Abstract

Multi-diameter single fiber reflectance (MDSFR) spectroscopy enables quantitative measurement of tissue optical properties, including the reduced scattering coefficient and the phase function parameter γ. However, the accuracy and speed of the procedure are currently limited by the need for co-localized measurements using multiple fiber optic probes with different fiber diameters. This study demonstrates the use of a coherent fiber bundle acting as a single fiber with a variable diameter for the purposes of MDSFR spectroscopy. Using Intralipid optical phantoms with reduced scattering coefficients between 0.24 and 3 mm−1, we find that the spectral reflectance and effective path lengths measured by the fiber bundle (NA = 0.40) are equivalent to those measured by single solid-core fibers (NA = 0.22) for fiber diameters between 0.4 and 1.0 mm (r ≥ 0.997). This one-to-one correlation may hold for a 0.2 mm fiber diameter as well (r = 0.816); however, the experimental system used in this study suffers from a low signal-to-noise for small dimensionless reduced scattering coefficients due to spurious back reflections within the experimental system. Based on these results, the coherent fiber bundle is suitable for use as a variable-diameter fiber in clinical MDSFR quantification of tissue optical properties.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Wilson and S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron.26, 2186–2199 (1990).
    [CrossRef]
  2. D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London, B352, 649–659 (1997).
    [CrossRef]
  3. I. J. Bigio and S. G. Bown, “Spectrroscopic sensing of cancer and cancer therapy: Current status of translational research,” IEEE J. Quantum Electron.3, 259–267 (2004).
  4. A. Wax and V. Backman, Biomedical Applications of Light Scattering, Biophotonics Series (McGraw-Hill, 2009).
  5. S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express2, 1687–1702 (2011).
    [CrossRef] [PubMed]
  6. S. C. Kanick, C. van der Leest, J. G. J. V. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” JBO15, 017004 (2010).
    [CrossRef]
  7. S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol.5, 981–987 (2010).
    [PubMed]
  8. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol.54, 6991 (2009).
    [CrossRef] [PubMed]
  9. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties,” Opt. Lett.36, 2791–2793 (2011).
    [CrossRef] [PubMed]
  10. S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
    [CrossRef] [PubMed]
  11. U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011).
    [CrossRef] [PubMed]
  12. P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt.42, 3187–3197 (2003).
    [CrossRef] [PubMed]
  13. U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase function dependent parameter γ of turbid media using multi-diameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.37, 1838–1840 (2012).
    [CrossRef] [PubMed]
  14. A. Ishimaru, Wave Propagation and Scattering in Random Media: Multiple scattering, turbulence, rough surfaces and remote sensing, v. 2 (Academic Press, 1978).
    [PubMed]
  15. J. D. Rogers, İ. R. Çapoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett.34, 1891–1893 (2009).
    [CrossRef] [PubMed]
  16. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3, 137–152 (2012).
    [CrossRef] [PubMed]
  17. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium,” Opt. Lett.37, 948–950 (2012).
    [CrossRef] [PubMed]
  18. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” JBO13, 010502 (2008).
    [CrossRef]
  19. Y. Ti and W.-C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express16, 4250–4262 (2008).
    [CrossRef] [PubMed]
  20. L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” JBO16, 011012 (2011).
    [CrossRef]
  21. J. A. Udovich, N. D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, and A. F. Gmitro, “Spectral background and transmission characteristics of fiber optic imaging bundles,” Appl. Opt.47, 4560–4568 (2008).
    [CrossRef] [PubMed]
  22. S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express17, 860–871 (2009).
    [CrossRef] [PubMed]
  23. S. C. Kanick, V. Krishnaswamy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, and B. W. Pogue, “Scattering phase function spectrum makes reflectance spectrum measured from intralipid phantoms and tissue sensitive to the device detection geometry,” Biomed. Opt. Express3, 1086–1100 (2012).
    [CrossRef] [PubMed]
  24. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
    [CrossRef]
  25. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: Applications to human brain,” Appl. Opt.38, 4939–4950 (1999).
    [CrossRef]
  26. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” JBO11, 064026 (2006).
    [CrossRef]
  27. S. Inoué, “Studies on depolarization of light at microscope lens surfaces. I. The origin of stray light by rotation at lens surfaces.” Exp. Cell Res.3, 199–208 (1952).
    [CrossRef]
  28. M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification,” Opt. Eng.41, 943–954 (2002).
    [CrossRef]
  29. R. Jukaitis and T. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning19, 15–19 (1997).
  30. C. Liang, M. Descour, K.-B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express9, 821–830 (2001).
    [CrossRef] [PubMed]
  31. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188, 267–273 (2001).
    [CrossRef]

2012 (4)

2011 (5)

2010 (2)

S. C. Kanick, C. van der Leest, J. G. J. V. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” JBO15, 017004 (2010).
[CrossRef]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol.5, 981–987 (2010).
[PubMed]

2009 (3)

2008 (3)

2006 (1)

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” JBO11, 064026 (2006).
[CrossRef]

2004 (1)

I. J. Bigio and S. G. Bown, “Spectrroscopic sensing of cancer and cancer therapy: Current status of translational research,” IEEE J. Quantum Electron.3, 259–267 (2004).

2003 (1)

2002 (1)

M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification,” Opt. Eng.41, 943–954 (2002).
[CrossRef]

2001 (2)

C. Liang, M. Descour, K.-B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express9, 821–830 (2001).
[CrossRef] [PubMed]

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188, 267–273 (2001).
[CrossRef]

1999 (1)

1997 (2)

R. Jukaitis and T. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning19, 15–19 (1997).

D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London, B352, 649–659 (1997).
[CrossRef]

1990 (2)

B. C. Wilson and S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron.26, 2186–2199 (1990).
[CrossRef]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

1952 (1)

S. Inoué, “Studies on depolarization of light at microscope lens surfaces. I. The origin of stray light by rotation at lens surfaces.” Exp. Cell Res.3, 199–208 (1952).
[CrossRef]

A’Amar, O.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” JBO13, 010502 (2008).
[CrossRef]

Aerts, J. G. J. V.

S. C. Kanick, C. van der Leest, J. G. J. V. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” JBO15, 017004 (2010).
[CrossRef]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol.5, 981–987 (2010).
[PubMed]

Amelink, A.

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase function dependent parameter γ of turbid media using multi-diameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.37, 1838–1840 (2012).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium,” Opt. Lett.37, 948–950 (2012).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3, 137–152 (2012).
[CrossRef] [PubMed]

S. C. Kanick, V. Krishnaswamy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, and B. W. Pogue, “Scattering phase function spectrum makes reflectance spectrum measured from intralipid phantoms and tissue sensitive to the device detection geometry,” Biomed. Opt. Express3, 1086–1100 (2012).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties,” Opt. Lett.36, 2791–2793 (2011).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express2, 1687–1702 (2011).
[CrossRef] [PubMed]

S. C. Kanick, C. van der Leest, J. G. J. V. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” JBO15, 017004 (2010).
[CrossRef]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol.5, 981–987 (2010).
[PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol.54, 6991 (2009).
[CrossRef] [PubMed]

S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express17, 860–871 (2009).
[CrossRef] [PubMed]

Amorosino, M. S.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” JBO13, 010502 (2008).
[CrossRef]

Backman, V.

Bargo, P. R.

Bevilacqua, F.

Bigio, I. J.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” JBO13, 010502 (2008).
[CrossRef]

I. J. Bigio and S. G. Bown, “Spectrroscopic sensing of cancer and cancer therapy: Current status of translational research,” IEEE J. Quantum Electron.3, 259–267 (2004).

Bown, S. G.

I. J. Bigio and S. G. Bown, “Spectrroscopic sensing of cancer and cancer therapy: Current status of translational research,” IEEE J. Quantum Electron.3, 259–267 (2004).

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188, 267–273 (2001).
[CrossRef]

Calabro, K. W.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” JBO13, 010502 (2008).
[CrossRef]

Çapoglu, I. R.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

Cope, M.

D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London, B352, 649–659 (1997).
[CrossRef]

Delpy, D. T.

D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London, B352, 649–659 (1997).
[CrossRef]

Depeursinge, C.

Descour, M.

Djamin, R. S.

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol.5, 981–987 (2010).
[PubMed]

Gamm, U. A.

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase function dependent parameter γ of turbid media using multi-diameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.37, 1838–1840 (2012).
[CrossRef] [PubMed]

S. C. Kanick, V. Krishnaswamy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, and B. W. Pogue, “Scattering phase function spectrum makes reflectance spectrum measured from intralipid phantoms and tissue sensitive to the device detection geometry,” Biomed. Opt. Express3, 1086–1100 (2012).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express2, 1687–1702 (2011).
[CrossRef] [PubMed]

Gmitro, A. F.

Gross, J. D.

Hoogsteden, H. C.

S. C. Kanick, C. van der Leest, J. G. J. V. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” JBO15, 017004 (2010).
[CrossRef]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol.5, 981–987 (2010).
[PubMed]

Inoué, S.

M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification,” Opt. Eng.41, 943–954 (2002).
[CrossRef]

S. Inoué, “Studies on depolarization of light at microscope lens surfaces. I. The origin of stray light by rotation at lens surfaces.” Exp. Cell Res.3, 199–208 (1952).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media: Multiple scattering, turbulence, rough surfaces and remote sensing, v. 2 (Academic Press, 1978).
[PubMed]

Jacques, S. L.

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt.42, 3187–3197 (2003).
[CrossRef] [PubMed]

B. C. Wilson and S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron.26, 2186–2199 (1990).
[CrossRef]

Janssens, A. M.

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol.5, 981–987 (2010).
[PubMed]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” JBO11, 064026 (2006).
[CrossRef]

Jukaitis, R.

R. Jukaitis and T. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning19, 15–19 (1997).

Kanick, S. C.

S. C. Kanick, V. Krishnaswamy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, and B. W. Pogue, “Scattering phase function spectrum makes reflectance spectrum measured from intralipid phantoms and tissue sensitive to the device detection geometry,” Biomed. Opt. Express3, 1086–1100 (2012).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase function dependent parameter γ of turbid media using multi-diameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.37, 1838–1840 (2012).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3, 137–152 (2012).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium,” Opt. Lett.37, 948–950 (2012).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties,” Opt. Lett.36, 2791–2793 (2011).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express2, 1687–1702 (2011).
[CrossRef] [PubMed]

S. C. Kanick, C. van der Leest, J. G. J. V. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” JBO15, 017004 (2010).
[CrossRef]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol.5, 981–987 (2010).
[PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol.54, 6991 (2009).
[CrossRef] [PubMed]

S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express17, 860–871 (2009).
[CrossRef] [PubMed]

Kano, A.

Kašcáková, S.

S. C. Kanick, C. van der Leest, J. G. J. V. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” JBO15, 017004 (2010).
[CrossRef]

Kirkpatrick, N. D.

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188, 267–273 (2001).
[CrossRef]

Krishnaswamy, V.

Liang, C.

Lim, L.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” JBO16, 011012 (2011).
[CrossRef]

Lin, W.-C.

Marquet, P.

Messerschmidt, B.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188, 267–273 (2001).
[CrossRef]

Nichols, B.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” JBO16, 011012 (2011).
[CrossRef]

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” JBO11, 064026 (2006).
[CrossRef]

Oldenbourg, R.

M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification,” Opt. Eng.41, 943–954 (2002).
[CrossRef]

Piguet, D.

Pogue, B. W.

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188, 267–273 (2001).
[CrossRef]

Prahl, S. A.

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt.42, 3187–3197 (2003).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

Rajaram, N.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” JBO16, 011012 (2011).
[CrossRef]

Reif, R.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” JBO13, 010502 (2008).
[CrossRef]

Richards-Kortum, R.

Robinson, D. J.

S. C. Kanick, V. Krishnaswamy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, and B. W. Pogue, “Scattering phase function spectrum makes reflectance spectrum measured from intralipid phantoms and tissue sensitive to the device detection geometry,” Biomed. Opt. Express3, 1086–1100 (2012).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium,” Opt. Lett.37, 948–950 (2012).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3, 137–152 (2012).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase function dependent parameter γ of turbid media using multi-diameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.37, 1838–1840 (2012).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties,” Opt. Lett.36, 2791–2793 (2011).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express2, 1687–1702 (2011).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol.54, 6991 (2009).
[CrossRef] [PubMed]

Rogers, J. D.

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” JBO11, 064026 (2006).
[CrossRef]

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188, 267–273 (2001).
[CrossRef]

Schouten, M.

Shribak, M.

M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification,” Opt. Eng.41, 943–954 (2002).
[CrossRef]

Singh, S. K.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” JBO13, 010502 (2008).
[CrossRef]

Sterenborg, H. J. C. M.

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3, 137–152 (2012).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium,” Opt. Lett.37, 948–950 (2012).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase function dependent parameter γ of turbid media using multi-diameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.37, 1838–1840 (2012).
[CrossRef] [PubMed]

S. C. Kanick, V. Krishnaswamy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, and B. W. Pogue, “Scattering phase function spectrum makes reflectance spectrum measured from intralipid phantoms and tissue sensitive to the device detection geometry,” Biomed. Opt. Express3, 1086–1100 (2012).
[CrossRef] [PubMed]

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express2, 1687–1702 (2011).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties,” Opt. Lett.36, 2791–2793 (2011).
[CrossRef] [PubMed]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol.5, 981–987 (2010).
[PubMed]

S. C. Kanick, C. van der Leest, J. G. J. V. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” JBO15, 017004 (2010).
[CrossRef]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol.54, 6991 (2009).
[CrossRef] [PubMed]

S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express17, 860–871 (2009).
[CrossRef] [PubMed]

Sung, K.-B.

Tanbakuchi, A.

Ti, Y.

Tromberg, B. J.

Tunnell, J. W.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” JBO16, 011012 (2011).
[CrossRef]

Udovich, J. A.

Utzinger, U.

van der Leest, C.

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol.5, 981–987 (2010).
[PubMed]

S. C. Kanick, C. van der Leest, J. G. J. V. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” JBO15, 017004 (2010).
[CrossRef]

Watson, T.

R. Jukaitis and T. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning19, 15–19 (1997).

Wax, A.

A. Wax and V. Backman, Biomedical Applications of Light Scattering, Biophotonics Series (McGraw-Hill, 2009).

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

Wilson, B. C.

B. C. Wilson and S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron.26, 2186–2199 (1990).
[CrossRef]

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” JBO11, 064026 (2006).
[CrossRef]

Appl. Opt. (3)

Biomed. Opt. Express (4)

Exp. Cell Res. (1)

S. Inoué, “Studies on depolarization of light at microscope lens surfaces. I. The origin of stray light by rotation at lens surfaces.” Exp. Cell Res.3, 199–208 (1952).
[CrossRef]

IEEE J. Quantum Electron. (3)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

B. C. Wilson and S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron.26, 2186–2199 (1990).
[CrossRef]

I. J. Bigio and S. G. Bown, “Spectrroscopic sensing of cancer and cancer therapy: Current status of translational research,” IEEE J. Quantum Electron.3, 259–267 (2004).

J. Thorac. Oncol. (1)

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol.5, 981–987 (2010).
[PubMed]

JBO (4)

S. C. Kanick, C. van der Leest, J. G. J. V. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” JBO15, 017004 (2010).
[CrossRef]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” JBO11, 064026 (2006).
[CrossRef]

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” JBO13, 010502 (2008).
[CrossRef]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” JBO16, 011012 (2011).
[CrossRef]

Opt. Commun. (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188, 267–273 (2001).
[CrossRef]

Opt. Eng. (1)

M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification,” Opt. Eng.41, 943–954 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Philos. Trans. R. Soc. London, B (1)

D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London, B352, 649–659 (1997).
[CrossRef]

Phys. Med. Biol. (1)

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol.54, 6991 (2009).
[CrossRef] [PubMed]

Scanning (1)

R. Jukaitis and T. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning19, 15–19 (1997).

Other (2)

A. Wax and V. Backman, Biomedical Applications of Light Scattering, Biophotonics Series (McGraw-Hill, 2009).

A. Ishimaru, Wave Propagation and Scattering in Random Media: Multiple scattering, turbulence, rough surfaces and remote sensing, v. 2 (Academic Press, 1978).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental system used for testing coherent fiber bundle. (a) The illumination pathway consists of a halogen lamp (HL), 400 μm diameter illumination fiber (F1), collimating lens (L1), Glan Thompson polarizer (P1), polarizing beamsplitter (PBS), movable pinhole (PH), fiber bundle (FB), and sample (S). The collection pathway consists of a pair of achromatic lenses (L2 and L3), Glan Thompson polarizer (P2), 3 mm diameter liquid light guide (LLG), and 200 μm coupling fiber (F2) to deliver light to a spectrometer (SM). Shutter control for the halogen lamp and acquisition from the spectrometer are coordinated through a personal computer (PC). (b) Microscopic image of the distal end of the coherent fiber bundle. Green light is the overlayed transmission resulting from a 1.0 mm pinhole at the proximal end. (c) Higher magnification image of the fiber bundle with overlayed transmission from a 0.2 mm pinhole. Scale bars in (b) and (c) are 500 μm and 50 μm, respectively.

Fig. 2
Fig. 2

Representative SFR spectra collected by the coherent fiber bundle with a 1.0 mm pinhole (black data points) and by the 1.0 mm diameter solid-core fiber (blue lines). (a), (b) Uncalibrated SFR spectra, normalized by integration time, collected for the μs(800 nm) = 3.6 mm−1 phantoms for the single solid-core fiber and the fiber bundle. Red dashed lines correspond to the water calibration spectra, consisting of back-reflected light not originating from the sample. (c) Overlay of the data in (a) and (b) after calibration. (d), (e), and (f) correspond to (a), (b), and (c), respectively, for the μs(800 nm) = 0.24 mm−1 phantoms. The integration times used during acquisition were 50 ms and 4000 ms for the solid-core fiber and the fiber bundle, respectively.

Fig. 3
Fig. 3

Correlation between the coherent fiber bundle and the single solid-core fibers for R S F 0 and τSF. (a–e) The values of R S F 0 at 500 (♦), 611 (▪), 700 (▴), 800 (▾), and 900 (•) nm for both the fiber bundle and the solid-core fibers are plotted against each other for df = 1.0–0.2 mm for μs(800 nm) = 0.24–3.6 mm−1. Only five representative wavelengths are plotted for graphical clarity. For df = 0.2 mm, only the data for μs(800 nm) = 1.2–3.6 mm−1 provided sufficient signal and are plotted. (f) The values of τSF are plotted for df = 1.0 (♦), 0.8 (▪), 0.6 (▴), and 0.4 (▾) mm. The nominal absorption coefficient is 3 mm−1 for the filled markers and 1 mm−1 for the open markers. Error bars represent the 95% confidence interval and the black lines are the lines of perfect one-to-one correlation, shown here to guide the eye.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R SF 0 = η limit ( 1 + 0.63 γ 2 e 2.31 γ 2 μ s d f ) [ ( μ s d f ) 0.57 γ 2.31 γ 2 + ( μ s d f ) 0.57 γ ] .
R S F = I cal sim ( I S F meas I water meas I cal meas I water meas ) .
τ S F = ln ( R S F / R S F 0 ) μ a ,
I I water I ^ L T ( NA n ) 2 f S F meas ,
R S F = I cal sim I ^ S F meas I ^ cal meas ( NA sim n cal ) 2 f cal sim [ L T ( NA exp n sample ) 2 f S F meas L T ( NA exp n cal ) 2 f cal meas ] ,
R S F ( f cal sim f cal meas ) ( NA sim n sample ) 2 f S F meas .

Metrics