Abstract

Breast density is a recognized strong and independent risk factor for developing breast cancer. At present, breast density is assessed based on the radiological appearance of breast tissue, thus relying on the use of ionizing radiation. We have previously obtained encouraging preliminary results with our portable instrument for time domain optical mammography performed at 7 wavelengths (635–1060 nm). In that case, information was averaged over four images (cranio-caudal and oblique views of both breasts) available for each subject. In the present work, we tested the effectiveness of just one or few point measurements, to investigate if tissue heterogeneity significantly affects the correlation between optically derived parameters and mammographic density. Data show that parameters estimated through a single optical measurement correlate strongly with mammographic density estimated by using BIRADS categories. A central position is optimal for the measurement, but its exact location is not critical.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ferlay, D. M. Parkin, and E. Steliarova-Foucher, “Estimates of cancer incidence and mortality in Europe in 2008,” Eur. J. Cancer46(4), 765–781 (2010).
    [CrossRef] [PubMed]
  2. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin.60(5), 277–300 (2010).
    [CrossRef] [PubMed]
  3. V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomarkers Prev.15(6), 1159–1169 (2006).
    [CrossRef] [PubMed]
  4. N. F. Boyd, L. J. Martin, J. Stone, C. Greenberg, S. Minkin, and M. J. Yaffe, “Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention,” Curr. Oncol. Rep.3(4), 314–321 (2001).
    [CrossRef] [PubMed]
  5. M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt.9(4), 794–803 (2004).
    [CrossRef] [PubMed]
  6. K. M. Blackmore, J. A. Knight, and L. Lilge, “Association between transillumination breast spectroscopy and quantitative mammographic features of the breast,” Cancer Epidemiol. Biomarkers Prev.17(5), 1043–1050 (2008).
    [CrossRef] [PubMed]
  7. S. Alowami, S. Troup, S. Al-Haddad, I. Kirkpatrick, and P. H. Watson, “Mammographic density is related to stroma and stromal proteoglycan expression,” Breast Cancer Res.5(5), R129–R135 (2003).
    [CrossRef] [PubMed]
  8. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
    [CrossRef] [PubMed]
  9. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt.36(4), 949–957 (1997).
    [CrossRef] [PubMed]
  10. A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt.37(7), 1256–1267 (1998).
    [CrossRef] [PubMed]
  11. P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express17(18), 15932–15946 (2009).
    [CrossRef] [PubMed]
  12. B. Zheng, J. H. Sumkin, M. L. Zuley, X. Wang, A. H. Klym, and D. Gur, “Bilateral mammographic density asymmetry and breast cancer risk: A preliminary assessment,” Eur. J. Radiol. (to be published).
    [PubMed]

2010

J. Ferlay, D. M. Parkin, and E. Steliarova-Foucher, “Estimates of cancer incidence and mortality in Europe in 2008,” Eur. J. Cancer46(4), 765–781 (2010).
[CrossRef] [PubMed]

A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin.60(5), 277–300 (2010).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

2009

2008

K. M. Blackmore, J. A. Knight, and L. Lilge, “Association between transillumination breast spectroscopy and quantitative mammographic features of the breast,” Cancer Epidemiol. Biomarkers Prev.17(5), 1043–1050 (2008).
[CrossRef] [PubMed]

2006

V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomarkers Prev.15(6), 1159–1169 (2006).
[CrossRef] [PubMed]

2004

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt.9(4), 794–803 (2004).
[CrossRef] [PubMed]

2003

S. Alowami, S. Troup, S. Al-Haddad, I. Kirkpatrick, and P. H. Watson, “Mammographic density is related to stroma and stromal proteoglycan expression,” Breast Cancer Res.5(5), R129–R135 (2003).
[CrossRef] [PubMed]

2001

N. F. Boyd, L. J. Martin, J. Stone, C. Greenberg, S. Minkin, and M. J. Yaffe, “Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention,” Curr. Oncol. Rep.3(4), 314–321 (2001).
[CrossRef] [PubMed]

1998

1997

Abbate, F.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Al-Haddad, S.

S. Alowami, S. Troup, S. Al-Haddad, I. Kirkpatrick, and P. H. Watson, “Mammographic density is related to stroma and stromal proteoglycan expression,” Breast Cancer Res.5(5), R129–R135 (2003).
[CrossRef] [PubMed]

Alowami, S.

S. Alowami, S. Troup, S. Al-Haddad, I. Kirkpatrick, and P. H. Watson, “Mammographic density is related to stroma and stromal proteoglycan expression,” Breast Cancer Res.5(5), R129–R135 (2003).
[CrossRef] [PubMed]

Andersson-Engels, S.

Balestreri, N.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Bigio, I. J.

Blackmore, K. M.

K. M. Blackmore, J. A. Knight, and L. Lilge, “Association between transillumination breast spectroscopy and quantitative mammographic features of the breast,” Cancer Epidemiol. Biomarkers Prev.17(5), 1043–1050 (2008).
[CrossRef] [PubMed]

Boyd, N. F.

N. F. Boyd, L. J. Martin, J. Stone, C. Greenberg, S. Minkin, and M. J. Yaffe, “Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention,” Curr. Oncol. Rep.3(4), 314–321 (2001).
[CrossRef] [PubMed]

Boyer, J.

Cassano, E.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Cubeddu, R.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express17(18), 15932–15946 (2009).
[CrossRef] [PubMed]

dos Santos Silva, I.

V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomarkers Prev.15(6), 1159–1169 (2006).
[CrossRef] [PubMed]

Ferlay, J.

J. Ferlay, D. M. Parkin, and E. Steliarova-Foucher, “Estimates of cancer incidence and mortality in Europe in 2008,” Eur. J. Cancer46(4), 765–781 (2010).
[CrossRef] [PubMed]

Fuselier, T.

Greenberg, C.

N. F. Boyd, L. J. Martin, J. Stone, C. Greenberg, S. Minkin, and M. J. Yaffe, “Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention,” Curr. Oncol. Rep.3(4), 314–321 (2001).
[CrossRef] [PubMed]

Gur, D.

B. Zheng, J. H. Sumkin, M. L. Zuley, X. Wang, A. H. Klym, and D. Gur, “Bilateral mammographic density asymmetry and breast cancer risk: A preliminary assessment,” Eur. J. Radiol. (to be published).
[PubMed]

Jemal, A.

A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin.60(5), 277–300 (2010).
[CrossRef] [PubMed]

Johnson, T. M.

Jong, R.

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt.9(4), 794–803 (2004).
[CrossRef] [PubMed]

Kirkpatrick, I.

S. Alowami, S. Troup, S. Al-Haddad, I. Kirkpatrick, and P. H. Watson, “Mammographic density is related to stroma and stromal proteoglycan expression,” Breast Cancer Res.5(5), R129–R135 (2003).
[CrossRef] [PubMed]

Klym, A. H.

B. Zheng, J. H. Sumkin, M. L. Zuley, X. Wang, A. H. Klym, and D. Gur, “Bilateral mammographic density asymmetry and breast cancer risk: A preliminary assessment,” Eur. J. Radiol. (to be published).
[PubMed]

Knight, J. A.

K. M. Blackmore, J. A. Knight, and L. Lilge, “Association between transillumination breast spectroscopy and quantitative mammographic features of the breast,” Cancer Epidemiol. Biomarkers Prev.17(5), 1043–1050 (2008).
[CrossRef] [PubMed]

Lilge, L.

K. M. Blackmore, J. A. Knight, and L. Lilge, “Association between transillumination breast spectroscopy and quantitative mammographic features of the breast,” Cancer Epidemiol. Biomarkers Prev.17(5), 1043–1050 (2008).
[CrossRef] [PubMed]

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt.9(4), 794–803 (2004).
[CrossRef] [PubMed]

Liu, D. L.

Martin, L. J.

N. F. Boyd, L. J. Martin, J. Stone, C. Greenberg, S. Minkin, and M. J. Yaffe, “Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention,” Curr. Oncol. Rep.3(4), 314–321 (2001).
[CrossRef] [PubMed]

McCormack, V. A.

V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomarkers Prev.15(6), 1159–1169 (2006).
[CrossRef] [PubMed]

Menna, S.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Minkin, S.

N. F. Boyd, L. J. Martin, J. Stone, C. Greenberg, S. Minkin, and M. J. Yaffe, “Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention,” Curr. Oncol. Rep.3(4), 314–321 (2001).
[CrossRef] [PubMed]

Mourant, J. R.

Nilsson, A. M.

Parkin, D. M.

J. Ferlay, D. M. Parkin, and E. Steliarova-Foucher, “Estimates of cancer incidence and mortality in Europe in 2008,” Eur. J. Cancer46(4), 765–781 (2010).
[CrossRef] [PubMed]

Pifferi, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express17(18), 15932–15946 (2009).
[CrossRef] [PubMed]

Quarto, G.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Salvagnini, E.

Siegel, R.

A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin.60(5), 277–300 (2010).
[CrossRef] [PubMed]

Simick, M. K.

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt.9(4), 794–803 (2004).
[CrossRef] [PubMed]

Spinelli, L.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express17(18), 15932–15946 (2009).
[CrossRef] [PubMed]

Steliarova-Foucher, E.

J. Ferlay, D. M. Parkin, and E. Steliarova-Foucher, “Estimates of cancer incidence and mortality in Europe in 2008,” Eur. J. Cancer46(4), 765–781 (2010).
[CrossRef] [PubMed]

Stone, J.

N. F. Boyd, L. J. Martin, J. Stone, C. Greenberg, S. Minkin, and M. J. Yaffe, “Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention,” Curr. Oncol. Rep.3(4), 314–321 (2001).
[CrossRef] [PubMed]

Sturesson, C.

Sumkin, J. H.

B. Zheng, J. H. Sumkin, M. L. Zuley, X. Wang, A. H. Klym, and D. Gur, “Bilateral mammographic density asymmetry and breast cancer risk: A preliminary assessment,” Eur. J. Radiol. (to be published).
[PubMed]

Taroni, P.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express17(18), 15932–15946 (2009).
[CrossRef] [PubMed]

Torricelli, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express17(18), 15932–15946 (2009).
[CrossRef] [PubMed]

Troup, S.

S. Alowami, S. Troup, S. Al-Haddad, I. Kirkpatrick, and P. H. Watson, “Mammographic density is related to stroma and stromal proteoglycan expression,” Breast Cancer Res.5(5), R129–R135 (2003).
[CrossRef] [PubMed]

Villa, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Wang, X.

B. Zheng, J. H. Sumkin, M. L. Zuley, X. Wang, A. H. Klym, and D. Gur, “Bilateral mammographic density asymmetry and breast cancer risk: A preliminary assessment,” Eur. J. Radiol. (to be published).
[PubMed]

Ward, E.

A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin.60(5), 277–300 (2010).
[CrossRef] [PubMed]

Watson, P. H.

S. Alowami, S. Troup, S. Al-Haddad, I. Kirkpatrick, and P. H. Watson, “Mammographic density is related to stroma and stromal proteoglycan expression,” Breast Cancer Res.5(5), R129–R135 (2003).
[CrossRef] [PubMed]

Wilson, B.

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt.9(4), 794–803 (2004).
[CrossRef] [PubMed]

Xu, J.

A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin.60(5), 277–300 (2010).
[CrossRef] [PubMed]

Yaffe, M. J.

N. F. Boyd, L. J. Martin, J. Stone, C. Greenberg, S. Minkin, and M. J. Yaffe, “Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention,” Curr. Oncol. Rep.3(4), 314–321 (2001).
[CrossRef] [PubMed]

Zheng, B.

B. Zheng, J. H. Sumkin, M. L. Zuley, X. Wang, A. H. Klym, and D. Gur, “Bilateral mammographic density asymmetry and breast cancer risk: A preliminary assessment,” Eur. J. Radiol. (to be published).
[PubMed]

Zuley, M. L.

B. Zheng, J. H. Sumkin, M. L. Zuley, X. Wang, A. H. Klym, and D. Gur, “Bilateral mammographic density asymmetry and breast cancer risk: A preliminary assessment,” Eur. J. Radiol. (to be published).
[PubMed]

Appl. Opt.

Breast Cancer Res.

S. Alowami, S. Troup, S. Al-Haddad, I. Kirkpatrick, and P. H. Watson, “Mammographic density is related to stroma and stromal proteoglycan expression,” Breast Cancer Res.5(5), R129–R135 (2003).
[CrossRef] [PubMed]

CA Cancer J. Clin.

A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin.60(5), 277–300 (2010).
[CrossRef] [PubMed]

Cancer Epidemiol. Biomarkers Prev.

V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomarkers Prev.15(6), 1159–1169 (2006).
[CrossRef] [PubMed]

K. M. Blackmore, J. A. Knight, and L. Lilge, “Association between transillumination breast spectroscopy and quantitative mammographic features of the breast,” Cancer Epidemiol. Biomarkers Prev.17(5), 1043–1050 (2008).
[CrossRef] [PubMed]

Curr. Oncol. Rep.

N. F. Boyd, L. J. Martin, J. Stone, C. Greenberg, S. Minkin, and M. J. Yaffe, “Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention,” Curr. Oncol. Rep.3(4), 314–321 (2001).
[CrossRef] [PubMed]

Eur. J. Cancer

J. Ferlay, D. M. Parkin, and E. Steliarova-Foucher, “Estimates of cancer incidence and mortality in Europe in 2008,” Eur. J. Cancer46(4), 765–781 (2010).
[CrossRef] [PubMed]

Eur. J. Radiol.

B. Zheng, J. H. Sumkin, M. L. Zuley, X. Wang, A. H. Klym, and D. Gur, “Bilateral mammographic density asymmetry and breast cancer risk: A preliminary assessment,” Eur. J. Radiol. (to be published).
[PubMed]

J. Biomed. Opt.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk,” J. Biomed. Opt.9(4), 794–803 (2004).
[CrossRef] [PubMed]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Selection of the 5 areas that simulate point measurements on the cranio-caudal views of the right and left breasts of a subject.

Tables (8)

Tables Icon

Table 1 General statistics of the patient population

Tables Icon

Table 2 Water content (mg/cm3) as a function of measurement position and BIRADS category

Tables Icon

Table 5 Scattering power b as a function of measurement position and BIRADS category

Tables Icon

Table 3 Collagen content (mg/cm3) as a function of measurement position and BIRADS category

Tables Icon

Table 4 Lipid content (mg/cm3) as a function of measurement position and BIRADS category

Tables Icon

Table 6 Total hemoglobin content tHb as a function of measurement position and BIRADS category

Tables Icon

Table 7 Optical Index OI as a function of measurement position and BIRADS categorya

Tables Icon

Table 8 Effectiveness of the Optical Index OI in discriminating different BIRADS categories. p values of the Mann-Whitney test are used as a measure the effectivenessa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

O I = [ water ] [ collagen ] b [ lipid ] .

Metrics