Abstract

In the context of a bioreactor, cells are sensitive to cues from other cells and mechanical stimuli from movement. The ability to provide the latter in a discrete fluidic system presents a significant challenge. From a prior finding that the location of the focus of a laser below particles relative to the beam axis producing a pushing effect in a predominant lateral sense, we advance an approach here that generates a gentle and tunable stirring effect. Computer simulation studies show that we are able to characterize this effect from the parameters that govern the optical forces and the movement of the particles. Experimental results with polystyrene microbeads and red blood cells confirm the notions from the simulations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Chen, Z. Yu, L. Zhang, and G. Chen, “Microfluidic bioreactors for highly efficient proteolysis,” Curr. Chem. Biol.3(3), 291–301 (2009).
    [CrossRef]
  2. H. N. Vu, Y. Li, M. Casali, D. Irimia, Z. Megeed, and M. L. Yarmush, “A microfluidic bioreactor for increased active retrovirus output,” Lab Chip8(1), 75–80 (2008).
    [CrossRef] [PubMed]
  3. E. Figallo, C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic, “Micro-bioreactor array for controlling cellular microenvironments,” Lab Chip7(6), 710–719 (2007).
    [CrossRef] [PubMed]
  4. M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, “Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets,” Anal. Chem.77(6), 1539–1544 (2005).
    [CrossRef] [PubMed]
  5. S. Daniel, M. K. Chaudhury, and P. G. de Gennes, “Vibration-actuated drop motion on surfaces for batch microfluidic processes,” Langmuir21(9), 4240–4248 (2005).
    [CrossRef] [PubMed]
  6. H. Y. Tan, T. W. Ng, A. Neild, and O. W. Liew, “Point spread function effect in image-based fluorescent microplate detection,” Anal. Biochem.397(2), 256–258 (2010).
    [CrossRef] [PubMed]
  7. J. K. K. Lye, T. W. Ng, and W. Y. L. Ling, “Discrete microfluidics transfer across capillaries using liquid bridge stability,” J. Appl. Phys.110(10), 104509 (2011).
    [CrossRef]
  8. J. J. Zhong, K. Fujiyama, T. Seki, and T. Yoshida, “A quantitative analysis of shear effects on cell suspension and cell culture of perilla frutescens in bioreactors,” Biotechnol. Bioeng.44(5), 649–654 (1994).
    [CrossRef] [PubMed]
  9. W. Y. Sim, S. W. Park, S. H. Park, B. H. Min, S. R. Park, and S. S. Yang, “A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation,” Lab Chip7(12), 1775–1782 (2007).
    [CrossRef] [PubMed]
  10. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron.6(6), 841–856 (2000).
    [CrossRef]
  11. T. Iwaki, “Effect of internal flow on the photophoresis of a micron-sized liquid droplet,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(6), 066315 (2010).
    [CrossRef] [PubMed]
  12. A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol.82, 153–205 (2007).
    [CrossRef] [PubMed]
  13. A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed. Opt.15(6), 065003 (2010).
    [CrossRef] [PubMed]
  14. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  15. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett.21(14), 1090–1092 (1996).
    [CrossRef] [PubMed]
  16. U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 021910 (2008).
    [CrossRef] [PubMed]
  17. M. Muradoglu, W. S. Y. Chiu, and T. W. Ng, “Optical force lateral push-pulling using focus positioning,” J. Opt. Soc. Am. B29(4), 874–880 (2012).
    [CrossRef]
  18. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
    [CrossRef]
  19. B. H. P. Cheong, V. Diep, T. W. Ng, and O. W. Liew, “Transparency-based microplates for fluorescence quantification,” Anal. Biochem.422(1), 39–45 (2012).
    [CrossRef] [PubMed]
  20. H. Li, J. R. Friend, and L. Y. Yeo, “Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation,” Phys. Rev. Lett.101(8), 084502 (2008).
    [CrossRef] [PubMed]
  21. J. Whitehill, A. Neild, T. W. Ng, and M. Stokes, “Collection of suspended particles in a drop using low frequency vibration,” Appl. Phys. Lett.96(5), 053501 (2010).
    [CrossRef]
  22. H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010).
    [CrossRef] [PubMed]
  23. B. Weiss, W. Hilber, R. Holly, P. Gittler, B. Jakoby, and K. Hingerl, “Dielectrophoretic particle dynamics in alternative-current electro-osmotic micropumps,” Appl. Phys. Lett.92(18), 184101 (2008).
    [CrossRef]
  24. J. A. King and W. M. Miller, “Bioreactor development for stem cell expansion and controlled differentiation,” Curr. Opin. Chem. Biol.11(4), 394–398 (2007).
    [CrossRef] [PubMed]
  25. N. K. Inamdar, L. G. Griffith, and J. T. Borenstein, “Transport and shear in a microfluidic membrane bilayer device for cell culture,” Biomicrofluidics5(2), 022213 (2011).
    [CrossRef] [PubMed]
  26. C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
    [CrossRef] [PubMed]
  27. K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
    [CrossRef] [PubMed]
  28. J. R. Glossop and S. H. Cartmell, “Effect of fluid flow-induced shear stress on human mesenchymal stem cells: differential gene expression of IL1B and MAP3K8 in MAPK signaling,” Gene Expr. Patterns9(5), 381–388 (2009).
    [CrossRef] [PubMed]
  29. Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012).
    [CrossRef] [PubMed]
  30. M. Morga-Ramírez, M. T. Collados-Larumbe, K. E. Johnson, M. J. Rivas-Arreola, L. M. Carrillo-Cocom, and M. M. Álvarez, “Hydrodynamic conditions induce changes in secretion level and glycosylation patterns of Von Willebrand factor (vWF) in endothelial cells,” J. Biosci. Bioeng.109(4), 400–406 (2010).
    [CrossRef] [PubMed]
  31. Y. Ban, Y. Y. Wu, T. Yu, N. Geng, Y. Y. Wang, X. G. Liu, and P. Gong, “Response of osteoblasts to low fluid shear stress is time dependent,” Tissue Cell43(5), 311–317 (2011).
    [CrossRef] [PubMed]

2012 (3)

M. Muradoglu, W. S. Y. Chiu, and T. W. Ng, “Optical force lateral push-pulling using focus positioning,” J. Opt. Soc. Am. B29(4), 874–880 (2012).
[CrossRef]

B. H. P. Cheong, V. Diep, T. W. Ng, and O. W. Liew, “Transparency-based microplates for fluorescence quantification,” Anal. Biochem.422(1), 39–45 (2012).
[CrossRef] [PubMed]

Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012).
[CrossRef] [PubMed]

2011 (4)

Y. Ban, Y. Y. Wu, T. Yu, N. Geng, Y. Y. Wang, X. G. Liu, and P. Gong, “Response of osteoblasts to low fluid shear stress is time dependent,” Tissue Cell43(5), 311–317 (2011).
[CrossRef] [PubMed]

N. K. Inamdar, L. G. Griffith, and J. T. Borenstein, “Transport and shear in a microfluidic membrane bilayer device for cell culture,” Biomicrofluidics5(2), 022213 (2011).
[CrossRef] [PubMed]

C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
[CrossRef] [PubMed]

J. K. K. Lye, T. W. Ng, and W. Y. L. Ling, “Discrete microfluidics transfer across capillaries using liquid bridge stability,” J. Appl. Phys.110(10), 104509 (2011).
[CrossRef]

2010 (6)

H. Y. Tan, T. W. Ng, A. Neild, and O. W. Liew, “Point spread function effect in image-based fluorescent microplate detection,” Anal. Biochem.397(2), 256–258 (2010).
[CrossRef] [PubMed]

T. Iwaki, “Effect of internal flow on the photophoresis of a micron-sized liquid droplet,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(6), 066315 (2010).
[CrossRef] [PubMed]

A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed. Opt.15(6), 065003 (2010).
[CrossRef] [PubMed]

J. Whitehill, A. Neild, T. W. Ng, and M. Stokes, “Collection of suspended particles in a drop using low frequency vibration,” Appl. Phys. Lett.96(5), 053501 (2010).
[CrossRef]

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

M. Morga-Ramírez, M. T. Collados-Larumbe, K. E. Johnson, M. J. Rivas-Arreola, L. M. Carrillo-Cocom, and M. M. Álvarez, “Hydrodynamic conditions induce changes in secretion level and glycosylation patterns of Von Willebrand factor (vWF) in endothelial cells,” J. Biosci. Bioeng.109(4), 400–406 (2010).
[CrossRef] [PubMed]

2009 (2)

J. R. Glossop and S. H. Cartmell, “Effect of fluid flow-induced shear stress on human mesenchymal stem cells: differential gene expression of IL1B and MAP3K8 in MAPK signaling,” Gene Expr. Patterns9(5), 381–388 (2009).
[CrossRef] [PubMed]

J. Chen, Z. Yu, L. Zhang, and G. Chen, “Microfluidic bioreactors for highly efficient proteolysis,” Curr. Chem. Biol.3(3), 291–301 (2009).
[CrossRef]

2008 (4)

H. N. Vu, Y. Li, M. Casali, D. Irimia, Z. Megeed, and M. L. Yarmush, “A microfluidic bioreactor for increased active retrovirus output,” Lab Chip8(1), 75–80 (2008).
[CrossRef] [PubMed]

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 021910 (2008).
[CrossRef] [PubMed]

B. Weiss, W. Hilber, R. Holly, P. Gittler, B. Jakoby, and K. Hingerl, “Dielectrophoretic particle dynamics in alternative-current electro-osmotic micropumps,” Appl. Phys. Lett.92(18), 184101 (2008).
[CrossRef]

H. Li, J. R. Friend, and L. Y. Yeo, “Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation,” Phys. Rev. Lett.101(8), 084502 (2008).
[CrossRef] [PubMed]

2007 (5)

J. A. King and W. M. Miller, “Bioreactor development for stem cell expansion and controlled differentiation,” Curr. Opin. Chem. Biol.11(4), 394–398 (2007).
[CrossRef] [PubMed]

E. Figallo, C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic, “Micro-bioreactor array for controlling cellular microenvironments,” Lab Chip7(6), 710–719 (2007).
[CrossRef] [PubMed]

W. Y. Sim, S. W. Park, S. H. Park, B. H. Min, S. R. Park, and S. S. Yang, “A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation,” Lab Chip7(12), 1775–1782 (2007).
[CrossRef] [PubMed]

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol.82, 153–205 (2007).
[CrossRef] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

2005 (3)

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, “Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets,” Anal. Chem.77(6), 1539–1544 (2005).
[CrossRef] [PubMed]

S. Daniel, M. K. Chaudhury, and P. G. de Gennes, “Vibration-actuated drop motion on surfaces for batch microfluidic processes,” Langmuir21(9), 4240–4248 (2005).
[CrossRef] [PubMed]

K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
[CrossRef] [PubMed]

2000 (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron.6(6), 841–856 (2000).
[CrossRef]

1996 (1)

1994 (1)

J. J. Zhong, K. Fujiyama, T. Seki, and T. Yoshida, “A quantitative analysis of shear effects on cell suspension and cell culture of perilla frutescens in bioreactors,” Biotechnol. Bioeng.44(5), 649–654 (1994).
[CrossRef] [PubMed]

1986 (1)

Álvarez, M. M.

M. Morga-Ramírez, M. T. Collados-Larumbe, K. E. Johnson, M. J. Rivas-Arreola, L. M. Carrillo-Cocom, and M. M. Álvarez, “Hydrodynamic conditions induce changes in secretion level and glycosylation patterns of Von Willebrand factor (vWF) in endothelial cells,” J. Biosci. Bioeng.109(4), 400–406 (2010).
[CrossRef] [PubMed]

Ando, J.

K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron.6(6), 841–856 (2000).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
[CrossRef] [PubMed]

Ban, Y.

Y. Ban, Y. Y. Wu, T. Yu, N. Geng, Y. Y. Wang, X. G. Liu, and P. Gong, “Response of osteoblasts to low fluid shear stress is time dependent,” Tissue Cell43(5), 311–317 (2011).
[CrossRef] [PubMed]

Berns, M. W.

Berson, R. E.

C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Borenstein, J. T.

N. K. Inamdar, L. G. Griffith, and J. T. Borenstein, “Transport and shear in a microfluidic membrane bilayer device for cell culture,” Biomicrofluidics5(2), 022213 (2011).
[CrossRef] [PubMed]

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

Burdick, J. A.

E. Figallo, C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic, “Micro-bioreactor array for controlling cellular microenvironments,” Lab Chip7(6), 710–719 (2007).
[CrossRef] [PubMed]

Cannizzaro, C.

E. Figallo, C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic, “Micro-bioreactor array for controlling cellular microenvironments,” Lab Chip7(6), 710–719 (2007).
[CrossRef] [PubMed]

Carrillo-Cocom, L. M.

M. Morga-Ramírez, M. T. Collados-Larumbe, K. E. Johnson, M. J. Rivas-Arreola, L. M. Carrillo-Cocom, and M. M. Álvarez, “Hydrodynamic conditions induce changes in secretion level and glycosylation patterns of Von Willebrand factor (vWF) in endothelial cells,” J. Biosci. Bioeng.109(4), 400–406 (2010).
[CrossRef] [PubMed]

Cartmell, S. H.

J. R. Glossop and S. H. Cartmell, “Effect of fluid flow-induced shear stress on human mesenchymal stem cells: differential gene expression of IL1B and MAP3K8 in MAPK signaling,” Gene Expr. Patterns9(5), 381–388 (2009).
[CrossRef] [PubMed]

Casali, M.

H. N. Vu, Y. Li, M. Casali, D. Irimia, Z. Megeed, and M. L. Yarmush, “A microfluidic bioreactor for increased active retrovirus output,” Lab Chip8(1), 75–80 (2008).
[CrossRef] [PubMed]

Chaudhury, M. K.

S. Daniel, M. K. Chaudhury, and P. G. de Gennes, “Vibration-actuated drop motion on surfaces for batch microfluidic processes,” Langmuir21(9), 4240–4248 (2005).
[CrossRef] [PubMed]

Chen, G.

J. Chen, Z. Yu, L. Zhang, and G. Chen, “Microfluidic bioreactors for highly efficient proteolysis,” Curr. Chem. Biol.3(3), 291–301 (2009).
[CrossRef]

Chen, J.

J. Chen, Z. Yu, L. Zhang, and G. Chen, “Microfluidic bioreactors for highly efficient proteolysis,” Curr. Chem. Biol.3(3), 291–301 (2009).
[CrossRef]

Chen, Q. D.

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Cheong, B. H. P.

B. H. P. Cheong, V. Diep, T. W. Ng, and O. W. Liew, “Transparency-based microplates for fluorescence quantification,” Anal. Biochem.422(1), 39–45 (2012).
[CrossRef] [PubMed]

Chiu, D. T.

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, “Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets,” Anal. Chem.77(6), 1539–1544 (2005).
[CrossRef] [PubMed]

Chiu, W. S. Y.

Chu, S.

Collados-Larumbe, M. T.

M. Morga-Ramírez, M. T. Collados-Larumbe, K. E. Johnson, M. J. Rivas-Arreola, L. M. Carrillo-Cocom, and M. M. Álvarez, “Hydrodynamic conditions induce changes in secretion level and glycosylation patterns of Von Willebrand factor (vWF) in endothelial cells,” J. Biosci. Bioeng.109(4), 400–406 (2010).
[CrossRef] [PubMed]

Daniel, S.

S. Daniel, M. K. Chaudhury, and P. G. de Gennes, “Vibration-actuated drop motion on surfaces for batch microfluidic processes,” Langmuir21(9), 4240–4248 (2005).
[CrossRef] [PubMed]

de Gennes, P. G.

S. Daniel, M. K. Chaudhury, and P. G. de Gennes, “Vibration-actuated drop motion on surfaces for batch microfluidic processes,” Langmuir21(9), 4240–4248 (2005).
[CrossRef] [PubMed]

Diep, V.

B. H. P. Cheong, V. Diep, T. W. Ng, and O. W. Liew, “Transparency-based microplates for fluorescence quantification,” Anal. Biochem.422(1), 39–45 (2012).
[CrossRef] [PubMed]

Du, X. B.

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Dziedzic, J. M.

Edgar, J. S.

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, “Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets,” Anal. Chem.77(6), 1539–1544 (2005).
[CrossRef] [PubMed]

Elvassore, N.

E. Figallo, C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic, “Micro-bioreactor array for controlling cellular microenvironments,” Lab Chip7(6), 710–719 (2007).
[CrossRef] [PubMed]

Figallo, E.

E. Figallo, C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic, “Micro-bioreactor array for controlling cellular microenvironments,” Lab Chip7(6), 710–719 (2007).
[CrossRef] [PubMed]

Friend, J. R.

H. Li, J. R. Friend, and L. Y. Yeo, “Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation,” Phys. Rev. Lett.101(8), 084502 (2008).
[CrossRef] [PubMed]

Fujiyama, K.

J. J. Zhong, K. Fujiyama, T. Seki, and T. Yoshida, “A quantitative analysis of shear effects on cell suspension and cell culture of perilla frutescens in bioreactors,” Biotechnol. Bioeng.44(5), 649–654 (1994).
[CrossRef] [PubMed]

Gebert, A.

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol.82, 153–205 (2007).
[CrossRef] [PubMed]

Geng, N.

Y. Ban, Y. Y. Wu, T. Yu, N. Geng, Y. Y. Wang, X. G. Liu, and P. Gong, “Response of osteoblasts to low fluid shear stress is time dependent,” Tissue Cell43(5), 311–317 (2011).
[CrossRef] [PubMed]

Gerecht, S.

E. Figallo, C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic, “Micro-bioreactor array for controlling cellular microenvironments,” Lab Chip7(6), 710–719 (2007).
[CrossRef] [PubMed]

Gittler, P.

B. Weiss, W. Hilber, R. Holly, P. Gittler, B. Jakoby, and K. Hingerl, “Dielectrophoretic particle dynamics in alternative-current electro-osmotic micropumps,” Appl. Phys. Lett.92(18), 184101 (2008).
[CrossRef]

Glossop, J. R.

J. R. Glossop and S. H. Cartmell, “Effect of fluid flow-induced shear stress on human mesenchymal stem cells: differential gene expression of IL1B and MAP3K8 in MAPK signaling,” Gene Expr. Patterns9(5), 381–388 (2009).
[CrossRef] [PubMed]

Gong, P.

Y. Ban, Y. Y. Wu, T. Yu, N. Geng, Y. Y. Wang, X. G. Liu, and P. Gong, “Response of osteoblasts to low fluid shear stress is time dependent,” Tissue Cell43(5), 311–317 (2011).
[CrossRef] [PubMed]

Gorelik, J.

C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
[CrossRef] [PubMed]

Griffith, L. G.

N. K. Inamdar, L. G. Griffith, and J. T. Borenstein, “Transport and shear in a microfluidic membrane bilayer device for cell culture,” Biomicrofluidics5(2), 022213 (2011).
[CrossRef] [PubMed]

Harrington, L. S.

C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
[CrossRef] [PubMed]

He, M.

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, “Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets,” Anal. Chem.77(6), 1539–1544 (2005).
[CrossRef] [PubMed]

He, Y.

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

Hilber, W.

B. Weiss, W. Hilber, R. Holly, P. Gittler, B. Jakoby, and K. Hingerl, “Dielectrophoretic particle dynamics in alternative-current electro-osmotic micropumps,” Appl. Phys. Lett.92(18), 184101 (2008).
[CrossRef]

Hingerl, K.

B. Weiss, W. Hilber, R. Holly, P. Gittler, B. Jakoby, and K. Hingerl, “Dielectrophoretic particle dynamics in alternative-current electro-osmotic micropumps,” Appl. Phys. Lett.92(18), 184101 (2008).
[CrossRef]

Holly, R.

B. Weiss, W. Hilber, R. Holly, P. Gittler, B. Jakoby, and K. Hingerl, “Dielectrophoretic particle dynamics in alternative-current electro-osmotic micropumps,” Appl. Phys. Lett.92(18), 184101 (2008).
[CrossRef]

Horneffer, V.

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol.82, 153–205 (2007).
[CrossRef] [PubMed]

Hüttmann, G.

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol.82, 153–205 (2007).
[CrossRef] [PubMed]

Inamdar, N. K.

N. K. Inamdar, L. G. Griffith, and J. T. Borenstein, “Transport and shear in a microfluidic membrane bilayer device for cell culture,” Biomicrofluidics5(2), 022213 (2011).
[CrossRef] [PubMed]

Irimia, D.

H. N. Vu, Y. Li, M. Casali, D. Irimia, Z. Megeed, and M. L. Yarmush, “A microfluidic bioreactor for increased active retrovirus output,” Lab Chip8(1), 75–80 (2008).
[CrossRef] [PubMed]

Iwaki, T.

T. Iwaki, “Effect of internal flow on the photophoresis of a micron-sized liquid droplet,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(6), 066315 (2010).
[CrossRef] [PubMed]

Jakoby, B.

B. Weiss, W. Hilber, R. Holly, P. Gittler, B. Jakoby, and K. Hingerl, “Dielectrophoretic particle dynamics in alternative-current electro-osmotic micropumps,” Appl. Phys. Lett.92(18), 184101 (2008).
[CrossRef]

Jeffries, G. D. M.

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, “Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets,” Anal. Chem.77(6), 1539–1544 (2005).
[CrossRef] [PubMed]

Johnson, K. E.

M. Morga-Ramírez, M. T. Collados-Larumbe, K. E. Johnson, M. J. Rivas-Arreola, L. M. Carrillo-Cocom, and M. M. Álvarez, “Hydrodynamic conditions induce changes in secretion level and glycosylation patterns of Von Willebrand factor (vWF) in endothelial cells,” J. Biosci. Bioeng.109(4), 400–406 (2010).
[CrossRef] [PubMed]

Kamiya, A.

K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
[CrossRef] [PubMed]

King, J. A.

J. A. King and W. M. Miller, “Bioreactor development for stem cell expansion and controlled differentiation,” Curr. Opin. Chem. Biol.11(4), 394–398 (2007).
[CrossRef] [PubMed]

Knoner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

König, K.

Langer, R.

E. Figallo, C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic, “Micro-bioreactor array for controlling cellular microenvironments,” Lab Chip7(6), 710–719 (2007).
[CrossRef] [PubMed]

Li, H.

H. Li, J. R. Friend, and L. Y. Yeo, “Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation,” Phys. Rev. Lett.101(8), 084502 (2008).
[CrossRef] [PubMed]

Li, Y.

H. N. Vu, Y. Li, M. Casali, D. Irimia, Z. Megeed, and M. L. Yarmush, “A microfluidic bioreactor for increased active retrovirus output,” Lab Chip8(1), 75–80 (2008).
[CrossRef] [PubMed]

Liang, H.

Liew, O. W.

B. H. P. Cheong, V. Diep, T. W. Ng, and O. W. Liew, “Transparency-based microplates for fluorescence quantification,” Anal. Biochem.422(1), 39–45 (2012).
[CrossRef] [PubMed]

H. Y. Tan, T. W. Ng, A. Neild, and O. W. Liew, “Point spread function effect in image-based fluorescent microplate detection,” Anal. Biochem.397(2), 256–258 (2010).
[CrossRef] [PubMed]

Ling, W. Y. L.

J. K. K. Lye, T. W. Ng, and W. Y. L. Ling, “Discrete microfluidics transfer across capillaries using liquid bridge stability,” J. Appl. Phys.110(10), 104509 (2011).
[CrossRef]

Linz, N.

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol.82, 153–205 (2007).
[CrossRef] [PubMed]

Liu, X.

Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012).
[CrossRef] [PubMed]

Liu, X. G.

Y. Ban, Y. Y. Wu, T. Yu, N. Geng, Y. Y. Wang, X. G. Liu, and P. Gong, “Response of osteoblasts to low fluid shear stress is time dependent,” Tissue Cell43(5), 311–317 (2011).
[CrossRef] [PubMed]

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

Lorenz, K.

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol.82, 153–205 (2007).
[CrossRef] [PubMed]

Lorenz, R. M.

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, “Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets,” Anal. Chem.77(6), 1539–1544 (2005).
[CrossRef] [PubMed]

Lundberg, M. H.

C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
[CrossRef] [PubMed]

Lye, J. K. K.

J. K. K. Lye, T. W. Ng, and W. Y. L. Ling, “Discrete microfluidics transfer across capillaries using liquid bridge stability,” J. Appl. Phys.110(10), 104509 (2011).
[CrossRef]

Matsudaira, P.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 021910 (2008).
[CrossRef] [PubMed]

Matsushita, A.

K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
[CrossRef] [PubMed]

Megeed, Z.

H. N. Vu, Y. Li, M. Casali, D. Irimia, Z. Megeed, and M. L. Yarmush, “A microfluidic bioreactor for increased active retrovirus output,” Lab Chip8(1), 75–80 (2008).
[CrossRef] [PubMed]

Miller, W. M.

J. A. King and W. M. Miller, “Bioreactor development for stem cell expansion and controlled differentiation,” Curr. Opin. Chem. Biol.11(4), 394–398 (2007).
[CrossRef] [PubMed]

Min, B. H.

W. Y. Sim, S. W. Park, S. H. Park, B. H. Min, S. R. Park, and S. S. Yang, “A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation,” Lab Chip7(12), 1775–1782 (2007).
[CrossRef] [PubMed]

Mir, M.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 021910 (2008).
[CrossRef] [PubMed]

Mirsaidov, U.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 021910 (2008).
[CrossRef] [PubMed]

Mitchell, J. A.

C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
[CrossRef] [PubMed]

Miyazono, K.

K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
[CrossRef] [PubMed]

Morga-Ramírez, M.

M. Morga-Ramírez, M. T. Collados-Larumbe, K. E. Johnson, M. J. Rivas-Arreola, L. M. Carrillo-Cocom, and M. M. Álvarez, “Hydrodynamic conditions induce changes in secretion level and glycosylation patterns of Von Willebrand factor (vWF) in endothelial cells,” J. Biosci. Bioeng.109(4), 400–406 (2010).
[CrossRef] [PubMed]

Moshkov, A. V.

C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
[CrossRef] [PubMed]

Muradoglu, M.

Neild, A.

J. Whitehill, A. Neild, T. W. Ng, and M. Stokes, “Collection of suspended particles in a drop using low frequency vibration,” Appl. Phys. Lett.96(5), 053501 (2010).
[CrossRef]

H. Y. Tan, T. W. Ng, A. Neild, and O. W. Liew, “Point spread function effect in image-based fluorescent microplate detection,” Anal. Biochem.397(2), 256–258 (2010).
[CrossRef] [PubMed]

A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed. Opt.15(6), 065003 (2010).
[CrossRef] [PubMed]

Ng, T. W.

M. Muradoglu, W. S. Y. Chiu, and T. W. Ng, “Optical force lateral push-pulling using focus positioning,” J. Opt. Soc. Am. B29(4), 874–880 (2012).
[CrossRef]

B. H. P. Cheong, V. Diep, T. W. Ng, and O. W. Liew, “Transparency-based microplates for fluorescence quantification,” Anal. Biochem.422(1), 39–45 (2012).
[CrossRef] [PubMed]

J. K. K. Lye, T. W. Ng, and W. Y. L. Ling, “Discrete microfluidics transfer across capillaries using liquid bridge stability,” J. Appl. Phys.110(10), 104509 (2011).
[CrossRef]

H. Y. Tan, T. W. Ng, A. Neild, and O. W. Liew, “Point spread function effect in image-based fluorescent microplate detection,” Anal. Biochem.397(2), 256–258 (2010).
[CrossRef] [PubMed]

A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed. Opt.15(6), 065003 (2010).
[CrossRef] [PubMed]

J. Whitehill, A. Neild, T. W. Ng, and M. Stokes, “Collection of suspended particles in a drop using low frequency vibration,” Appl. Phys. Lett.96(5), 053501 (2010).
[CrossRef]

Nieminen, T. A.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

Obi, S.

K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
[CrossRef] [PubMed]

Ohura, N.

K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
[CrossRef] [PubMed]

Park, S. H.

W. Y. Sim, S. W. Park, S. H. Park, B. H. Min, S. R. Park, and S. S. Yang, “A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation,” Lab Chip7(12), 1775–1782 (2007).
[CrossRef] [PubMed]

Park, S. R.

W. Y. Sim, S. W. Park, S. H. Park, B. H. Min, S. R. Park, and S. S. Yang, “A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation,” Lab Chip7(12), 1775–1782 (2007).
[CrossRef] [PubMed]

Park, S. W.

W. Y. Sim, S. W. Park, S. H. Park, B. H. Min, S. R. Park, and S. S. Yang, “A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation,” Lab Chip7(12), 1775–1782 (2007).
[CrossRef] [PubMed]

Potter, C. M.

C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
[CrossRef] [PubMed]

Qiu, Y. X.

Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012).
[CrossRef] [PubMed]

Rivas-Arreola, M. J.

M. Morga-Ramírez, M. T. Collados-Larumbe, K. E. Johnson, M. J. Rivas-Arreola, L. M. Carrillo-Cocom, and M. M. Álvarez, “Hydrodynamic conditions induce changes in secretion level and glycosylation patterns of Von Willebrand factor (vWF) in endothelial cells,” J. Biosci. Bioeng.109(4), 400–406 (2010).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

Seki, T.

J. J. Zhong, K. Fujiyama, T. Seki, and T. Yoshida, “A quantitative analysis of shear effects on cell suspension and cell culture of perilla frutescens in bioreactors,” Biotechnol. Bioeng.44(5), 649–654 (1994).
[CrossRef] [PubMed]

Shelby, J. P.

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, “Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets,” Anal. Chem.77(6), 1539–1544 (2005).
[CrossRef] [PubMed]

Siddiqi, A.

A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed. Opt.15(6), 065003 (2010).
[CrossRef] [PubMed]

Sim, W. Y.

W. Y. Sim, S. W. Park, S. H. Park, B. H. Min, S. R. Park, and S. S. Yang, “A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation,” Lab Chip7(12), 1775–1782 (2007).
[CrossRef] [PubMed]

Sokabe, T.

K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
[CrossRef] [PubMed]

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

Stokes, M.

J. Whitehill, A. Neild, T. W. Ng, and M. Stokes, “Collection of suspended particles in a drop using low frequency vibration,” Appl. Phys. Lett.96(5), 053501 (2010).
[CrossRef]

Sun, H. B.

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Tan, H. Y.

H. Y. Tan, T. W. Ng, A. Neild, and O. W. Liew, “Point spread function effect in image-based fluorescent microplate detection,” Anal. Biochem.397(2), 256–258 (2010).
[CrossRef] [PubMed]

Tao, J.

Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012).
[CrossRef] [PubMed]

Tian, Y.

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Timp, G.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 021910 (2008).
[CrossRef] [PubMed]

Timp, K.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 021910 (2008).
[CrossRef] [PubMed]

Timp, W.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 021910 (2008).
[CrossRef] [PubMed]

Tromberg, B. J.

Vogel, A.

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol.82, 153–205 (2007).
[CrossRef] [PubMed]

Vu, H. N.

H. N. Vu, Y. Li, M. Casali, D. Irimia, Z. Megeed, and M. L. Yarmush, “A microfluidic bioreactor for increased active retrovirus output,” Lab Chip8(1), 75–80 (2008).
[CrossRef] [PubMed]

Vunjak-Novakovic, G.

E. Figallo, C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic, “Micro-bioreactor array for controlling cellular microenvironments,” Lab Chip7(6), 710–719 (2007).
[CrossRef] [PubMed]

Wang, J.

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Wang, Y. Y.

Y. Ban, Y. Y. Wu, T. Yu, N. Geng, Y. Y. Wang, X. G. Liu, and P. Gong, “Response of osteoblasts to low fluid shear stress is time dependent,” Tissue Cell43(5), 311–317 (2011).
[CrossRef] [PubMed]

Warboys, C. M.

C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
[CrossRef] [PubMed]

Warner, T. D.

C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
[CrossRef] [PubMed]

Watabe, T.

K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
[CrossRef] [PubMed]

Weinberg, P. D.

C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
[CrossRef] [PubMed]

Weiss, B.

B. Weiss, W. Hilber, R. Holly, P. Gittler, B. Jakoby, and K. Hingerl, “Dielectrophoretic particle dynamics in alternative-current electro-osmotic micropumps,” Appl. Phys. Lett.92(18), 184101 (2008).
[CrossRef]

Whitehill, J.

J. Whitehill, A. Neild, T. W. Ng, and M. Stokes, “Collection of suspended particles in a drop using low frequency vibration,” Appl. Phys. Lett.96(5), 053501 (2010).
[CrossRef]

Wu, Y. Y.

Y. Ban, Y. Y. Wu, T. Yu, N. Geng, Y. Y. Wang, X. G. Liu, and P. Gong, “Response of osteoblasts to low fluid shear stress is time dependent,” Tissue Cell43(5), 311–317 (2011).
[CrossRef] [PubMed]

Xia, H.

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Xia, W. H.

Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012).
[CrossRef] [PubMed]

Xu, S. Y.

Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012).
[CrossRef] [PubMed]

Yamamoto, K.

K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
[CrossRef] [PubMed]

Yamashita, J. K.

K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
[CrossRef] [PubMed]

Yang, S. S.

W. Y. Sim, S. W. Park, S. H. Park, B. H. Min, S. R. Park, and S. S. Yang, “A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation,” Lab Chip7(12), 1775–1782 (2007).
[CrossRef] [PubMed]

Yang, Z.

Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012).
[CrossRef] [PubMed]

Yarmush, M. L.

H. N. Vu, Y. Li, M. Casali, D. Irimia, Z. Megeed, and M. L. Yarmush, “A microfluidic bioreactor for increased active retrovirus output,” Lab Chip8(1), 75–80 (2008).
[CrossRef] [PubMed]

Yeo, L. Y.

H. Li, J. R. Friend, and L. Y. Yeo, “Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation,” Phys. Rev. Lett.101(8), 084502 (2008).
[CrossRef] [PubMed]

Yoshida, T.

J. J. Zhong, K. Fujiyama, T. Seki, and T. Yoshida, “A quantitative analysis of shear effects on cell suspension and cell culture of perilla frutescens in bioreactors,” Biotechnol. Bioeng.44(5), 649–654 (1994).
[CrossRef] [PubMed]

Yu, B. B.

Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012).
[CrossRef] [PubMed]

Yu, T.

Y. Ban, Y. Y. Wu, T. Yu, N. Geng, Y. Y. Wang, X. G. Liu, and P. Gong, “Response of osteoblasts to low fluid shear stress is time dependent,” Tissue Cell43(5), 311–317 (2011).
[CrossRef] [PubMed]

Yu, Z.

J. Chen, Z. Yu, L. Zhang, and G. Chen, “Microfluidic bioreactors for highly efficient proteolysis,” Curr. Chem. Biol.3(3), 291–301 (2009).
[CrossRef]

Zhang, L.

J. Chen, Z. Yu, L. Zhang, and G. Chen, “Microfluidic bioreactors for highly efficient proteolysis,” Curr. Chem. Biol.3(3), 291–301 (2009).
[CrossRef]

Zhang, X. Y.

Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012).
[CrossRef] [PubMed]

Zhang, Y. L.

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Zhang, Y. Y.

Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012).
[CrossRef] [PubMed]

Zhong, J. J.

J. J. Zhong, K. Fujiyama, T. Seki, and T. Yoshida, “A quantitative analysis of shear effects on cell suspension and cell culture of perilla frutescens in bioreactors,” Biotechnol. Bioeng.44(5), 649–654 (1994).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005).
[CrossRef] [PubMed]

Anal. Biochem. (2)

H. Y. Tan, T. W. Ng, A. Neild, and O. W. Liew, “Point spread function effect in image-based fluorescent microplate detection,” Anal. Biochem.397(2), 256–258 (2010).
[CrossRef] [PubMed]

B. H. P. Cheong, V. Diep, T. W. Ng, and O. W. Liew, “Transparency-based microplates for fluorescence quantification,” Anal. Biochem.422(1), 39–45 (2012).
[CrossRef] [PubMed]

Anal. Chem. (1)

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, “Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets,” Anal. Chem.77(6), 1539–1544 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

B. Weiss, W. Hilber, R. Holly, P. Gittler, B. Jakoby, and K. Hingerl, “Dielectrophoretic particle dynamics in alternative-current electro-osmotic micropumps,” Appl. Phys. Lett.92(18), 184101 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

J. Whitehill, A. Neild, T. W. Ng, and M. Stokes, “Collection of suspended particles in a drop using low frequency vibration,” Appl. Phys. Lett.96(5), 053501 (2010).
[CrossRef]

Arterioscler. Thromb. Vasc. Biol. (1)

C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011).
[CrossRef] [PubMed]

Biomicrofluidics (1)

N. K. Inamdar, L. G. Griffith, and J. T. Borenstein, “Transport and shear in a microfluidic membrane bilayer device for cell culture,” Biomicrofluidics5(2), 022213 (2011).
[CrossRef] [PubMed]

Biotechnol. Bioeng. (1)

J. J. Zhong, K. Fujiyama, T. Seki, and T. Yoshida, “A quantitative analysis of shear effects on cell suspension and cell culture of perilla frutescens in bioreactors,” Biotechnol. Bioeng.44(5), 649–654 (1994).
[CrossRef] [PubMed]

Curr. Chem. Biol. (1)

J. Chen, Z. Yu, L. Zhang, and G. Chen, “Microfluidic bioreactors for highly efficient proteolysis,” Curr. Chem. Biol.3(3), 291–301 (2009).
[CrossRef]

Curr. Opin. Chem. Biol. (1)

J. A. King and W. M. Miller, “Bioreactor development for stem cell expansion and controlled differentiation,” Curr. Opin. Chem. Biol.11(4), 394–398 (2007).
[CrossRef] [PubMed]

Gene Expr. Patterns (1)

J. R. Glossop and S. H. Cartmell, “Effect of fluid flow-induced shear stress on human mesenchymal stem cells: differential gene expression of IL1B and MAP3K8 in MAPK signaling,” Gene Expr. Patterns9(5), 381–388 (2009).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron.6(6), 841–856 (2000).
[CrossRef]

J. Appl. Phys. (1)

J. K. K. Lye, T. W. Ng, and W. Y. L. Ling, “Discrete microfluidics transfer across capillaries using liquid bridge stability,” J. Appl. Phys.110(10), 104509 (2011).
[CrossRef]

J. Biomed. Opt. (1)

A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed. Opt.15(6), 065003 (2010).
[CrossRef] [PubMed]

J. Biosci. Bioeng. (1)

M. Morga-Ramírez, M. T. Collados-Larumbe, K. E. Johnson, M. J. Rivas-Arreola, L. M. Carrillo-Cocom, and M. M. Álvarez, “Hydrodynamic conditions induce changes in secretion level and glycosylation patterns of Von Willebrand factor (vWF) in endothelial cells,” J. Biosci. Bioeng.109(4), 400–406 (2010).
[CrossRef] [PubMed]

J. Mol. Cell. Cardiol. (1)

Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

W. Y. Sim, S. W. Park, S. H. Park, B. H. Min, S. R. Park, and S. S. Yang, “A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation,” Lab Chip7(12), 1775–1782 (2007).
[CrossRef] [PubMed]

Lab Chip (2)

H. N. Vu, Y. Li, M. Casali, D. Irimia, Z. Megeed, and M. L. Yarmush, “A microfluidic bioreactor for increased active retrovirus output,” Lab Chip8(1), 75–80 (2008).
[CrossRef] [PubMed]

E. Figallo, C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic, “Micro-bioreactor array for controlling cellular microenvironments,” Lab Chip7(6), 710–719 (2007).
[CrossRef] [PubMed]

Langmuir (1)

S. Daniel, M. K. Chaudhury, and P. G. de Gennes, “Vibration-actuated drop motion on surfaces for batch microfluidic processes,” Langmuir21(9), 4240–4248 (2005).
[CrossRef] [PubMed]

Methods Cell Biol. (1)

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol.82, 153–205 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

H. Li, J. R. Friend, and L. Y. Yeo, “Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation,” Phys. Rev. Lett.101(8), 084502 (2008).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

T. Iwaki, “Effect of internal flow on the photophoresis of a micron-sized liquid droplet,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(6), 066315 (2010).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 021910 (2008).
[CrossRef] [PubMed]

Tissue Cell (1)

Y. Ban, Y. Y. Wu, T. Yu, N. Geng, Y. Y. Wang, X. G. Liu, and P. Gong, “Response of osteoblasts to low fluid shear stress is time dependent,” Tissue Cell43(5), 311–317 (2011).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (5087 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The geometry of an incident focused laser beam that gives rise to scattering and gradient forces such that the resultant forces when sphere located at regions below (I) and above (II) the focus moves the sphere towards and away from the beam axis respectively. The setup to accomplish optical stirring (b) involves focusing the laser beam close to the bottom surface of the droplet and using the microscope stage to move the slide and droplet in the x-y plane.

Fig. 2
Fig. 2

(a) Contour plot of the optical force efficiency, Q, in the x-z plane beyond the transition line. (b) Plot of optical force efficiency, Q, along z = 16μm and z = 17μm as indicated by the solid and dashed lines, respectively. The optical force efficiency drops off rapidly after 3.5μm. Based on this observation we safely neglect optical force calculations beyond 8μm to lessen computational demands. The trajectories of particles at different starting locations with z = 15μm and z = 18μm is shown in (c). The magnitude of the sum of x and y force components is rendered in as an iso-surface. The line colors indicate the entry point of particles in the x-y plane, with black being at x = 4μm, y = 0.5μm, blue at x = 4μm, y = 1.5μm, and red at x = 4μm, y = 2.5μm.

Fig. 3
Fig. 3

(a) Plot of particle trajectories at optical powers 10mW (black), 15mW (green), 20mW (red), 35mW (blue) at z = 19μm. (b) Plot of local displacements of particles on microscope stage for z = 16μm at various power levels starting from the right to left, 10mW (blue-circle), 20mW (red-box), 25mW (green-cross), 40mW (blue-dotted), 100mW (red-star) and 200mW (green-star). The optical stirring effect can be controlled by changing laser power.

Fig. 4
Fig. 4

With the laser beam located axially below the polystyrene beads and having sufficient power, the image sequence (a) before and (b) after shows the particles numbered 1 and 2 laterally pushed away from the beam center. With the laser beam located axially below the polystyrene beads but having insufficient power, the image sequence (c) before and (d) after shows the cluster of particles circled in red unaffected by the beam. The arrow shows the general direction of travel of the particles (see Media 1).

Fig. 5
Fig. 5

With the laser beam located axially below the particles and having sufficient power, the image sequence (a) before and (b) after shows the red blood cells numbered 1 and 2 laterally pushed away by the beam. The arrow shows the general direction of travel of the cells (see Media 1).

Metrics