Abstract

We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron.10(8), i–ix (1995).
    [CrossRef] [PubMed]
  2. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009).
    [CrossRef] [PubMed]
  3. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Act. B Chem.105(2), 360–364 (2005).
    [CrossRef]
  4. P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Act. B Chem.161(1), 1046–1052 (2012).
    [CrossRef]
  5. Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
    [CrossRef] [PubMed]
  6. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am.67(4), 423–438 (1977).
    [CrossRef]
  7. J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, Berlin, 2006).
  8. C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor depositions,” J. Appl. Phys.96(7), 3987–3997 (2004).
    [CrossRef]
  9. F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B74(2), 155–168 (1996).
    [CrossRef]
  10. S. H. Baker, W. E. Spear, and R. A. G. Gibson, “Electronic and optical properties of a-Si1-xCx films prepared from a H2-diluted mixture of SiH4 and CH4,” Philos. Mag. B62(2), 213–223 (1990).
    [CrossRef]
  11. C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
    [CrossRef]
  12. F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B60(16), 11572–11576 (1999).
    [CrossRef]
  13. S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett.81(25), 4706–4708 (2002).
    [CrossRef]
  14. E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett.33(3), 243–245 (2008).
    [CrossRef] [PubMed]
  15. R. Martins, P. Baptista, L. Raniero, G. Doria, L. Silva, R. Franco, and E. Fortunato, “Amorphous/nano-crystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes,” Appl. Phys. Lett.90(2), 023903 (2007).
    [CrossRef]
  16. M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
    [CrossRef] [PubMed]
  17. M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
    [CrossRef]
  18. N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi parameter analyses on polymer chips,” Eng. Life Sci.11(6), 566–572 (2011).
    [CrossRef]
  19. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B Chem. (to be published).
  20. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B Chem.54(1-2), 3–15 (1999).
    [CrossRef]
  21. R. C. Weast, CRC Handbook of Chemistry and Physics, 55th ed. (CRC, Cleveland, 1974).
  22. A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett.37(7), 1175–1177 (2012).
    [CrossRef] [PubMed]

2012 (4)

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Act. B Chem.161(1), 1046–1052 (2012).
[CrossRef]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett.37(7), 1175–1177 (2012).
[CrossRef] [PubMed]

2011 (1)

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi parameter analyses on polymer chips,” Eng. Life Sci.11(6), 566–572 (2011).
[CrossRef]

2010 (1)

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (1)

R. Martins, P. Baptista, L. Raniero, G. Doria, L. Silva, R. Franco, and E. Fortunato, “Amorphous/nano-crystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes,” Appl. Phys. Lett.90(2), 023903 (2007).
[CrossRef]

2006 (1)

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

2005 (1)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Act. B Chem.105(2), 360–364 (2005).
[CrossRef]

2004 (1)

C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor depositions,” J. Appl. Phys.96(7), 3987–3997 (2004).
[CrossRef]

2002 (1)

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett.81(25), 4706–4708 (2002).
[CrossRef]

1999 (2)

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B60(16), 11572–11576 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B Chem.54(1-2), 3–15 (1999).
[CrossRef]

1996 (1)

F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B74(2), 155–168 (1996).
[CrossRef]

1995 (1)

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron.10(8), i–ix (1995).
[CrossRef] [PubMed]

1990 (1)

S. H. Baker, W. E. Spear, and R. A. G. Gibson, “Electronic and optical properties of a-Si1-xCx films prepared from a H2-diluted mixture of SiH4 and CH4,” Philos. Mag. B62(2), 213–223 (1990).
[CrossRef]

1977 (1)

Abdulhalim, I.

Andreani, L. C.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

Baker, J. R.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Baker, S. H.

S. H. Baker, W. E. Spear, and R. A. G. Gibson, “Electronic and optical properties of a-Si1-xCx films prepared from a H2-diluted mixture of SiH4 and CH4,” Philos. Mag. B62(2), 213–223 (1990).
[CrossRef]

Ballarini, M.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

Ballarini, V.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett.81(25), 4706–4708 (2002).
[CrossRef]

Baptista, P.

R. Martins, P. Baptista, L. Raniero, G. Doria, L. Silva, R. Franco, and E. Fortunato, “Amorphous/nano-crystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes,” Appl. Phys. Lett.90(2), 023903 (2007).
[CrossRef]

Bianconi, M.

C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor depositions,” J. Appl. Phys.96(7), 3987–3997 (2004).
[CrossRef]

Bruno, G.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

Danz, N.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi parameter analyses on polymer chips,” Eng. Life Sci.11(6), 566–572 (2011).
[CrossRef]

De Leo, N.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

Demichelis, F.

F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B74(2), 155–168 (1996).
[CrossRef]

Desalvo, A.

C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor depositions,” J. Appl. Phys.96(7), 3987–3997 (2004).
[CrossRef]

Descrovi, E.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Act. B Chem.161(1), 1046–1052 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett.33(3), 243–245 (2008).
[CrossRef] [PubMed]

Di Finizio, S.

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett.81(25), 4706–4708 (2002).
[CrossRef]

Digregorio, G.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Act. B Chem.161(1), 1046–1052 (2012).
[CrossRef]

Divin, C.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Dominici, L.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Act. B Chem.161(1), 1046–1052 (2012).
[CrossRef]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett.33(3), 243–245 (2008).
[CrossRef] [PubMed]

Doria, G.

R. Martins, P. Baptista, L. Raniero, G. Doria, L. Silva, R. Franco, and E. Fortunato, “Amorphous/nano-crystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes,” Appl. Phys. Lett.90(2), 023903 (2007).
[CrossRef]

Enrico, E.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

Fortunato, E.

R. Martins, P. Baptista, L. Raniero, G. Doria, L. Silva, R. Franco, and E. Fortunato, “Amorphous/nano-crystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes,” Appl. Phys. Lett.90(2), 023903 (2007).
[CrossRef]

Franco, R.

R. Martins, P. Baptista, L. Raniero, G. Doria, L. Silva, R. Franco, and E. Fortunato, “Amorphous/nano-crystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes,” Appl. Phys. Lett.90(2), 023903 (2007).
[CrossRef]

Frascella, F.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Act. B Chem.161(1), 1046–1052 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

Galli, M.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B Chem.54(1-2), 3–15 (1999).
[CrossRef]

Gesuele, F.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

Gibson, R. A. G.

S. H. Baker, W. E. Spear, and R. A. G. Gibson, “Electronic and optical properties of a-Si1-xCx films prepared from a H2-diluted mixture of SiH4 and CH4,” Philos. Mag. B62(2), 213–223 (1990).
[CrossRef]

Giorgis, F.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Act. B Chem.161(1), 1046–1052 (2012).
[CrossRef]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett.33(3), 243–245 (2008).
[CrossRef] [PubMed]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor depositions,” J. Appl. Phys.96(7), 3987–3997 (2004).
[CrossRef]

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett.81(25), 4706–4708 (2002).
[CrossRef]

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B60(16), 11572–11576 (1999).
[CrossRef]

F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B74(2), 155–168 (1996).
[CrossRef]

Guo, Y.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Höfer, B.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi parameter analyses on polymer chips,” Eng. Life Sci.11(6), 566–572 (2011).
[CrossRef]

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B Chem.54(1-2), 3–15 (1999).
[CrossRef]

Hong, C.-S.

Huang, B.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Iencinella, D.

C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor depositions,” J. Appl. Phys.96(7), 3987–3997 (2004).
[CrossRef]

Kick, A.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi parameter analyses on polymer chips,” Eng. Life Sci.11(6), 566–572 (2011).
[CrossRef]

Klotzbach, U.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi parameter analyses on polymer chips,” Eng. Life Sci.11(6), 566–572 (2011).
[CrossRef]

Lettieri, S.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett.81(25), 4706–4708 (2002).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron.10(8), i–ix (1995).
[CrossRef] [PubMed]

Liscidini, M.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

Losurdo, M.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron.10(8), i–ix (1995).
[CrossRef] [PubMed]

Maddalena, P.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett.81(25), 4706–4708 (2002).
[CrossRef]

Mandracci, P.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Act. B Chem.161(1), 1046–1052 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

Martins, R.

R. Martins, P. Baptista, L. Raniero, G. Doria, L. Silva, R. Franco, and E. Fortunato, “Amorphous/nano-crystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes,” Appl. Phys. Lett.90(2), 023903 (2007).
[CrossRef]

Mertig, M.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi parameter analyses on polymer chips,” Eng. Life Sci.11(6), 566–572 (2011).
[CrossRef]

Michelotti, F.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Act. B Chem.161(1), 1046–1052 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett.33(3), 243–245 (2008).
[CrossRef] [PubMed]

Norris, T. B.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron.10(8), i–ix (1995).
[CrossRef] [PubMed]

Pavesi, L.

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B60(16), 11572–11576 (1999).
[CrossRef]

Piliarik, M.

Pirri, C. F.

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B60(16), 11572–11576 (1999).
[CrossRef]

F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B74(2), 155–168 (1996).
[CrossRef]

Raniero, L.

R. Martins, P. Baptista, L. Raniero, G. Doria, L. Silva, R. Franco, and E. Fortunato, “Amorphous/nano-crystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes,” Appl. Phys. Lett.90(2), 023903 (2007).
[CrossRef]

Ricciardi, C.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

Ricciardi, S.

Rivolo, P.

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Act. B Chem.161(1), 1046–1052 (2012).
[CrossRef]

Rizzoli, R.

C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor depositions,” J. Appl. Phys.96(7), 3987–3997 (2004).
[CrossRef]

Robertson, W. M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Act. B Chem.105(2), 360–364 (2005).
[CrossRef]

Schmieder, S.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi parameter analyses on polymer chips,” Eng. Life Sci.11(6), 566–572 (2011).
[CrossRef]

Shalabney, A.

Shinn, M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Act. B Chem.105(2), 360–364 (2005).
[CrossRef]

Silva, L.

R. Martins, P. Baptista, L. Raniero, G. Doria, L. Silva, R. Franco, and E. Fortunato, “Amorphous/nano-crystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes,” Appl. Phys. Lett.90(2), 023903 (2007).
[CrossRef]

Sonntag, F.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi parameter analyses on polymer chips,” Eng. Life Sci.11(6), 566–572 (2011).
[CrossRef]

Spear, W. E.

S. H. Baker, W. E. Spear, and R. A. G. Gibson, “Electronic and optical properties of a-Si1-xCx films prepared from a H2-diluted mixture of SiH4 and CH4,” Philos. Mag. B62(2), 213–223 (1990).
[CrossRef]

Summonte, C.

C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor depositions,” J. Appl. Phys.96(7), 3987–3997 (2004).
[CrossRef]

Thomas, T. P.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Vinegoni, C.

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B60(16), 11572–11576 (1999).
[CrossRef]

Yariv, A.

Ye, J. Y.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B Chem.54(1-2), 3–15 (1999).
[CrossRef]

Yeh, P.

Anal. Chem. (1)

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett.81(25), 4706–4708 (2002).
[CrossRef]

R. Martins, P. Baptista, L. Raniero, G. Doria, L. Silva, R. Franco, and E. Fortunato, “Amorphous/nano-crystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes,” Appl. Phys. Lett.90(2), 023903 (2007).
[CrossRef]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

Biosens. Bioelectron. (1)

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron.10(8), i–ix (1995).
[CrossRef] [PubMed]

Eng. Life Sci. (1)

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi parameter analyses on polymer chips,” Eng. Life Sci.11(6), 566–572 (2011).
[CrossRef]

J. Appl. Phys. (1)

C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor depositions,” J. Appl. Phys.96(7), 3987–3997 (2004).
[CrossRef]

J. Non-Cryst. Solids (1)

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Opt. Lett. (2)

Philos. Mag. B (2)

F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B74(2), 155–168 (1996).
[CrossRef]

S. H. Baker, W. E. Spear, and R. A. G. Gibson, “Electronic and optical properties of a-Si1-xCx films prepared from a H2-diluted mixture of SiH4 and CH4,” Philos. Mag. B62(2), 213–223 (1990).
[CrossRef]

Phys. Rev. B (1)

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B60(16), 11572–11576 (1999).
[CrossRef]

Sens. Act. B Chem. (3)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Act. B Chem.105(2), 360–364 (2005).
[CrossRef]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Act. B Chem.161(1), 1046–1052 (2012).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B Chem.54(1-2), 3–15 (1999).
[CrossRef]

Other (3)

R. C. Weast, CRC Handbook of Chemistry and Physics, 55th ed. (CRC, Cleveland, 1974).

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B Chem. (to be published).

J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, Berlin, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Left, sketch of the optics of the SPR platform used in the experiments. Right, angular reflectance curves obtained experimentally with the SPR platform. Each measurement is the average of 15 neighboring columns. The x angular scale is given in pixels of the CCD detector; data are normalized to the reflectance measured in air environment. (SPR) 45nm gold layer, (GMR) 1DPC sustaining a guided mode, (BSWR) 1DPC sustaining a Bloch surface wave.

Fig. 2
Fig. 2

Positions of the resonances as a function of the glucose concentration in solutions, for both 1DPC (BSW and GM) and SPP based biochips on cover slips. The errors are smaller than the dimension of the symbols. Each point is the result of a 15 min long measurement.

Fig. 3
Fig. 3

Square modulus of transverse intensity distributions in the normal direction (x) for (a) SPP, (b) BSW and (c) GM calculated at λ = 804 nm. The zero on the abscissa corresponds to the surface of the sample.

Tables (1)

Tables Icon

Table 1 Parameters extracted from the experimental measurements carried out on 1DPC supporting either GM or BSW and on gold thin films supporting SPP. Parameters are defined in the text.

Metrics