Abstract

We demonstrate a solution to make resonant-waveguide-grating sensing both robust and simpler to optically assess, in the spirit of biochips. Instead of varying wavelength or angle to track the resonant condition, the grating itself has a step-wise variation with typically few tens of neighboring “micropads.” An image capture with incoherent monochromatic light delivers spatial intensity sequences from these micropads. Sensitivity and robustness are discussed using correlation techniques on a realistic model (Fano shapes with noise and local distortion contributions). We confirm through fluid refractive index sensing experiments an improvement over the step-wise maximum position tracking by more than 2 orders of magnitude, demonstrating sensitivity down to 2 × 10−5 RIU, giving high potential development for bioarray imaging.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Bougot-Robin, J.-L. Reverchon, M. Fromant, L. Mugherli, P. Plateau, and H. Benisty, “2D label-free imaging of resonant grating biochips in ultraviolet,” Opt. Express18(11), 11472–11482 (2010).
    [CrossRef] [PubMed]
  2. A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett.97(22), 223704 (2010).
    [CrossRef] [PubMed]
  3. P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
    [CrossRef]
  4. R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, S. Zimmerman, and Y. Ding “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,”,” Sensors (Basel Switzerland)11(2), 1476–1488 (2011).
    [CrossRef]
  5. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron.11(6-7), 635–649 (1996).
    [CrossRef]
  6. A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photonics Rev.5(4), 571–606 (2011).
    [CrossRef]
  7. S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010).
    [CrossRef] [PubMed]
  8. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A7(8), 1470–1474 (1990).
    [CrossRef]
  9. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
    [CrossRef]
  10. D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express15(15), 9831–9842 (2007).
    [CrossRef] [PubMed]
  11. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
    [CrossRef] [PubMed]
  12. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011).
    [CrossRef]
  13. N. Destouches, B. Sider, A. V. Tishchenko, and O. Parriaux, “Optimization of a waveguide grating for normal TM mode coupling,” Opt. Quantum Electron.38(1-3), 123–131 (2006).
    [CrossRef]
  14. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A13(5), 1024–1035 (1996).
    [CrossRef]
  15. A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B73(7), 075107 (2006).
    [CrossRef]
  16. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev.6(4), 463–487 (2012).
    [CrossRef]
  17. T. K. Fang and T. N. Chang, “Determination of profile parameters of a Fano resonance without an ultrahigh-energy resolution,” Phys. Rev. A57(6), 4407–4412 (1998).
    [CrossRef]
  18. X. Liu, Y. Huang, L. Zhu, Z. Yuan, W. Li, and K.-Z. Xu, “Numerical determination of profile parameters for Fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res.508(3), 448–453 (2003).
    [CrossRef]
  19. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett.31(10), 1528–1530 (2006).
    [CrossRef] [PubMed]
  20. I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007).
    [CrossRef]
  21. O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express1(0), 183–190 (2011).
  22. X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
    [CrossRef]

2012 (2)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev.6(4), 463–487 (2012).
[CrossRef]

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

2011 (5)

A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photonics Rev.5(4), 571–606 (2011).
[CrossRef]

O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express1(0), 183–190 (2011).

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, S. Zimmerman, and Y. Ding “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,”,” Sensors (Basel Switzerland)11(2), 1476–1488 (2011).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
[CrossRef] [PubMed]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011).
[CrossRef]

2010 (3)

A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett.97(22), 223704 (2010).
[CrossRef] [PubMed]

S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010).
[CrossRef] [PubMed]

K. Bougot-Robin, J.-L. Reverchon, M. Fromant, L. Mugherli, P. Plateau, and H. Benisty, “2D label-free imaging of resonant grating biochips in ultraviolet,” Opt. Express18(11), 11472–11482 (2010).
[CrossRef] [PubMed]

2007 (2)

D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express15(15), 9831–9842 (2007).
[CrossRef] [PubMed]

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007).
[CrossRef]

2006 (3)

N. Destouches, B. Sider, A. V. Tishchenko, and O. Parriaux, “Optimization of a waveguide grating for normal TM mode coupling,” Opt. Quantum Electron.38(1-3), 123–131 (2006).
[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B73(7), 075107 (2006).
[CrossRef]

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett.31(10), 1528–1530 (2006).
[CrossRef] [PubMed]

2004 (1)

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
[CrossRef]

2003 (1)

X. Liu, Y. Huang, L. Zhu, Z. Yuan, W. Li, and K.-Z. Xu, “Numerical determination of profile parameters for Fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res.508(3), 448–453 (2003).
[CrossRef]

1998 (1)

T. K. Fang and T. N. Chang, “Determination of profile parameters of a Fano resonance without an ultrahigh-energy resolution,” Phys. Rev. A57(6), 4407–4412 (1998).
[CrossRef]

1996 (2)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron.11(6-7), 635–649 (1996).
[CrossRef]

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A13(5), 1024–1035 (1996).
[CrossRef]

1990 (1)

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Abdulhalim, I.

O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express1(0), 183–190 (2011).

A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photonics Rev.5(4), 571–606 (2011).
[CrossRef]

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007).
[CrossRef]

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev.6(4), 463–487 (2012).
[CrossRef]

Auslander, M.

O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express1(0), 183–190 (2011).

Auslender, M.

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007).
[CrossRef]

Bagby, J. S.

Benisty, H.

K. Bougot-Robin, J.-L. Reverchon, M. Fromant, L. Mugherli, P. Plateau, and H. Benisty, “2D label-free imaging of resonant grating biochips in ultraviolet,” Opt. Express18(11), 11472–11482 (2010).
[CrossRef] [PubMed]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B73(7), 075107 (2006).
[CrossRef]

Block, I. D.

S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010).
[CrossRef] [PubMed]

Bougot-Robin, K.

Chang, T. N.

T. K. Fang and T. N. Chang, “Determination of profile parameters of a Fano resonance without an ultrahigh-energy resolution,” Phys. Rev. A57(6), 4407–4412 (1998).
[CrossRef]

Chaudhery, V.

S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010).
[CrossRef] [PubMed]

Cunningham, B. T.

S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010).
[CrossRef] [PubMed]

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
[CrossRef]

David, A.

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B73(7), 075107 (2006).
[CrossRef]

Destouches, N.

N. Destouches, B. Sider, A. V. Tishchenko, and O. Parriaux, “Optimization of a waveguide grating for normal TM mode coupling,” Opt. Quantum Electron.38(1-3), 123–131 (2006).
[CrossRef]

Ding, Y.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, S. Zimmerman, and Y. Ding “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,”,” Sensors (Basel Switzerland)11(2), 1476–1488 (2011).
[CrossRef]

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, S. Zimmerman, and Y. Ding “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,”,” Sensors (Basel Switzerland)11(2), 1476–1488 (2011).
[CrossRef]

Englund, D.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev.6(4), 463–487 (2012).
[CrossRef]

Fainman, Y.

Fang, T. K.

T. K. Fang and T. N. Chang, “Determination of profile parameters of a Fano resonance without an ultrahigh-energy resolution,” Phys. Rev. A57(6), 4407–4412 (1998).
[CrossRef]

Fang, Y.

A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett.97(22), 223704 (2010).
[CrossRef] [PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Ferrie, A. M.

A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett.97(22), 223704 (2010).
[CrossRef] [PubMed]

Flury, M.

Fromant, M.

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
[CrossRef] [PubMed]

Gan, X.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

George, S.

S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010).
[CrossRef] [PubMed]

Gerstenmaier, J.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
[CrossRef]

Hatami, F.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

Hava, S.

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007).
[CrossRef]

Huang, Y.

X. Liu, Y. Huang, L. Zhu, Z. Yuan, W. Li, and K.-Z. Xu, “Numerical determination of profile parameters for Fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res.508(3), 448–453 (2003).
[CrossRef]

Jones, S. I.

S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010).
[CrossRef] [PubMed]

Krasnykov, O.

O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express1(0), 183–190 (2011).

Kymissis, I.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

Lechuga, L. M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev.6(4), 463–487 (2012).
[CrossRef]

Li, L.

Li, P. Y.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
[CrossRef]

Li, W.

X. Liu, Y. Huang, L. Zhu, Z. Yuan, W. Li, and K.-Z. Xu, “Numerical determination of profile parameters for Fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res.508(3), 448–453 (2003).
[CrossRef]

Lin, B.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
[CrossRef]

Liu, X.

X. Liu, Y. Huang, L. Zhu, Z. Yuan, W. Li, and K.-Z. Xu, “Numerical determination of profile parameters for Fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res.508(3), 448–453 (2003).
[CrossRef]

Magnusson, R.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, S. Zimmerman, and Y. Ding “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,”,” Sensors (Basel Switzerland)11(2), 1476–1488 (2011).
[CrossRef]

S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A7(8), 1470–1474 (1990).
[CrossRef]

Martin, O. J. F.

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
[CrossRef] [PubMed]

Mathias, P. C.

S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010).
[CrossRef] [PubMed]

Moharam, M. G.

Mugherli, L.

Pang, L.

Parriaux, O.

D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express15(15), 9831–9842 (2007).
[CrossRef] [PubMed]

N. Destouches, B. Sider, A. V. Tishchenko, and O. Parriaux, “Optimization of a waveguide grating for normal TM mode coupling,” Opt. Quantum Electron.38(1-3), 123–131 (2006).
[CrossRef]

Pervez, N.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

Pietroy, D.

Plateau, P.

Reverchon, J.-L.

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photonics Rev.5(4), 571–606 (2011).
[CrossRef]

Sider, B.

N. Destouches, B. Sider, A. V. Tishchenko, and O. Parriaux, “Optimization of a waveguide grating for normal TM mode coupling,” Opt. Quantum Electron.38(1-3), 123–131 (2006).
[CrossRef]

Tetz, K. A.

Tishchenko, A. V.

D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express15(15), 9831–9842 (2007).
[CrossRef] [PubMed]

N. Destouches, B. Sider, A. V. Tishchenko, and O. Parriaux, “Optimization of a waveguide grating for normal TM mode coupling,” Opt. Quantum Electron.38(1-3), 123–131 (2006).
[CrossRef]

Vodkin, L. O.

S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010).
[CrossRef] [PubMed]

Vuttipittayamongkol, P.

S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010).
[CrossRef] [PubMed]

Wang, S. S.

Wawro, D.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, S. Zimmerman, and Y. Ding “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,”,” Sensors (Basel Switzerland)11(2), 1476–1488 (2011).
[CrossRef]

Weisbuch, C.

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B73(7), 075107 (2006).
[CrossRef]

Wu, H. Y.

S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010).
[CrossRef] [PubMed]

Wu, Q.

A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett.97(22), 223704 (2010).
[CrossRef] [PubMed]

Xu, K.-Z.

X. Liu, Y. Huang, L. Zhu, Z. Yuan, W. Li, and K.-Z. Xu, “Numerical determination of profile parameters for Fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res.508(3), 448–453 (2003).
[CrossRef]

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron.11(6-7), 635–649 (1996).
[CrossRef]

Yuan, Z.

X. Liu, Y. Huang, L. Zhu, Z. Yuan, W. Li, and K.-Z. Xu, “Numerical determination of profile parameters for Fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res.508(3), 448–453 (2003).
[CrossRef]

Zhu, L.

X. Liu, Y. Huang, L. Zhu, Z. Yuan, W. Li, and K.-Z. Xu, “Numerical determination of profile parameters for Fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res.508(3), 448–453 (2003).
[CrossRef]

Zimmerman, S.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, S. Zimmerman, and Y. Ding “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,”,” Sensors (Basel Switzerland)11(2), 1476–1488 (2011).
[CrossRef]

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, S. Zimmerman, and Y. Ding “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,”,” Sensors (Basel Switzerland)11(2), 1476–1488 (2011).
[CrossRef]

ACS Nano (1)

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
[CrossRef] [PubMed]

Anal. Chem. (1)

S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett.97(22), 223704 (2010).
[CrossRef] [PubMed]

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

Biosens. Bioelectron. (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron.11(6-7), 635–649 (1996).
[CrossRef]

J. Nanophotonics (1)

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

Laser Photonics Rev. (2)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev.6(4), 463–487 (2012).
[CrossRef]

A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photonics Rev.5(4), 571–606 (2011).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. (1)

X. Liu, Y. Huang, L. Zhu, Z. Yuan, W. Li, and K.-Z. Xu, “Numerical determination of profile parameters for Fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res.508(3), 448–453 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

N. Destouches, B. Sider, A. V. Tishchenko, and O. Parriaux, “Optimization of a waveguide grating for normal TM mode coupling,” Opt. Quantum Electron.38(1-3), 123–131 (2006).
[CrossRef]

Phys. Express (1)

O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express1(0), 183–190 (2011).

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. A (1)

T. K. Fang and T. N. Chang, “Determination of profile parameters of a Fano resonance without an ultrahigh-energy resolution,” Phys. Rev. A57(6), 4407–4412 (1998).
[CrossRef]

Phys. Rev. B (2)

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B73(7), 075107 (2006).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011).
[CrossRef]

Sens. Actuators B Chem. (1)

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
[CrossRef]

Sensors (Basel Switzerland) (1)

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, S. Zimmerman, and Y. Ding “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,”,” Sensors (Basel Switzerland)11(2), 1476–1488 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Generic resonance response in continuous and discretised form (b) Same as in (a) but in image intensity level (c, d) Shift of the resonance response resulting from a change of refractive index at the chip surface respectively for large Δn and small Δn (e) Fano shape for q parameters q = 1, q = 1.5, q = 2.5, q = 3.5 and q = 6, tending to a more symmetrical shape as q increases. Data from our structure resemble q~3.5.

Fig. 2
Fig. 2

(a) Scheme of a track composed of M gratings micropads of varying filling factor fm from f1 = 0.3 to fM = 0.7; (b) Side-view of micropad RWG structure; (c) Simulated reflectivity spectrum with sensed media of index n = 1.39 and n = 1.40 respectively; (d) Simulated reflectivity map through the range n = 1.38-1.42 on a [0-0.5] gray level scale; (e) Ideal images (noise free, distortion free) of tracks sensing n = 1.39 and n = 1.40 medium on a [0-0.5] scale. Images shown actually correspond to the 2 slices reported on reflectivity maps; (f) Simulated reflectivity map on the range n = 1.333-1.474 on a [0-0.5] scale, showing modest resonance position curvature that may be corrected by prior calibration.

Fig. 3
Fig. 3

(a) Gray level map of resonances as a function of micropad index and refractive index. Resonance position determined by fitting together with the correlation-based determination are reported on the map, with poorer accuracy for the two fit options. The three values indicated near n = 1.400 by yellow dashed lines indicate the reflectivities plotted in (b) for Gaussian fit and (c) for Lorentzian fit. They give poor tracking of the Fano resonance resulting in low accuracy in resonance position determination (see non-linearity of the peak position bars).

Fig. 4
Fig. 4

Correlation and Fano signals (a) Fano resonance simulated image for reference medium and (b) Sensed medium; (c) Signal obtained by averaging over the lines for reference and sensed medium (d) Plot of correlation (solid line) and of powers of the biased version of correlation C′10 (dots). Calculated centroid position does not have the correct position for the centre; (e) retrieval of resonance position in pixel shift units. The centroid of C′10 has the right slope, whereas the centroid of C has its slope flattened; (f) Relative slope accuracy ΔS/S as a function of k and q in the case of C′k (solid contours) or in the worse case of Ck (dashed contours).

Fig. 5
Fig. 5

Simulated reference and sensing tracks in the presence of a large noise (signal-to-noise ratio ~1 at the pixel scale) (a) for reference track and (b) for sensed track; (c) Signal obtained by averaging over the lines for reference and sensed media; (d) Plot of correlation C (solid line) and of power of the biased version of correlation C′10 (dots) ; (e) retrieval of resonance position in pixel shift units. The rms fluctuation in pixel units is 0.79 in the former case, with also a still inadequate slope, and 0.44 in the second case.

Fig. 6
Fig. 6

(a), (b) Distortion simulation. Each micropad is assumed to suffer from an internal distortion of its resonance position corresponding to 3.5 micropad unit, with the smooth normalized pattern shown in (e). (c) Projection on y averaged over the lines (d) Correlation functions C and C10. (e) Distortion map. (f) Retrieval performances through the centroids of functions C and C10. The rms noise remains below the tenth of pixel limit.

Fig. 7
Fig. 7

(a) Scheme of the experimental setup composed of a source monochromatically filtered and polarized, illuminating a chip with 2 tracks, one serving as reference and the other for sensing, and a camera to image the chip (b) Measured images of one of the reference picture and media with index from n = 1.333 to n = 1.474 (c) Reflectivity profiles for each of the reference (blue) and of each of the media (n = 1.333 to n = 1.474) (d) Reported peak position determined by Gaussian fit (green), Lorentzian fit (cyan) and correlation analysis (red). The measured resonance position is plotted in abscise axis and the known refractive index of the solution in ordinate axis.

Fig. 8
Fig. 8

(a) Images of tracks for micropads from 24 to 36, both for reference and sensed solution for indices from 1.333 to 1.337 by step Δn = 10−3 (b) Experimental profiles using central pixels of micropads and plotted as line profile for visual convenience (c) Normalized correlation C (greenish broad bell-shaped) and C10 (brownish narrower) curves, as well as centroid center position (reddish vertical lines).(d) Shift of the peak determined by Gaussian and Lorentzian fits as well as correlation analysis. Different fits and the correlation method give aligned points whose fitted slope can be used as index transduction calibration. The inset gives the error with respect to the fitted slope trend, plotted in abscissa vs. the analyte refractive index (ordinate), for all three analyses. Errors are on the order of a few 10−5, thus a few percent of the 10−3 index step.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k 0 sin θ inc +p G 0 = k 0 N eff (λ)= k guid (λ),
I refl I inc (q Γ res /2+u u res ) 2 ( Γ res /2) 2 + (u u res ) 2 .
Δ j sens ΣΔjC ' k (Δj)/ΣC ' k (Δj).

Metrics