Abstract

We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
    [CrossRef]
  3. R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
    [CrossRef] [PubMed]
  4. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology113(8), 1425–1431 (2006).
    [CrossRef] [PubMed]
  5. T. C. Chen, A. Zeng, W. Sun, M. Mujat, and J. F. de Boer, “Spectral domain optical coherence tomography and glaucoma,” Int. Ophthalmol. Clin.48(4), 29–45 (2008).
    [CrossRef] [PubMed]
  6. L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37(1), 90–99 (2009).
    [CrossRef] [PubMed]
  7. G. Häusler, “’Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21 (1998).
    [CrossRef]
  8. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  9. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  10. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004).
    [CrossRef] [PubMed]
  11. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A14(11), 2873–2883 (1997).
    [CrossRef] [PubMed]
  12. W. J. Donnelly and A. Roorda, “Optimal pupil size in the human eye for axial resolution,” J. Opt. Soc. Am. A20(11), 2010–2015 (2003).
    [CrossRef] [PubMed]
  13. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  14. E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett.26(10), 746–748 (2001).
    [CrossRef] [PubMed]
  15. H. Hofer, L. Chen, G.-Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express8(11), 631–643 (2001).
    [CrossRef] [PubMed]
  16. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A18(3), 497–506 (2001).
    [CrossRef] [PubMed]
  17. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express14(10), 4552–4569 (2006).
    [CrossRef] [PubMed]
  18. A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalgauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron.32(10), 902–908 (2002).
    [CrossRef]
  19. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002).
    [PubMed]
  20. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007).
    [CrossRef] [PubMed]
  21. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A27(11), A265–A277 (2010).
    [CrossRef] [PubMed]
  22. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004).
    [CrossRef] [PubMed]
  23. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13(12), 4792–4811 (2005).
    [CrossRef] [PubMed]
  24. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
    [CrossRef] [PubMed]
  25. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008).
    [CrossRef] [PubMed]
  26. B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express17(24), 21634–21651 (2009).
    [CrossRef] [PubMed]
  27. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express18(8), 8515–8527 (2010).
    [CrossRef] [PubMed]
  28. M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics5(1), 24–26 (2011).
    [CrossRef]
  29. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
    [CrossRef] [PubMed]
  30. C. Leahy, C. Leroux, C. Dainty, and L. Diaz-Santana, “Temporal dynamics and statistical characteristics of the microfluctuations of accommodation: dependence on the mean accommodative effort,” Opt. Express18(3), 2668–2681 (2010).
    [CrossRef] [PubMed]
  31. Z. Zalevsky, “Extended depth of focus imaging: a review,” SPIE Rev.1(1), 018001 (2010).
    [CrossRef]
  32. K. Richdale, G. L. Mitchell, and K. Zadnik, “Comparison of multifocal and monovision soft contact lens corrections in patients with low-astigmatic presbyopia,” Optom. Vis. Sci.83(5), 266–273 (2006).
    [CrossRef] [PubMed]
  33. J. C. Javitt and R. F. Steinert, “Cataract extraction with multifocal intraocular lens implantation: a multinational clinical trial evaluating clinical, functional, and quality-of-life outcomes,” Ophthalmology107(11), 2040–2048 (2000).
    [CrossRef] [PubMed]
  34. M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg.37(7), 1305–1312 (2011).
    [CrossRef] [PubMed]
  35. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt.34(11), 1859–1866 (1995).
    [CrossRef] [PubMed]
  36. P. Dufour, M. Piché, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt.45(36), 9246–9252 (2006).
    [CrossRef] [PubMed]
  37. E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268(2), 253–260 (2006).
    [CrossRef]
  38. M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006).
    [CrossRef] [PubMed]
  39. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002).
    [CrossRef] [PubMed]
  40. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006).
    [CrossRef] [PubMed]
  41. A. Burvall, K. Kołacz, Z. Jaroszewicz, and A. T. Friberg, “Simple lens axicon,” Appl. Opt.43(25), 4838–4844 (2004).
    [CrossRef] [PubMed]
  42. A. Yoshida, “Spherical aberration in beam optical systems,” Appl. Opt.21(10), 1812–1816 (1982).
    [CrossRef] [PubMed]
  43. C. Rivolta, “Depth of focus of optical systems with a small amount of spherical aberration,” Appl. Opt.29(22), 3249–3254 (1990).
    [CrossRef] [PubMed]
  44. A. A. Alkelly, “Spot size and radial intensity distribution of focused Gaussian beams in spherical and non-spherical aberration lenses,” Opt. Commun.277(2), 397–405 (2007).
    [CrossRef]
  45. K. Kurokawa, D. Tamada, S. Makita, and Y. Yasuno, “Adaptive optics retinal scanner for one-micrometer light source,” Opt. Express18(2), 1406–1418 (2010).
    [CrossRef] [PubMed]
  46. E. J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express14(13), 6213–6225 (2006).
    [CrossRef] [PubMed]
  47. L. Chen, “Control algorithms,” in Adaptive Optics for Vision Science: Principles, Practices, Design and Applications, J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, eds. (Wiley-Interscience, 2006).
  48. J. E. Greivenkamp, “Spherical aberration and defocus,” in Field Guide to Geometrical Optics (SPIE, 2003), pp. 119–130.
  49. G. Dai, “Ocular wavefront conversion,” in Wavefront Optics for Vision Correction, illustrated ed. (SPIE, 2008), pp. 132–137.
  50. E. Hecht, “Modern optics: lasers and other topics,” in Optics, 4th ed. (Addison Wesley, 2001).
  51. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
    [CrossRef]
  52. American National Standards Institute, “American National Standard for the Safe Use of Lasers,” ANSI Z136.1-2000 (ANSI, New York, 2000).
  53. H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A14(8), 1684–1695 (1997).
    [CrossRef] [PubMed]
  54. C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt.30(25), 3563–3568 (1991).
    [CrossRef] [PubMed]
  55. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
    [CrossRef]

2011

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics5(1), 24–26 (2011).
[CrossRef]

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg.37(7), 1305–1312 (2011).
[CrossRef] [PubMed]

2010

2009

2008

2007

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

A. A. Alkelly, “Spot size and radial intensity distribution of focused Gaussian beams in spherical and non-spherical aberration lenses,” Opt. Commun.277(2), 397–405 (2007).
[CrossRef]

2006

E. J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express14(13), 6213–6225 (2006).
[CrossRef] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006).
[CrossRef] [PubMed]

K. Richdale, G. L. Mitchell, and K. Zadnik, “Comparison of multifocal and monovision soft contact lens corrections in patients with low-astigmatic presbyopia,” Optom. Vis. Sci.83(5), 266–273 (2006).
[CrossRef] [PubMed]

P. Dufour, M. Piché, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt.45(36), 9246–9252 (2006).
[CrossRef] [PubMed]

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268(2), 253–260 (2006).
[CrossRef]

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006).
[CrossRef] [PubMed]

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express14(10), 4552–4569 (2006).
[CrossRef] [PubMed]

2005

2004

2003

2002

2001

2000

J. C. Javitt and R. F. Steinert, “Cataract extraction with multifocal intraocular lens implantation: a multinational clinical trial evaluating clinical, functional, and quality-of-life outcomes,” Ophthalmology107(11), 2040–2048 (2000).
[CrossRef] [PubMed]

American National Standards Institute, “American National Standard for the Safe Use of Lasers,” ANSI Z136.1-2000 (ANSI, New York, 2000).

1998

G. Häusler, “’Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21 (1998).
[CrossRef]

1997

1995

E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt.34(11), 1859–1866 (1995).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

1993

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

1991

C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt.30(25), 3563–3568 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1990

1982

Alam, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

Alkelly, A. A.

A. A. Alkelly, “Spot size and radial intensity distribution of focused Gaussian beams in spherical and non-spherical aberration lenses,” Opt. Commun.277(2), 397–405 (2007).
[CrossRef]

Aragón, J. L.

Artal, P.

Bachmann, A. H.

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

Botcherby, E. J.

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268(2), 253–260 (2006).
[CrossRef]

Bouma, B.

Bouma, B. E.

Bower, B. A.

Brennan, N. A.

Brown, J. M.

Burns, S. A.

Burvall, A.

Calucci, D.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Campbell, M.

Cardillo, J. A.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

Carroll, J.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Castro, J. C.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Cathey, W. T.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chateau, N.

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics5(1), 24–26 (2011).
[CrossRef]

Chen, L.

Chen, T.

Chen, T. C.

T. C. Chen, A. Zeng, W. Sun, M. Mujat, and J. F. de Boer, “Spectral domain optical coherence tomography and glaucoma,” Int. Ophthalmol. Clin.48(4), 29–45 (2008).
[CrossRef] [PubMed]

Chen, Z.

Choi, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Choi, S. S.

Costa, R. A.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Cremer, C.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

Dainty, C.

de Boer, J.

de Boer, J. F.

De Koninck, Y.

Deleon-Ortega, J.

L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37(1), 90–99 (2009).
[CrossRef] [PubMed]

Deng, C.

Diaz-Santana, L.

Ding, Z.

Donnelly, W. J.

Donnelly Iii, W.

Dowski, E. R.

Drexler, W.

Dubis, A. M.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Dufour, P.

Duncan, J. L.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Elsner, A. E.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Fercher, A. F.

Ferguson, D.

Ferguson, R. D.

Fernández, E. J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Friberg, A. T.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gao, W.

Gerth, C.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

Girkin, C. A.

L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37(1), 90–99 (2009).
[CrossRef] [PubMed]

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Götzinger, E.

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, M.

Hammer, D. X.

Häusler, G.

G. Häusler, “’Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21 (1998).
[CrossRef]

Hebert, T.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hell, S.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

Hermann, B.

Hitzenberger, C. K.

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Hofer, H.

Huang, D.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Iglesias, I.

Iroshnikov, N. G.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalgauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron.32(10), 902–908 (2002).
[CrossRef]

Ivanov, P. V.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalgauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron.32(10), 902–908 (2002).
[CrossRef]

Izatt, J. A.

Jaroszewicz, Z.

Javitt, J. C.

J. C. Javitt and R. F. Steinert, “Cataract extraction with multifocal intraocular lens implantation: a multinational clinical trial evaluating clinical, functional, and quality-of-life outcomes,” Ophthalmology107(11), 2040–2048 (2000).
[CrossRef] [PubMed]

Jones, S. M.

Jonnal, R.

Jonnal, R. S.

Juškaitis, R.

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268(2), 253–260 (2006).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Kim, M. J.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg.37(7), 1305–1312 (2011).
[CrossRef] [PubMed]

Kolacz, K.

Kurokawa, K.

Lamory, B.

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics5(1), 24–26 (2011).
[CrossRef]

Larichev, A. V.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalgauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron.32(10), 902–908 (2002).
[CrossRef]

Lasser, T.

Laut, S.

Leahy, C.

Leitgeb, R.

Leitgeb, R. A.

Leroux, C.

Liang, J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liou, H.-L.

Macrae, S.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg.37(7), 1305–1312 (2011).
[CrossRef] [PubMed]

Makita, S.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

McCarthy, N.

Melo, L. A. S.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Miller, D.

Miller, D. T.

Mitchell, G. L.

K. Richdale, G. L. Mitchell, and K. Zadnik, “Comparison of multifocal and monovision soft contact lens corrections in patients with low-astigmatic presbyopia,” Optom. Vis. Sci.83(5), 266–273 (2006).
[CrossRef] [PubMed]

Morse, L.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

Mujat, M.

Nassif, N.

Nelson, J. S.

Olivier, S. S.

Otten, L. J.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalgauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron.32(10), 902–908 (2002).
[CrossRef]

Park, B.

Park, B. H.

Park, S. S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

Patel, A. H.

Piché, M.

Pierce, M.

Pierce, M. C.

Pircher, M.

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006).
[CrossRef] [PubMed]

Povazay, B.

Prieto, P. M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qu, J.

Queener, H.

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

Reiner, G.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

Ren, H.

Rha, J.

Richdale, K.

K. Richdale, G. L. Mitchell, and K. Zadnik, “Comparison of multifocal and monovision soft contact lens corrections in patients with low-astigmatic presbyopia,” Optom. Vis. Sci.83(5), 266–273 (2006).
[CrossRef] [PubMed]

Rivolta, C.

Romero-Borja, F.

Roorda, A.

Sakata, L. M.

L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37(1), 90–99 (2009).
[CrossRef] [PubMed]

Sakata, V.

L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37(1), 90–99 (2009).
[CrossRef] [PubMed]

Sasaki, K.

Sattmann, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Shmalgauzen, V. I.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalgauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron.32(10), 902–908 (2002).
[CrossRef]

Singer, B.

Skaf, M.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Steinert, R. F.

J. C. Javitt and R. F. Steinert, “Cataract extraction with multifocal intraocular lens implantation: a multinational clinical trial evaluating clinical, functional, and quality-of-life outcomes,” Ophthalmology107(11), 2040–2048 (2000).
[CrossRef] [PubMed]

Steinmann, L.

Stelzer, E. H. K.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sun, W.

T. C. Chen, A. Zeng, W. Sun, M. Mujat, and J. F. de Boer, “Spectral domain optical coherence tomography and glaucoma,” Int. Ophthalmol. Clin.48(4), 29–45 (2008).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tamada, D.

Tchah, H.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg.37(7), 1305–1312 (2011).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

Thorn, K. E.

Tumbar, R.

Unterhuber, A.

Villiger, M.

Werner, J. S.

Williams, D. R.

Wilson, T.

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268(2), 253–260 (2006).
[CrossRef]

Wojtkowski, M.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Yamanari, M.

Yamauchi, Y.

Yasuno, Y.

Yoon, G.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg.37(7), 1305–1312 (2011).
[CrossRef] [PubMed]

Yoon, G.-Y.

Yoshida, A.

Yun, S.

Zacharria, M.

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics5(1), 24–26 (2011).
[CrossRef]

Zadnik, K.

K. Richdale, G. L. Mitchell, and K. Zadnik, “Comparison of multifocal and monovision soft contact lens corrections in patients with low-astigmatic presbyopia,” Optom. Vis. Sci.83(5), 266–273 (2006).
[CrossRef] [PubMed]

Zalevsky, Z.

Z. Zalevsky, “Extended depth of focus imaging: a review,” SPIE Rev.1(1), 018001 (2010).
[CrossRef]

Zawadzki, R. J.

Zeng, A.

T. C. Chen, A. Zeng, W. Sun, M. Mujat, and J. F. de Boer, “Spectral domain optical coherence tomography and glaucoma,” Int. Ophthalmol. Clin.48(4), 29–45 (2008).
[CrossRef] [PubMed]

Zhang, Y.

Zhao, M.

Zhao, Y.

Zheleznyak, L.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg.37(7), 1305–1312 (2011).
[CrossRef] [PubMed]

Zhong, Z.

Zou, W.

Appl. Opt.

Clin. Experiment. Ophthalmol.

L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37(1), 90–99 (2009).
[CrossRef] [PubMed]

Int. Ophthalmol. Clin.

T. C. Chen, A. Zeng, W. Sun, M. Mujat, and J. F. de Boer, “Spectral domain optical coherence tomography and glaucoma,” Int. Ophthalmol. Clin.48(4), 29–45 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt.

G. Häusler, “’Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21 (1998).
[CrossRef]

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006).
[CrossRef] [PubMed]

J. Cataract Refract. Surg.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg.37(7), 1305–1312 (2011).
[CrossRef] [PubMed]

J. Microsc.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Photonics

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics5(1), 24–26 (2011).
[CrossRef]

Nat. Phys.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

Ophthalmology

J. C. Javitt and R. F. Steinert, “Cataract extraction with multifocal intraocular lens implantation: a multinational clinical trial evaluating clinical, functional, and quality-of-life outcomes,” Ophthalmology107(11), 2040–2048 (2000).
[CrossRef] [PubMed]

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268(2), 253–260 (2006).
[CrossRef]

A. A. Alkelly, “Spot size and radial intensity distribution of focused Gaussian beams in spherical and non-spherical aberration lenses,” Opt. Commun.277(2), 397–405 (2007).
[CrossRef]

Opt. Express

K. Kurokawa, D. Tamada, S. Makita, and Y. Yasuno, “Adaptive optics retinal scanner for one-micrometer light source,” Opt. Express18(2), 1406–1418 (2010).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express14(13), 6213–6225 (2006).
[CrossRef] [PubMed]

C. Leahy, C. Leroux, C. Dainty, and L. Diaz-Santana, “Temporal dynamics and statistical characteristics of the microfluctuations of accommodation: dependence on the mean accommodative effort,” Opt. Express18(3), 2668–2681 (2010).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002).
[PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13(12), 4792–4811 (2005).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express17(24), 21634–21651 (2009).
[CrossRef] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express18(8), 8515–8527 (2010).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004).
[CrossRef] [PubMed]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express14(10), 4552–4569 (2006).
[CrossRef] [PubMed]

H. Hofer, L. Chen, G.-Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express8(11), 631–643 (2001).
[CrossRef] [PubMed]

Opt. Lett.

Optom. Vis. Sci.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

K. Richdale, G. L. Mitchell, and K. Zadnik, “Comparison of multifocal and monovision soft contact lens corrections in patients with low-astigmatic presbyopia,” Optom. Vis. Sci.83(5), 266–273 (2006).
[CrossRef] [PubMed]

Prog. Retin. Eye Res.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Quantum Electron.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalgauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron.32(10), 902–908 (2002).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

SPIE Rev.

Z. Zalevsky, “Extended depth of focus imaging: a review,” SPIE Rev.1(1), 018001 (2010).
[CrossRef]

Other

American National Standards Institute, “American National Standard for the Safe Use of Lasers,” ANSI Z136.1-2000 (ANSI, New York, 2000).

L. Chen, “Control algorithms,” in Adaptive Optics for Vision Science: Principles, Practices, Design and Applications, J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, eds. (Wiley-Interscience, 2006).

J. E. Greivenkamp, “Spherical aberration and defocus,” in Field Guide to Geometrical Optics (SPIE, 2003), pp. 119–130.

G. Dai, “Ocular wavefront conversion,” in Wavefront Optics for Vision Correction, illustrated ed. (SPIE, 2008), pp. 132–137.

E. Hecht, “Modern optics: lasers and other topics,” in Optics, 4th ed. (Addison Wesley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The schematic diagram of the optical setup of AO-SDOCT. PC: Polarization controller, FC: Fiber coupler, (a) The optical setup of the AO retinal scanner, L#: Lenses, LP#: Linear polarizers, D: Dichroic mirror, Ach: Achromatizer, ST: Stop, SM#: Spherical mirrors, FM#: Flat mirrors, WS: Wavefront sensor, DM: Deformable mirror, VS: Vertical galvanometric scanner, HS: Horizontal galvanometric scanner. (b) Spectrometer. (c) Reference arm, ND: neutral density filter. The green bars and arrows indicate the optical conjugate planes of the pupil, and the red crosses and arrow indicate the optical conjugate planes of the retina.

Fig. 2
Fig. 2

The counter defocus of ray tracing simulation and experiment are plotted as a function of Zernike coefficient of third-order SA where + is for experiment, × is for simulation-1, and * is for simulation-2.

Fig. 3
Fig. 3

The maximum OCT singals for each SA is shown in (a). The RMS wavefront errors for each SA is shown in (b). The‘+ and × indicate the experimental and simulation results, respectively.

Fig. 4
Fig. 4

Theoretical PSFs for SA = +0.7, 0.0, and –0.7 µm. The depth positions of LA are indicated by blue-letters.

Fig. 5
Fig. 5

Normalized intensity profiles for SA = +0.7, 0.0, and –0.7 µm, which were obtained by the scanning slit optical beam profiler. Red arrows indicate the profile translations caused by instability of rotation scanning slits. The depth positions of LA are indicated by blue-letters.

Fig. 6
Fig. 6

Normalized intensity profiles for SA = +0.7, 0.0, and –0.7 µm in linear scale. The Black arrows and numbers indicate the full width at half-maximum (FWHM).

Fig. 7
Fig. 7

Phantom images. The numbers in each images are the Zernike coefficients of applied SA. Reference planes for wavefront sensing are shown in the bottom side of the images. The black bars indicate 100 µm.

Fig. 8
Fig. 8

Variation of bead size, fitting curves and averaged intensity profiles along the depth are shown with their representative B-scan images in (a) with –0.4 µm-SA, (b) without SA, (c) with +0.3 µm-SA, and (d) with +0.6 µm-SA, respectively. The black bars indicate 100 µm. The blue dots indicate the size of micro-beads, the green dashed line indicate the fitting curve. The red lines and red dashed lines indicate the averaged intensity profiles and their envelopes. The gray dashed lines and arrows indicate the fitting parameter, ZR.

Fig. 9
Fig. 9

ZR for each SA are shown in (a). RMS wavefront errors for each SA are shown in (b). The + and × indicate the experimental and the simulation results, respectively.

Fig. 10
Fig. 10

En face projection images on PRL of subject-1 are shown in (1-a) with +0.4 µm SA, (1-b) without SA and (1-c) with –0.4-µm SA. Those of Subject-2 are shown in (2-a) with +0.4-µm SA, (2-b) without SA and (2-c) with –0.4-µm SA. Those of Subject-3 are shown in (3-a) with +0.4-µm SA, (3-b) without SA and (3-c) with –0.4-µm SA. Field of view of cropped images was 0.64 degree × 0.64 degree (102 pixels × 102 pixels). The white bar indicates 50 µm on the retina.

Fig. 11
Fig. 11

RMS values of en face projection images for SA = +0.4, 0.0 and –0.4 µm are shown in (a). Residual RMS wavefront errors for = +0.4, 0.0 and –0.4 µm are shown in (b). The +, ×, and * indicate subject-1, −2, and-3, respectively.

Fig. 12
Fig. 12

Representative B-scan images for SA = +0.4, 0.0 and –0.4 µm. The color bar indicates the SNR range in which the averaged intensity at the vitreous is set to be 0 dB. The black bar indicates 100 µm.

Tables (2)

Tables Icon

Table1 Applied SA and defocus in phantom imaging

Tables Icon

Table 2 Subjects’ characteristics. Sph and Cyl: spherical and cylindrical powers in diopters

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

v t+T = v t α A + s T ,
v t+T = v t α A + ( s T s target ),
L A =16 (f/#) 2 W 040 ,
W 040 =6 5 Z 4 0 ,
Z 2 0 = δ l c 2 R 2 4 3 n ,
w(z)= w 0 1+ ((z z 0 )/ z R ) 2 ,
s e ( t n )= s f s v ( t n1 ),
s v ( t n )=Av( t n1 )αA A + ( s e ( t n ) s target ),
v( t n )=v( t n1 )α A + ( s e ( t n ) s target ).
s e ( t n )= s f αA A + i=0 n1 ( s e ( t i ) s target ) .
s e ( t n ) s e ( t n ) s target = s f αA A + i=0 n1 ( s e ( t i ) s target ) s target = (IαA A + ) n s f (IαA A + ) n1 s target .
s e ( t n ) lim n s e ( t n ) =(IA A + )( s f s target ).
lim n (IαA A + ) n = lim n (IA A + + (1α) n A A + ) =IA A + .

Metrics