Quantification of low density lipoprotein and transferrin endocytic sorting in HEp2 cells using confocal microscopy,” J. Cell Sci. 107, 2177–2189 (1994).
    [PubMed]
  14. D. M. Sipe and R. F. Murphy, “High-resolution kinetics of transferrin acidification in BALB/c 3T3 cells: exposure to pH 6 followed by temperature-sensitive alkalinization during recycling,” Proc. Natl. Acad. Sci. USA 84, 7119–7123 (1987).
    [Crossref] [PubMed]
  15. T. McGraw and F. Maxfield, “Human transferrin receptor internalization is partially dependent upon an aromatic amino acid on the cytoplasmic domain,” Cell Regul. 1, 369–377 (1990).
    [PubMed]
  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  17. F. Maxfield and T. McGraw, “Endocytic recycling,” Nat. Rev. Mol. Cell Biol. 5, 121–132 (2004).
    [Crossref] [PubMed]
  18. B. Grant and J. Donaldson, “Pathways and mechanisms of endocytic recycling,” Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009).
    [Crossref] [PubMed]
  19. A. Durrbach, D. Louvard, and E. Coudrier, “Actin filaments facilitate two steps of endocytosis,” J. Cell Sci. 109, 457–465 (1996).
    [PubMed]
  20. N. Muller, P. Girard, D. Hacker, M. Jordan, and F. Wurm, “Orbital shaker technology for the cultivation of mammalian cells in suspension,” Biotechnol. Bioeng. 89, 400–406 (2005).
    [Crossref]

2011 (1)

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

2010 (1)

M. Geissbuehler, T. Spielmann, A. Formey, I. Märki, M. Leutenegger, B. Hinz, K. Johnsson, D. Van De Ville, and T. Lasser, “Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5),” Biophys. J. 98, 339–349 (2010).
[Crossref] [PubMed]

2009 (1)

B. Grant and J. Donaldson, “Pathways and mechanisms of endocytic recycling,” Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009).
[Crossref] [PubMed]

2007 (1)

T. Sandén, G. Persson, P. Thyberg, H. Blom, and J. Widengren, “Monitoring kinetics of highly environment sensitive states of fluorescent molecules by modulated excitation and time-averaged fluorescence intensity recording,” Anal. Chem. 79, 3330–3341 (2007).
[Crossref] [PubMed]

2005 (2)

G. Baravalle, D. Schober, M. Huber, N. Bayer, R. Murphy, and R. Fuchs, “Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature,” Cell. Tissue Res. 320, 99–113 (2005).
[Crossref] [PubMed]

N. Muller, P. Girard, D. Hacker, M. Jordan, and F. Wurm, “Orbital shaker technology for the cultivation of mammalian cells in suspension,” Biotechnol. Bioeng. 89, 400–406 (2005).
[Crossref]

2004 (1)

F. Maxfield and T. McGraw, “Endocytic recycling,” Nat. Rev. Mol. Cell Biol. 5, 121–132 (2004).
[Crossref] [PubMed]

2002 (2)

H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug delivery,” Med. Res. Rev. 22, 225–250 (2002).
[Crossref] [PubMed]

D. Sheff, L. Pelletier, C. O’Connell, G. Warren, and I. Mellman, “Transferrin receptor recycling in the absence of perinuclear recycling endosomes,” J. Cell Biol. 156, 797–804 (2002).
[Crossref] [PubMed]

1996 (2)

A. Durrbach, D. Louvard, and E. Coudrier, “Actin filaments facilitate two steps of endocytosis,” J. Cell Sci. 109, 457–465 (1996).
[PubMed]

E. Daro, P. Van Der Sluijs, T. Galli, and I. Mellman, “Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling,” Proc. Natl. Acad. Sci. USA 93, 9559–9564 (1996).
[Crossref] [PubMed]

1995 (1)

J. Gruenberg and F. Maxfield, “Membrane transport in the endocytic pathway,” Curr. Opin. Cell Biol. 7, 552–563 (1995).
[Crossref] [PubMed]

1994 (1)

R. Ghosh, D. Gelman, and F. Maxfield, “Quantification of low density lipoprotein and transferrin endocytic sorting in HEp2 cells using confocal microscopy,” J. Cell Sci. 107, 2177–2189 (1994).
[PubMed]

1991 (1)

P. Friden, L. Walus, G. Musso, M. Taylor, B. Malfroy, and R. Starzyk, “Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier,” Proc. Natl. Acad. Sci. USA 88, 4771–4775 (1991).
[Crossref] [PubMed]

1990 (1)

T. McGraw and F. Maxfield, “Human transferrin receptor internalization is partially dependent upon an aromatic amino acid on the cytoplasmic domain,” Cell Regul. 1, 369–377 (1990).
[PubMed]

1988 (1)

W. Rumsey, J. Vanderkooi, and D. Wilson, “Imaging of phosphorescence: A novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988).
[Crossref] [PubMed]

1987 (2)

J. Vanderkooi, G. Maniara, T. Green, and D. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262, 5476–5482 (1987).
[PubMed]

D. M. Sipe and R. F. Murphy, “High-resolution kinetics of transferrin acidification in BALB/c 3T3 cells: exposure to pH 6 followed by temperature-sensitive alkalinization during recycling,” Proc. Natl. Acad. Sci. USA 84, 7119–7123 (1987).
[Crossref] [PubMed]

Alberts, B.

B. Alberts, Molecular Biology of the Cell (Garland Science - Taylor&Francis group, 2008).

Atwal, J.

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

Baravalle, G.

G. Baravalle, D. Schober, M. Huber, N. Bayer, R. Murphy, and R. Fuchs, “Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature,” Cell. Tissue Res. 320, 99–113 (2005).
[Crossref] [PubMed]

Bayer, N.

G. Baravalle, D. Schober, M. Huber, N. Bayer, R. Murphy, and R. Fuchs, “Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature,” Cell. Tissue Res. 320, 99–113 (2005).
[Crossref] [PubMed]

Blom, H.

T. Sandén, G. Persson, P. Thyberg, H. Blom, and J. Widengren, “Monitoring kinetics of highly environment sensitive states of fluorescent molecules by modulated excitation and time-averaged fluorescence intensity recording,” Anal. Chem. 79, 3330–3341 (2007).
[Crossref] [PubMed]

Coudrier, E.

A. Durrbach, D. Louvard, and E. Coudrier, “Actin filaments facilitate two steps of endocytosis,” J. Cell Sci. 109, 457–465 (1996).
[PubMed]

Daro, E.

E. Daro, P. Van Der Sluijs, T. Galli, and I. Mellman, “Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling,” Proc. Natl. Acad. Sci. USA 93, 9559–9564 (1996).
[Crossref] [PubMed]

Dennis, M. S.

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

Donaldson, J.

B. Grant and J. Donaldson, “Pathways and mechanisms of endocytic recycling,” Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009).
[Crossref] [PubMed]

Durrbach, A.

A. Durrbach, D. Louvard, and E. Coudrier, “Actin filaments facilitate two steps of endocytosis,” J. Cell Sci. 109, 457–465 (1996).
[PubMed]

Elliott, J. M.

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

Formey, A.

M. Geissbuehler, T. Spielmann, A. Formey, I. Märki, M. Leutenegger, B. Hinz, K. Johnsson, D. Van De Ville, and T. Lasser, “Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5),” Biophys. J. 98, 339–349 (2010).
[Crossref] [PubMed]

Friden, P.

P. Friden, L. Walus, G. Musso, M. Taylor, B. Malfroy, and R. Starzyk, “Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier,” Proc. Natl. Acad. Sci. USA 88, 4771–4775 (1991).
[Crossref] [PubMed]

Fuchs, R.

G. Baravalle, D. Schober, M. Huber, N. Bayer, R. Murphy, and R. Fuchs, “Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature,” Cell. Tissue Res. 320, 99–113 (2005).
[Crossref] [PubMed]

Galli, T.

E. Daro, P. Van Der Sluijs, T. Galli, and I. Mellman, “Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling,” Proc. Natl. Acad. Sci. USA 93, 9559–9564 (1996).
[Crossref] [PubMed]

Geissbuehler, M.

M. Geissbuehler, T. Spielmann, A. Formey, I. Märki, M. Leutenegger, B. Hinz, K. Johnsson, D. Van De Ville, and T. Lasser, “Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5),” Biophys. J. 98, 339–349 (2010).
[Crossref] [PubMed]

Gelman, D.

R. Ghosh, D. Gelman, and F. Maxfield, “Quantification of low density lipoprotein and transferrin endocytic sorting in HEp2 cells using confocal microscopy,” J. Cell Sci. 107, 2177–2189 (1994).
[PubMed]

Ghosh, R.

R. Ghosh, D. Gelman, and F. Maxfield, “Quantification of low density lipoprotein and transferrin endocytic sorting in HEp2 cells using confocal microscopy,” J. Cell Sci. 107, 2177–2189 (1994).
[PubMed]

Girard, P.

N. Muller, P. Girard, D. Hacker, M. Jordan, and F. Wurm, “Orbital shaker technology for the cultivation of mammalian cells in suspension,” Biotechnol. Bioeng. 89, 400–406 (2005).
[Crossref]

Grant, B.

B. Grant and J. Donaldson, “Pathways and mechanisms of endocytic recycling,” Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009).
[Crossref] [PubMed]

Green, T.

J. Vanderkooi, G. Maniara, T. Green, and D. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262, 5476–5482 (1987).
[PubMed]

Gruenberg, J.

J. Gruenberg and F. Maxfield, “Membrane transport in the endocytic pathway,” Curr. Opin. Cell Biol. 7, 552–563 (1995).
[Crossref] [PubMed]

Hacker, D.

N. Muller, P. Girard, D. Hacker, M. Jordan, and F. Wurm, “Orbital shaker technology for the cultivation of mammalian cells in suspension,” Biotechnol. Bioeng. 89, 400–406 (2005).
[Crossref]

Hinz, B.

M. Geissbuehler, T. Spielmann, A. Formey, I. Märki, M. Leutenegger, B. Hinz, K. Johnsson, D. Van De Ville, and T. Lasser, “Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5),” Biophys. J. 98, 339–349 (2010).
[Crossref] [PubMed]

Hoyte, K.

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

Huber, M.

G. Baravalle, D. Schober, M. Huber, N. Bayer, R. Murphy, and R. Fuchs, “Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature,” Cell. Tissue Res. 320, 99–113 (2005).
[Crossref] [PubMed]

Johnsson, K.

M. Geissbuehler, T. Spielmann, A. Formey, I. Märki, M. Leutenegger, B. Hinz, K. Johnsson, D. Van De Ville, and T. Lasser, “Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5),” Biophys. J. 98, 339–349 (2010).
[Crossref] [PubMed]

Jordan, M.

N. Muller, P. Girard, D. Hacker, M. Jordan, and F. Wurm, “Orbital shaker technology for the cultivation of mammalian cells in suspension,” Biotechnol. Bioeng. 89, 400–406 (2005).
[Crossref]

Kenrick, M.

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Lasser, T.

M. Geissbuehler, T. Spielmann, A. Formey, I. Märki, M. Leutenegger, B. Hinz, K. Johnsson, D. Van De Ville, and T. Lasser, “Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5),” Biophys. J. 98, 339–349 (2010).
[Crossref] [PubMed]

Leutenegger, M.

M. Geissbuehler, T. Spielmann, A. Formey, I. Märki, M. Leutenegger, B. Hinz, K. Johnsson, D. Van De Ville, and T. Lasser, “Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5),” Biophys. J. 98, 339–349 (2010).
[Crossref] [PubMed]

Li, H.

H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug delivery,” Med. Res. Rev. 22, 225–250 (2002).
[Crossref] [PubMed]

Louvard, D.

A. Durrbach, D. Louvard, and E. Coudrier, “Actin filaments facilitate two steps of endocytosis,” J. Cell Sci. 109, 457–465 (1996).
[PubMed]

Lu, Y.

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

Luk, W.

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

Malfroy, B.

P. Friden, L. Walus, G. Musso, M. Taylor, B. Malfroy, and R. Starzyk, “Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier,” Proc. Natl. Acad. Sci. USA 88, 4771–4775 (1991).
[Crossref] [PubMed]

Maniara, G.

J. Vanderkooi, G. Maniara, T. Green, and D. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262, 5476–5482 (1987).
[PubMed]

Märki, I.

M. Geissbuehler, T. Spielmann, A. Formey, I. Märki, M. Leutenegger, B. Hinz, K. Johnsson, D. Van De Ville, and T. Lasser, “Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5),” Biophys. J. 98, 339–349 (2010).
[Crossref] [PubMed]

Maxfield, F.

F. Maxfield and T. McGraw, “Endocytic recycling,” Nat. Rev. Mol. Cell Biol. 5, 121–132 (2004).
[Crossref] [PubMed]

J. Gruenberg and F. Maxfield, “Membrane transport in the endocytic pathway,” Curr. Opin. Cell Biol. 7, 552–563 (1995).
[Crossref] [PubMed]

R. Ghosh, D. Gelman, and F. Maxfield, “Quantification of low density lipoprotein and transferrin endocytic sorting in HEp2 cells using confocal microscopy,” J. Cell Sci. 107, 2177–2189 (1994).
[PubMed]

T. McGraw and F. Maxfield, “Human transferrin receptor internalization is partially dependent upon an aromatic amino acid on the cytoplasmic domain,” Cell Regul. 1, 369–377 (1990).
[PubMed]

McGraw, T.

F. Maxfield and T. McGraw, “Endocytic recycling,” Nat. Rev. Mol. Cell Biol. 5, 121–132 (2004).
[Crossref] [PubMed]

T. McGraw and F. Maxfield, “Human transferrin receptor internalization is partially dependent upon an aromatic amino acid on the cytoplasmic domain,” Cell Regul. 1, 369–377 (1990).
[PubMed]

Mellman, I.

D. Sheff, L. Pelletier, C. O’Connell, G. Warren, and I. Mellman, “Transferrin receptor recycling in the absence of perinuclear recycling endosomes,” J. Cell Biol. 156, 797–804 (2002).
[Crossref] [PubMed]

E. Daro, P. Van Der Sluijs, T. Galli, and I. Mellman, “Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling,” Proc. Natl. Acad. Sci. USA 93, 9559–9564 (1996).
[Crossref] [PubMed]

Muller, N.

N. Muller, P. Girard, D. Hacker, M. Jordan, and F. Wurm, “Orbital shaker technology for the cultivation of mammalian cells in suspension,” Biotechnol. Bioeng. 89, 400–406 (2005).
[Crossref]

Murphy, R.

G. Baravalle, D. Schober, M. Huber, N. Bayer, R. Murphy, and R. Fuchs, “Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature,” Cell. Tissue Res. 320, 99–113 (2005).
[Crossref] [PubMed]

Murphy, R. F.

D. M. Sipe and R. F. Murphy, “High-resolution kinetics of transferrin acidification in BALB/c 3T3 cells: exposure to pH 6 followed by temperature-sensitive alkalinization during recycling,” Proc. Natl. Acad. Sci. USA 84, 7119–7123 (1987).
[Crossref] [PubMed]

Musso, G.

P. Friden, L. Walus, G. Musso, M. Taylor, B. Malfroy, and R. Starzyk, “Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier,” Proc. Natl. Acad. Sci. USA 88, 4771–4775 (1991).
[Crossref] [PubMed]

O’Connell, C.

D. Sheff, L. Pelletier, C. O’Connell, G. Warren, and I. Mellman, “Transferrin receptor recycling in the absence of perinuclear recycling endosomes,” J. Cell Biol. 156, 797–804 (2002).
[Crossref] [PubMed]

Pelletier, L.

D. Sheff, L. Pelletier, C. O’Connell, G. Warren, and I. Mellman, “Transferrin receptor recycling in the absence of perinuclear recycling endosomes,” J. Cell Biol. 156, 797–804 (2002).
[Crossref] [PubMed]

Persson, G.

T. Sandén, G. Persson, P. Thyberg, H. Blom, and J. Widengren, “Monitoring kinetics of highly environment sensitive states of fluorescent molecules by modulated excitation and time-averaged fluorescence intensity recording,” Anal. Chem. 79, 3330–3341 (2007).
[Crossref] [PubMed]

Prabhu, S.

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

Qian, Z. M.

H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug delivery,” Med. Res. Rev. 22, 225–250 (2002).
[Crossref] [PubMed]

Rumsey, W.

W. Rumsey, J. Vanderkooi, and D. Wilson, “Imaging of phosphorescence: A novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988).
[Crossref] [PubMed]

Sandén, T.

T. Sandén, G. Persson, P. Thyberg, H. Blom, and J. Widengren, “Monitoring kinetics of highly environment sensitive states of fluorescent molecules by modulated excitation and time-averaged fluorescence intensity recording,” Anal. Chem. 79, 3330–3341 (2007).
[Crossref] [PubMed]

Schober, D.

G. Baravalle, D. Schober, M. Huber, N. Bayer, R. Murphy, and R. Fuchs, “Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature,” Cell. Tissue Res. 320, 99–113 (2005).
[Crossref] [PubMed]

Sheff, D.

D. Sheff, L. Pelletier, C. O’Connell, G. Warren, and I. Mellman, “Transferrin receptor recycling in the absence of perinuclear recycling endosomes,” J. Cell Biol. 156, 797–804 (2002).
[Crossref] [PubMed]

Sipe, D. M.

D. M. Sipe and R. F. Murphy, “High-resolution kinetics of transferrin acidification in BALB/c 3T3 cells: exposure to pH 6 followed by temperature-sensitive alkalinization during recycling,” Proc. Natl. Acad. Sci. USA 84, 7119–7123 (1987).
[Crossref] [PubMed]

Spielmann, T.

M. Geissbuehler, T. Spielmann, A. Formey, I. Märki, M. Leutenegger, B. Hinz, K. Johnsson, D. Van De Ville, and T. Lasser, “Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5),” Biophys. J. 98, 339–349 (2010).
[Crossref] [PubMed]

Starzyk, R.

P. Friden, L. Walus, G. Musso, M. Taylor, B. Malfroy, and R. Starzyk, “Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier,” Proc. Natl. Acad. Sci. USA 88, 4771–4775 (1991).
[Crossref] [PubMed]

Taylor, M.

P. Friden, L. Walus, G. Musso, M. Taylor, B. Malfroy, and R. Starzyk, “Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier,” Proc. Natl. Acad. Sci. USA 88, 4771–4775 (1991).
[Crossref] [PubMed]

Thyberg, P.

T. Sandén, G. Persson, P. Thyberg, H. Blom, and J. Widengren, “Monitoring kinetics of highly environment sensitive states of fluorescent molecules by modulated excitation and time-averaged fluorescence intensity recording,” Anal. Chem. 79, 3330–3341 (2007).
[Crossref] [PubMed]

Van De Ville, D.

M. Geissbuehler, T. Spielmann, A. Formey, I. Märki, M. Leutenegger, B. Hinz, K. Johnsson, D. Van De Ville, and T. Lasser, “Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5),” Biophys. J. 98, 339–349 (2010).
[Crossref] [PubMed]

Van Der Sluijs, P.

E. Daro, P. Van Der Sluijs, T. Galli, and I. Mellman, “Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling,” Proc. Natl. Acad. Sci. USA 93, 9559–9564 (1996).
[Crossref] [PubMed]

Vanderkooi, J.

W. Rumsey, J. Vanderkooi, and D. Wilson, “Imaging of phosphorescence: A novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988).
[Crossref] [PubMed]

J. Vanderkooi, G. Maniara, T. Green, and D. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262, 5476–5482 (1987).
[PubMed]

Walus, L.

P. Friden, L. Walus, G. Musso, M. Taylor, B. Malfroy, and R. Starzyk, “Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier,” Proc. Natl. Acad. Sci. USA 88, 4771–4775 (1991).
[Crossref] [PubMed]

Warren, G.

D. Sheff, L. Pelletier, C. O’Connell, G. Warren, and I. Mellman, “Transferrin receptor recycling in the absence of perinuclear recycling endosomes,” J. Cell Biol. 156, 797–804 (2002).
[Crossref] [PubMed]

Watts, R. J.

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

Widengren, J.

T. Sandén, G. Persson, P. Thyberg, H. Blom, and J. Widengren, “Monitoring kinetics of highly environment sensitive states of fluorescent molecules by modulated excitation and time-averaged fluorescence intensity recording,” Anal. Chem. 79, 3330–3341 (2007).
[Crossref] [PubMed]

Wilson, D.

W. Rumsey, J. Vanderkooi, and D. Wilson, “Imaging of phosphorescence: A novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988).
[Crossref] [PubMed]

J. Vanderkooi, G. Maniara, T. Green, and D. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262, 5476–5482 (1987).
[PubMed]

Wurm, F.

N. Muller, P. Girard, D. Hacker, M. Jordan, and F. Wurm, “Orbital shaker technology for the cultivation of mammalian cells in suspension,” Biotechnol. Bioeng. 89, 400–406 (2005).
[Crossref]

Yu, Y. J.

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

Zhang, Y.

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

Anal. Chem. (1)

T. Sandén, G. Persson, P. Thyberg, H. Blom, and J. Widengren, “Monitoring kinetics of highly environment sensitive states of fluorescent molecules by modulated excitation and time-averaged fluorescence intensity recording,” Anal. Chem. 79, 3330–3341 (2007).
[Crossref] [PubMed]

Biophys. J. (1)

M. Geissbuehler, T. Spielmann, A. Formey, I. Märki, M. Leutenegger, B. Hinz, K. Johnsson, D. Van De Ville, and T. Lasser, “Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5),” Biophys. J. 98, 339–349 (2010).
[Crossref] [PubMed]

Biotechnol. Bioeng. (1)

N. Muller, P. Girard, D. Hacker, M. Jordan, and F. Wurm, “Orbital shaker technology for the cultivation of mammalian cells in suspension,” Biotechnol. Bioeng. 89, 400–406 (2005).
[Crossref]

Cell Regul. (1)

T. McGraw and F. Maxfield, “Human transferrin receptor internalization is partially dependent upon an aromatic amino acid on the cytoplasmic domain,” Cell Regul. 1, 369–377 (1990).
[PubMed]

Cell. Tissue Res. (1)

G. Baravalle, D. Schober, M. Huber, N. Bayer, R. Murphy, and R. Fuchs, “Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature,” Cell. Tissue Res. 320, 99–113 (2005).
[Crossref] [PubMed]

Curr. Opin. Cell Biol. (1)

J. Gruenberg and F. Maxfield, “Membrane transport in the endocytic pathway,” Curr. Opin. Cell Biol. 7, 552–563 (1995).
[Crossref] [PubMed]

J. Biol. Chem. (1)

J. Vanderkooi, G. Maniara, T. Green, and D. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262, 5476–5482 (1987).
[PubMed]

J. Cell Biol. (1)

D. Sheff, L. Pelletier, C. O’Connell, G. Warren, and I. Mellman, “Transferrin receptor recycling in the absence of perinuclear recycling endosomes,” J. Cell Biol. 156, 797–804 (2002).
[Crossref] [PubMed]

J. Cell Sci. (2)

R. Ghosh, D. Gelman, and F. Maxfield, “Quantification of low density lipoprotein and transferrin endocytic sorting in HEp2 cells using confocal microscopy,” J. Cell Sci. 107, 2177–2189 (1994).
[PubMed]

A. Durrbach, D. Louvard, and E. Coudrier, “Actin filaments facilitate two steps of endocytosis,” J. Cell Sci. 109, 457–465 (1996).
[PubMed]

Med. Res. Rev. (1)

H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug delivery,” Med. Res. Rev. 22, 225–250 (2002).
[Crossref] [PubMed]

Nat. Rev. Mol. Cell Biol. (2)

F. Maxfield and T. McGraw, “Endocytic recycling,” Nat. Rev. Mol. Cell Biol. 5, 121–132 (2004).
[Crossref] [PubMed]

B. Grant and J. Donaldson, “Pathways and mechanisms of endocytic recycling,” Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (3)

D. M. Sipe and R. F. Murphy, “High-resolution kinetics of transferrin acidification in BALB/c 3T3 cells: exposure to pH 6 followed by temperature-sensitive alkalinization during recycling,” Proc. Natl. Acad. Sci. USA 84, 7119–7123 (1987).
[Crossref] [PubMed]

P. Friden, L. Walus, G. Musso, M. Taylor, B. Malfroy, and R. Starzyk, “Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier,” Proc. Natl. Acad. Sci. USA 88, 4771–4775 (1991).
[Crossref] [PubMed]

E. Daro, P. Van Der Sluijs, T. Galli, and I. Mellman, “Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling,” Proc. Natl. Acad. Sci. USA 93, 9559–9564 (1996).
[Crossref] [PubMed]

Sci. Transl. Med. (1)

Y. J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J. M. Elliott, S. Prabhu, R. J. Watts, and M. S. Dennis, “Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target,” Sci. Transl. Med. 3, 84ra44 (2011).
[Crossref] [PubMed]

Science (1)

W. Rumsey, J. Vanderkooi, and D. Wilson, “Imaging of phosphorescence: A novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988).
[Crossref] [PubMed]

Other (2)

B. Alberts, Molecular Biology of the Cell (Garland Science - Taylor&Francis group, 2008).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics