Abstract

We have integrated a dual-beam optical trap into a microfluidic platform and used it to study membrane mechanics in giant unilamellar vesicles (GUVs). We demonstrate the trapping and stretching of GUVs and characterize the membrane response to a step stress. We then measure area strain as a function of applied stress to extract the bending modulus of the lipid bilayer in the low-tension regime.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
    [Crossref]
  2. C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem. 135(1), 388–397 (2008).
    [Crossref]
  3. N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express 18(5), 4679–4688 (2010).
    [Crossref] [PubMed]
  4. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
    [Crossref] [PubMed]
  5. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
    [Crossref] [PubMed]
  6. M. Martin, K. Mueller, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, and J. A. Kas, “Feeling with light for cancer,” Proc. SPIE 6080, 60800P (2006).
    [Crossref]
  7. R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459(7245), 379–385 (2009).
    [Crossref] [PubMed]
  8. D. Marsh, “Protein modulation of lipids, and vice-versa, in membranes,” Biochim. Biophys. Acta 1778(7-8), 1545–1575 (2008).
    [Crossref] [PubMed]
  9. D. Marsh, “Elastic curvature constants of lipid monolayers and bilayers,” Chem. Phys. Lipids 144(2), 146–159 (2006).
    [Crossref] [PubMed]
  10. L. V. Chernomordik and M. M. Kozlov, “Mechanics of membrane fusion,” Nat. Struct. Mol. Biol. 15(7), 675–683 (2008).
    [Crossref] [PubMed]
  11. E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13(9), 941–954 (1973).
    [Crossref] [PubMed]
  12. E. Evans and D. Needham, “Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions,” J. Phys. Chem. 91(16), 4219–4228 (1987).
    [Crossref]
  13. D. Cuvelier, I. Derényi, P. Bassereau, and P. Nassoy, “Coalescence of membrane tethers: experiments, theory, and applications,” Biophys. J. 88(4), 2714–2726 (2005).
    [Crossref] [PubMed]
  14. V. Heinrich and R. E. Waugh, “A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes,” Ann. Biomed. Eng. 24(5), 595–605 (1996).
    [Crossref] [PubMed]
  15. R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr, and R. Lipowsky, “Giant vesicles in electric fields,” Soft Matter 3(7), 817–827 (2007).
    [Crossref]
  16. M. Kummrow and W. Helfrich, “Deformation of giant lipid vesicles by electric fields,” Phys. Rev. A 44(12), 8356–8360 (1991).
    [Crossref] [PubMed]
  17. R. S. Gracià, N. Bezlyepkina, R. L. Knorr, R. Lipowsky, and R. Dimova, “Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles,” Soft Matter 6(7), 1472–1482 (2010).
    [Crossref]
  18. T. M. Pinon, L. S. Hirst, and J. E. Sharping, “Fiber-based dual-beam optical trapping system for studying lipid vesicle mechanics,” in Optical Trapping Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTTuB2.
  19. T. M. Pinon, L. S. Hirst, and J. E. Sharping, “Optical trapping and stretching of lipid vesicles,” in CLEO: Applications and Technology, OSA Technical Digest (online) (Optical Society of America, 2012), paper ATh1M.4.
  20. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
    [Crossref] [PubMed]
  21. F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
    [Crossref] [PubMed]
  22. M. Yamazaki and T. Ito, “Deformation and instability in membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion,” Biochemistry 29(5), 1309–1314 (1990).
    [Crossref] [PubMed]
  23. W. Helfrich, “Lipid bilayer spheres - Deformation and birefringence in magnetic-fields,” Phys. Lett. A 43(5), 409–410 (1973).
    [Crossref]
  24. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. 24, 156 (1970).
  25. G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21(1), 189–194 (1977).
    [Crossref]
  26. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt. 32(19), 3531–3540 (1993).
    [Crossref] [PubMed]
  27. M. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
    [Crossref]
  28. E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in condensed-fluid membranes,” Phys. Rev. Lett. 64(17), 2094–2097 (1990).
    [Crossref] [PubMed]
  29. P. M. Vlahovska, R. S. Gracià, S. Aranda-Espinoza, and R. Dimova, “Electrohydrodynamic model of vesicle deformation in alternating electric fields,” Biophys. J. 96(12), 4789–4803 (2009).
    [Crossref] [PubMed]
  30. E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt. 36(25), 6423–6433 (1997).
    [Crossref] [PubMed]
  31. H. Sosa-Martínez and J. C. Gutierrez-Vega, “Optical forces on a Mie spheroidal particle arbitrarily oriented in a counterpropagating trap,” J. Opt. Soc. Am. B 26(11), 2109–2116 (2009).
    [Crossref]
  32. J. R. Henriksen and J. H. Ipsen, “Measurement of membrane elasticity by micro-pipette aspiration,” Eur Phys J E Soft Matter 14(2), 149–167 (2004).
    [Crossref] [PubMed]
  33. H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
    [Crossref] [PubMed]
  34. J. Henriksen, A. C. Rowat, and J. H. Ipsen, “Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity,” Eur. Biophys. J. 33(8), 732–741 (2004).
    [Crossref] [PubMed]
  35. M. Kocun and A. Janshoff, “Pulling tethers from pore-spanning bilayers: towards simultaneous determination of local bending modulus and lateral tension of membranes,” Small 8(6), 847–851 (2012).
    [Crossref] [PubMed]
  36. G. Niggemann, M. Kummrow, and W. Helfrich, “The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature,” J. Phys. 5, 413–425 (1995).
  37. L. Miao, U. Seifert, M. Wortis, and H.-G. Döbereiner, “Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 5389–5407 (1994).
    [Crossref] [PubMed]

2012 (1)

M. Kocun and A. Janshoff, “Pulling tethers from pore-spanning bilayers: towards simultaneous determination of local bending modulus and lateral tension of membranes,” Small 8(6), 847–851 (2012).
[Crossref] [PubMed]

2011 (1)

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

2010 (3)

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express 18(5), 4679–4688 (2010).
[Crossref] [PubMed]

R. S. Gracià, N. Bezlyepkina, R. L. Knorr, R. Lipowsky, and R. Dimova, “Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles,” Soft Matter 6(7), 1472–1482 (2010).
[Crossref]

2009 (3)

R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459(7245), 379–385 (2009).
[Crossref] [PubMed]

P. M. Vlahovska, R. S. Gracià, S. Aranda-Espinoza, and R. Dimova, “Electrohydrodynamic model of vesicle deformation in alternating electric fields,” Biophys. J. 96(12), 4789–4803 (2009).
[Crossref] [PubMed]

H. Sosa-Martínez and J. C. Gutierrez-Vega, “Optical forces on a Mie spheroidal particle arbitrarily oriented in a counterpropagating trap,” J. Opt. Soc. Am. B 26(11), 2109–2116 (2009).
[Crossref]

2008 (3)

D. Marsh, “Protein modulation of lipids, and vice-versa, in membranes,” Biochim. Biophys. Acta 1778(7-8), 1545–1575 (2008).
[Crossref] [PubMed]

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem. 135(1), 388–397 (2008).
[Crossref]

L. V. Chernomordik and M. M. Kozlov, “Mechanics of membrane fusion,” Nat. Struct. Mol. Biol. 15(7), 675–683 (2008).
[Crossref] [PubMed]

2007 (2)

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr, and R. Lipowsky, “Giant vesicles in electric fields,” Soft Matter 3(7), 817–827 (2007).
[Crossref]

2006 (2)

D. Marsh, “Elastic curvature constants of lipid monolayers and bilayers,” Chem. Phys. Lipids 144(2), 146–159 (2006).
[Crossref] [PubMed]

M. Martin, K. Mueller, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, and J. A. Kas, “Feeling with light for cancer,” Proc. SPIE 6080, 60800P (2006).
[Crossref]

2005 (2)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

D. Cuvelier, I. Derényi, P. Bassereau, and P. Nassoy, “Coalescence of membrane tethers: experiments, theory, and applications,” Biophys. J. 88(4), 2714–2726 (2005).
[Crossref] [PubMed]

2004 (2)

J. R. Henriksen and J. H. Ipsen, “Measurement of membrane elasticity by micro-pipette aspiration,” Eur Phys J E Soft Matter 14(2), 149–167 (2004).
[Crossref] [PubMed]

J. Henriksen, A. C. Rowat, and J. H. Ipsen, “Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity,” Eur. Biophys. J. 33(8), 732–741 (2004).
[Crossref] [PubMed]

2003 (1)

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

2001 (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

1997 (1)

1996 (1)

V. Heinrich and R. E. Waugh, “A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes,” Ann. Biomed. Eng. 24(5), 595–605 (1996).
[Crossref] [PubMed]

1995 (1)

G. Niggemann, M. Kummrow, and W. Helfrich, “The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature,” J. Phys. 5, 413–425 (1995).

1994 (1)

L. Miao, U. Seifert, M. Wortis, and H.-G. Döbereiner, “Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 5389–5407 (1994).
[Crossref] [PubMed]

1993 (1)

1992 (1)

M. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[Crossref]

1991 (1)

M. Kummrow and W. Helfrich, “Deformation of giant lipid vesicles by electric fields,” Phys. Rev. A 44(12), 8356–8360 (1991).
[Crossref] [PubMed]

1990 (2)

E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in condensed-fluid membranes,” Phys. Rev. Lett. 64(17), 2094–2097 (1990).
[Crossref] [PubMed]

M. Yamazaki and T. Ito, “Deformation and instability in membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion,” Biochemistry 29(5), 1309–1314 (1990).
[Crossref] [PubMed]

1987 (1)

E. Evans and D. Needham, “Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions,” J. Phys. Chem. 91(16), 4219–4228 (1987).
[Crossref]

1977 (1)

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21(1), 189–194 (1977).
[Crossref]

1973 (2)

W. Helfrich, “Lipid bilayer spheres - Deformation and birefringence in magnetic-fields,” Phys. Lett. A 43(5), 409–410 (1973).
[Crossref]

E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13(9), 941–954 (1973).
[Crossref] [PubMed]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. 24, 156 (1970).

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Angelova, M.

M. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[Crossref]

Aranda, S.

R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr, and R. Lipowsky, “Giant vesicles in electric fields,” Soft Matter 3(7), 817–827 (2007).
[Crossref]

Aranda-Espinoza, S.

P. M. Vlahovska, R. S. Gracià, S. Aranda-Espinoza, and R. Dimova, “Electrohydrodynamic model of vesicle deformation in alternating electric fields,” Biophys. J. 96(12), 4789–4803 (2009).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. 24, 156 (1970).

Bagatolli, L. A.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Bassereau, P.

D. Cuvelier, I. Derényi, P. Bassereau, and P. Nassoy, “Coalescence of membrane tethers: experiments, theory, and applications,” Biophys. J. 88(4), 2714–2726 (2005).
[Crossref] [PubMed]

Bellini, N.

Bezlyepkina, N.

R. S. Gracià, N. Bezlyepkina, R. L. Knorr, R. Lipowsky, and R. Dimova, “Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles,” Soft Matter 6(7), 1472–1482 (2010).
[Crossref]

R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr, and R. Lipowsky, “Giant vesicles in electric fields,” Soft Matter 3(7), 817–827 (2007).
[Crossref]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Bothorel, P.

M. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[Crossref]

Bouvrais, H.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Bragheri, F.

Chernomordik, L. V.

L. V. Chernomordik and M. M. Kozlov, “Mechanics of membrane fusion,” Nat. Struct. Mol. Biol. 15(7), 675–683 (2008).
[Crossref] [PubMed]

Chiou, A.

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem. 135(1), 388–397 (2008).
[Crossref]

Chylek, P.

Collins, S. D.

Cristiani, I.

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Cuvelier, D.

D. Cuvelier, I. Derényi, P. Bassereau, and P. Nassoy, “Coalescence of membrane tethers: experiments, theory, and applications,” Biophys. J. 88(4), 2714–2726 (2005).
[Crossref] [PubMed]

Derényi, I.

D. Cuvelier, I. Derényi, P. Bassereau, and P. Nassoy, “Coalescence of membrane tethers: experiments, theory, and applications,” Biophys. J. 88(4), 2714–2726 (2005).
[Crossref] [PubMed]

Dimova, R.

R. S. Gracià, N. Bezlyepkina, R. L. Knorr, R. Lipowsky, and R. Dimova, “Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles,” Soft Matter 6(7), 1472–1482 (2010).
[Crossref]

P. M. Vlahovska, R. S. Gracià, S. Aranda-Espinoza, and R. Dimova, “Electrohydrodynamic model of vesicle deformation in alternating electric fields,” Biophys. J. 96(12), 4789–4803 (2009).
[Crossref] [PubMed]

R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr, and R. Lipowsky, “Giant vesicles in electric fields,” Soft Matter 3(7), 817–827 (2007).
[Crossref]

Döbereiner, H.-G.

L. Miao, U. Seifert, M. Wortis, and H.-G. Döbereiner, “Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 5389–5407 (1994).
[Crossref] [PubMed]

Ebert, S.

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Esener, S.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Evans, E.

E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in condensed-fluid membranes,” Phys. Rev. Lett. 64(17), 2094–2097 (1990).
[Crossref] [PubMed]

E. Evans and D. Needham, “Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions,” J. Phys. Chem. 91(16), 4219–4228 (1987).
[Crossref]

Evans, E. A.

E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13(9), 941–954 (1973).
[Crossref] [PubMed]

Faucon, F.

M. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[Crossref]

Ferrara, L.

Flynn, R.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Gracià, R. S.

R. S. Gracià, N. Bezlyepkina, R. L. Knorr, R. Lipowsky, and R. Dimova, “Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles,” Soft Matter 6(7), 1472–1482 (2010).
[Crossref]

P. M. Vlahovska, R. S. Gracià, S. Aranda-Espinoza, and R. Dimova, “Electrohydrodynamic model of vesicle deformation in alternating electric fields,” Biophys. J. 96(12), 4789–4803 (2009).
[Crossref] [PubMed]

Guck, J.

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Gutierrez-Vega, J. C.

Gyger, M.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Heinrich, V.

V. Heinrich and R. E. Waugh, “A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes,” Ann. Biomed. Eng. 24(5), 595–605 (1996).
[Crossref] [PubMed]

Helfrich, W.

G. Niggemann, M. Kummrow, and W. Helfrich, “The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature,” J. Phys. 5, 413–425 (1995).

M. Kummrow and W. Helfrich, “Deformation of giant lipid vesicles by electric fields,” Phys. Rev. A 44(12), 8356–8360 (1991).
[Crossref] [PubMed]

W. Helfrich, “Lipid bilayer spheres - Deformation and birefringence in magnetic-fields,” Phys. Lett. A 43(5), 409–410 (1973).
[Crossref]

Henriksen, J.

J. Henriksen, A. C. Rowat, and J. H. Ipsen, “Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity,” Eur. Biophys. J. 33(8), 732–741 (2004).
[Crossref] [PubMed]

Henriksen, J. R.

J. R. Henriksen and J. H. Ipsen, “Measurement of membrane elasticity by micro-pipette aspiration,” Eur Phys J E Soft Matter 14(2), 149–167 (2004).
[Crossref] [PubMed]

Hsiung, S.-K.

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem. 135(1), 388–397 (2008).
[Crossref]

Ipsen, J. H.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

J. R. Henriksen and J. H. Ipsen, “Measurement of membrane elasticity by micro-pipette aspiration,” Eur Phys J E Soft Matter 14(2), 149–167 (2004).
[Crossref] [PubMed]

J. Henriksen, A. C. Rowat, and J. H. Ipsen, “Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity,” Eur. Biophys. J. 33(8), 732–741 (2004).
[Crossref] [PubMed]

Ito, T.

M. Yamazaki and T. Ito, “Deformation and instability in membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion,” Biochemistry 29(5), 1309–1314 (1990).
[Crossref] [PubMed]

Janshoff, A.

M. Kocun and A. Janshoff, “Pulling tethers from pore-spanning bilayers: towards simultaneous determination of local bending modulus and lateral tension of membranes,” Small 8(6), 847–851 (2012).
[Crossref] [PubMed]

Kas, J. A.

M. Martin, K. Mueller, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, and J. A. Kas, “Feeling with light for cancer,” Proc. SPIE 6080, 60800P (2006).
[Crossref]

Käs, J.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Knoesen, A.

Knorr, R. L.

R. S. Gracià, N. Bezlyepkina, R. L. Knorr, R. Lipowsky, and R. Dimova, “Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles,” Soft Matter 6(7), 1472–1482 (2010).
[Crossref]

R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr, and R. Lipowsky, “Giant vesicles in electric fields,” Soft Matter 3(7), 817–827 (2007).
[Crossref]

Kocun, M.

M. Kocun and A. Janshoff, “Pulling tethers from pore-spanning bilayers: towards simultaneous determination of local bending modulus and lateral tension of membranes,” Small 8(6), 847–851 (2012).
[Crossref] [PubMed]

Kou, L.

Kozlov, M. M.

L. V. Chernomordik and M. M. Kozlov, “Mechanics of membrane fusion,” Nat. Struct. Mol. Biol. 15(7), 675–683 (2008).
[Crossref] [PubMed]

Kummrow, M.

G. Niggemann, M. Kummrow, and W. Helfrich, “The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature,” J. Phys. 5, 413–425 (1995).

M. Kummrow and W. Helfrich, “Deformation of giant lipid vesicles by electric fields,” Phys. Rev. A 44(12), 8356–8360 (1991).
[Crossref] [PubMed]

Labrie, D.

Lai, C.-W.

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem. 135(1), 388–397 (2008).
[Crossref]

Lee, G.-B.

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem. 135(1), 388–397 (2008).
[Crossref]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Lincoln, B.

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

M. Martin, K. Mueller, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, and J. A. Kas, “Feeling with light for cancer,” Proc. SPIE 6080, 60800P (2006).
[Crossref]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Lipowsky, R.

R. S. Gracià, N. Bezlyepkina, R. L. Knorr, R. Lipowsky, and R. Dimova, “Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles,” Soft Matter 6(7), 1472–1482 (2010).
[Crossref]

R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr, and R. Lipowsky, “Giant vesicles in electric fields,” Soft Matter 3(7), 817–827 (2007).
[Crossref]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Marsh, D.

D. Marsh, “Protein modulation of lipids, and vice-versa, in membranes,” Biochim. Biophys. Acta 1778(7-8), 1545–1575 (2008).
[Crossref] [PubMed]

D. Marsh, “Elastic curvature constants of lipid monolayers and bilayers,” Chem. Phys. Lipids 144(2), 146–159 (2006).
[Crossref] [PubMed]

Martin, M.

M. Martin, K. Mueller, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, and J. A. Kas, “Feeling with light for cancer,” Proc. SPIE 6080, 60800P (2006).
[Crossref]

Méléard, P.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

M. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[Crossref]

Miao, L.

L. Miao, U. Seifert, M. Wortis, and H.-G. Döbereiner, “Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 5389–5407 (1994).
[Crossref] [PubMed]

Minzioni, P.

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Mueller, K.

M. Martin, K. Mueller, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, and J. A. Kas, “Feeling with light for cancer,” Proc. SPIE 6080, 60800P (2006).
[Crossref]

Müller, K.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Nassoy, P.

D. Cuvelier, I. Derényi, P. Bassereau, and P. Nassoy, “Coalescence of membrane tethers: experiments, theory, and applications,” Biophys. J. 88(4), 2714–2726 (2005).
[Crossref] [PubMed]

Needham, D.

E. Evans and D. Needham, “Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions,” J. Phys. Chem. 91(16), 4219–4228 (1987).
[Crossref]

Niggemann, G.

G. Niggemann, M. Kummrow, and W. Helfrich, “The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature,” J. Phys. 5, 413–425 (1995).

Osellame, R.

Ozkan, C.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Ozkan, M.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Phillips, R.

R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459(7245), 379–385 (2009).
[Crossref] [PubMed]

Pott, T.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Ramponi, R.

Rawicz, W.

E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in condensed-fluid membranes,” Phys. Rev. Lett. 64(17), 2094–2097 (1990).
[Crossref] [PubMed]

Riske, K. A.

R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr, and R. Lipowsky, “Giant vesicles in electric fields,” Soft Matter 3(7), 817–827 (2007).
[Crossref]

Romeyke, M.

M. Martin, K. Mueller, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, and J. A. Kas, “Feeling with light for cancer,” Proc. SPIE 6080, 60800P (2006).
[Crossref]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Rönicke, S.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Roosen, G.

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21(1), 189–194 (1977).
[Crossref]

Rose, D.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Rowat, A. C.

J. Henriksen, A. C. Rowat, and J. H. Ipsen, “Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity,” Eur. Biophys. J. 33(8), 732–741 (2004).
[Crossref] [PubMed]

Schinkinger, S.

M. Martin, K. Mueller, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, and J. A. Kas, “Feeling with light for cancer,” Proc. SPIE 6080, 60800P (2006).
[Crossref]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Seifert, U.

L. Miao, U. Seifert, M. Wortis, and H.-G. Döbereiner, “Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 5389–5407 (1994).
[Crossref] [PubMed]

Sens, P.

R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459(7245), 379–385 (2009).
[Crossref] [PubMed]

Sidick, E.

Soléau, S.

M. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[Crossref]

Sosa-Martínez, H.

Travis, K.

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Ursell, T.

R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459(7245), 379–385 (2009).
[Crossref] [PubMed]

Vishnubhatla, K. C.

Vlahovska, P. M.

P. M. Vlahovska, R. S. Gracià, S. Aranda-Espinoza, and R. Dimova, “Electrohydrodynamic model of vesicle deformation in alternating electric fields,” Biophys. J. 96(12), 4789–4803 (2009).
[Crossref] [PubMed]

Wang, M.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Waugh, R. E.

V. Heinrich and R. E. Waugh, “A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes,” Ann. Biomed. Eng. 24(5), 595–605 (1996).
[Crossref] [PubMed]

Wetzel, F.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Wiggins, P.

R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459(7245), 379–385 (2009).
[Crossref] [PubMed]

Wortis, M.

L. Miao, U. Seifert, M. Wortis, and H.-G. Döbereiner, “Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 5389–5407 (1994).
[Crossref] [PubMed]

Wottawah, F.

M. Martin, K. Mueller, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, and J. A. Kas, “Feeling with light for cancer,” Proc. SPIE 6080, 60800P (2006).
[Crossref]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Yamazaki, M.

M. Yamazaki and T. Ito, “Deformation and instability in membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion,” Biochemistry 29(5), 1309–1314 (1990).
[Crossref] [PubMed]

Yeh, C.-L.

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem. 135(1), 388–397 (2008).
[Crossref]

Zink, M.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

V. Heinrich and R. E. Waugh, “A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes,” Ann. Biomed. Eng. 24(5), 595–605 (1996).
[Crossref] [PubMed]

Appl. Opt. (2)

Biochemistry (1)

M. Yamazaki and T. Ito, “Deformation and instability in membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion,” Biochemistry 29(5), 1309–1314 (1990).
[Crossref] [PubMed]

Biochim. Biophys. Acta (2)

D. Marsh, “Protein modulation of lipids, and vice-versa, in membranes,” Biochim. Biophys. Acta 1778(7-8), 1545–1575 (2008).
[Crossref] [PubMed]

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Biomed. Microdevices (1)

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5(1), 61–67 (2003).
[Crossref]

Biophys. J. (5)

P. M. Vlahovska, R. S. Gracià, S. Aranda-Espinoza, and R. Dimova, “Electrohydrodynamic model of vesicle deformation in alternating electric fields,” Biophys. J. 96(12), 4789–4803 (2009).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13(9), 941–954 (1973).
[Crossref] [PubMed]

D. Cuvelier, I. Derényi, P. Bassereau, and P. Nassoy, “Coalescence of membrane tethers: experiments, theory, and applications,” Biophys. J. 88(4), 2714–2726 (2005).
[Crossref] [PubMed]

Chem. Phys. Lipids (1)

D. Marsh, “Elastic curvature constants of lipid monolayers and bilayers,” Chem. Phys. Lipids 144(2), 146–159 (2006).
[Crossref] [PubMed]

Eur Phys J E Soft Matter (1)

J. R. Henriksen and J. H. Ipsen, “Measurement of membrane elasticity by micro-pipette aspiration,” Eur Phys J E Soft Matter 14(2), 149–167 (2004).
[Crossref] [PubMed]

Eur. Biophys. J. (2)

J. Henriksen, A. C. Rowat, and J. H. Ipsen, “Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity,” Eur. Biophys. J. 33(8), 732–741 (2004).
[Crossref] [PubMed]

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

G. Niggemann, M. Kummrow, and W. Helfrich, “The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature,” J. Phys. 5, 413–425 (1995).

J. Phys. Chem. (1)

E. Evans and D. Needham, “Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions,” J. Phys. Chem. 91(16), 4219–4228 (1987).
[Crossref]

Nat. Struct. Mol. Biol. (1)

L. V. Chernomordik and M. M. Kozlov, “Mechanics of membrane fusion,” Nat. Struct. Mol. Biol. 15(7), 675–683 (2008).
[Crossref] [PubMed]

Nature (1)

R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459(7245), 379–385 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21(1), 189–194 (1977).
[Crossref]

Opt. Express (2)

Phys. Lett. A (1)

W. Helfrich, “Lipid bilayer spheres - Deformation and birefringence in magnetic-fields,” Phys. Lett. A 43(5), 409–410 (1973).
[Crossref]

Phys. Rev. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. 24, 156 (1970).

Phys. Rev. A (1)

M. Kummrow and W. Helfrich, “Deformation of giant lipid vesicles by electric fields,” Phys. Rev. A 44(12), 8356–8360 (1991).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

L. Miao, U. Seifert, M. Wortis, and H.-G. Döbereiner, “Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 5389–5407 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in condensed-fluid membranes,” Phys. Rev. Lett. 64(17), 2094–2097 (1990).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Martin, K. Mueller, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, and J. A. Kas, “Feeling with light for cancer,” Proc. SPIE 6080, 60800P (2006).
[Crossref]

Prog. Colloid Polym. Sci. (1)

M. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127–131 (1992).
[Crossref]

Sens. Actuators B Chem. (1)

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem. 135(1), 388–397 (2008).
[Crossref]

Small (1)

M. Kocun and A. Janshoff, “Pulling tethers from pore-spanning bilayers: towards simultaneous determination of local bending modulus and lateral tension of membranes,” Small 8(6), 847–851 (2012).
[Crossref] [PubMed]

Soft Matter (2)

R. S. Gracià, N. Bezlyepkina, R. L. Knorr, R. Lipowsky, and R. Dimova, “Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles,” Soft Matter 6(7), 1472–1482 (2010).
[Crossref]

R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr, and R. Lipowsky, “Giant vesicles in electric fields,” Soft Matter 3(7), 817–827 (2007).
[Crossref]

Other (2)

T. M. Pinon, L. S. Hirst, and J. E. Sharping, “Fiber-based dual-beam optical trapping system for studying lipid vesicle mechanics,” in Optical Trapping Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTTuB2.

T. M. Pinon, L. S. Hirst, and J. E. Sharping, “Optical trapping and stretching of lipid vesicles,” in CLEO: Applications and Technology, OSA Technical Digest (online) (Optical Society of America, 2012), paper ATh1M.4.

Supplementary Material (1)

» Media 1: AVI (3959 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The setup used to stretch GUVs using optical radiation pressure. (a) Schematic of the stretching of a GUV using dual Gaussian beams launched by optical fibers. (b) Optical setup that incorporates a silicon chip for fiber-to-capillary alignment and microfluidic adapters to couple the flow channel to a peristaltic pump, all located under a customized microscope.

Fig. 2
Fig. 2

Axial deformation of a giant unilamellar vesicle made of POPC lipid. Sucrose and glucose solutions are used inside and outside to create a refractive index gradient. The major axis is increased from (a) d = 11.53 ± 0.05μm to (b) d = 11.94 ± 0.05μm along the beam axis, while the minor axis decreased from 10.29 ± 0.05μm to 10.05 ± 0.05μm. (c) A plot of the contours fitted to both stretching powers (blue = low power / low tension, green = high power / high tension). The scale bar is 10 μm.

Fig. 3
Fig. 3

Step-stress experiment. (a) The optical power (blue line; right axis) is suddenly increased from 100 mW to 500 mW. The major axis strain is shown by the red dots (left axis). (b) Video micrograph (Media 1) of deforming GUV. The scale bar is 10 μm.

Fig. 4
Fig. 4

Measurement of the bending modulus of a pure POPC GUV. Time axis is common to plots a-c, dotted guide lines show time points at which laser power is increased. (a) Laser power as a function of time. (b) 2D contour plot showing the radius (see color scale) as a function of angle in the image plane as a function of time. (c) Percentage area strain as a function of time. (d) Average stress on the GUV as a function of eccentricity and base radius. (e) Average percentage area strain for each laser power plotted versus the scaled lateral tension. κ is the fitted value of the bending modulus.

Tables (1)

Tables Icon

Table 1 Values of POPC membrane bending modulus previously reported in the literature

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A A 0 A 0 = kT 8π κ B ln( σ h σ 0 ),
e= 1 b 2 a 2 ,R= a b 2 3 .

Metrics