Abstract

The design and testing of a new, fully automated, calibration approach is described. The process was used to calibrate an image-guided diffuse optical spectroscopy system with 16 photomultiplier tubes (PMTs), but can be extended to any large array of optical detectors and associated imaging geometry. The design goals were accomplished by developing a routine for robust automated calibration of the multi-detector array within 45 minutes. Our process was able to characterize individual detectors to a median norm of the residuals of 0.03 V for amplitude and 4.4 degrees in phase and achieved less than 5% variation between all the detectors at the 95% confidence interval for equivalent measurements. Repeatability of the calibrated data from the imaging system was found to be within 0.05 V for amplitude and 0.2 degrees for phase, and was used to evaluate tissue-simulating phantoms in two separate imaging geometries. Spectroscopic imaging of total hemoglobin concentration was recovered to within 5% of the true value in both cases. Future work will focus on streamlining the technology for use in a clinical setting with expectations of achieving accurate quantification of suspicious lesions in the breast.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum.75(12), 5262–5270 (2004).
    [CrossRef]
  2. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72, 1817–1824 (2001).
    [CrossRef]
  3. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
    [CrossRef] [PubMed]
  4. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30(2), 235–247 (2003).
    [CrossRef] [PubMed]
  5. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42(1), 135–145 (2003).
    [CrossRef] [PubMed]
  6. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42(16), 3081–3094 (2003).
    [CrossRef] [PubMed]
  7. Y. Cho, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “Accurate technique for complete geometric calibration of cone-beam computed tomography systems,” Med. Phys.32(4), 968–983 (2005).
    [CrossRef] [PubMed]
  8. U. Schneider, E. Pedroni, and A. Lomax, “The calibration of CT Hounsfield units for radiotherapy treatment planning,” Phys. Med. Biol.41(1), 111–124 (1996).
    [CrossRef] [PubMed]
  9. K. Yang, A. L. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys.33(6), 1695–1706 (2006).
    [CrossRef] [PubMed]
  10. L. Geworski, B. O. Knoop, M. de Wit, V. Ivancević, R. Bares, and D. L. Munz, “Multicenter comparison of calibration and cross calibration of PET scanners,” J. Nucl. Med.43(5), 635–639 (2002).
    [PubMed]
  11. H. W. Reist, O. Stadelmann, and W. Kleeb, “Study on the stability of the calibration and normalization in PET and the influence of drifts on the accuracy of quantification,” Eur. J. Nucl. Med.15(11), 732–735 (1989).
    [CrossRef] [PubMed]
  12. W. A. Weber, “Quantitative analysis of PET studies,” Radiother. Oncol.96(3), 308–310 (2010).
    [CrossRef] [PubMed]
  13. X. Li, D. Zhang, and B. Liu, “A generic geometric calibration method for tomographic imaging systems with flat-panel detectors--a detailed implementation guide,” Med. Phys.37(7), 3844–3854 (2010).
    [CrossRef] [PubMed]
  14. C. J. Hourdakis, A. Boziari, and E. Koumbouli, “The effect of a compression paddle on energy response, calibration and measurement with mammographic dosimeters using ionization chambers and solid-state detectors,” Phys. Med. Biol.54(4), 1047–1059 (2009).
    [CrossRef] [PubMed]
  15. X. Mou, X. Chen, L. Sun, H. Yu, Z. Ji, and L. Zhang, “The impact of calibration phantom errors on dual-energy digital mammography,” Phys. Med. Biol.53(22), 6321–6336 (2008).
    [CrossRef] [PubMed]
  16. C. Kimme-Smith, C. Lewis, M. Beifuss, M. B. Williams, and L. W. Bassett, “Establishing minimum performance standards, calibration intervals, and optimal exposure values for a whole breast digital mammography unit,” Med. Phys.25(12), 2410–2416 (1998).
    [CrossRef] [PubMed]
  17. P. R. Detmer, G. Bashein, T. Hodges, K. W. Beach, E. P. Filer, D. H. Burns, and D. E. Strandness., “3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation,” Ultrasound Med. Biol.20(9), 923–936 (1994).
    [CrossRef] [PubMed]
  18. L. Mercier, T. Langø, F. Lindseth, and D. L. Collins, “A review of calibration techniques for freehand 3-D ultrasound systems,” Ultrasound Med. Biol.31(4), 449–471 (2005).
    [CrossRef] [PubMed]
  19. R. A. Smith and D. R. Bacon, “A multiple-frequency hydrophone calibration technique,” J. Acoust. Soc. Am.87(5), 2231–2243 (1990).
    [CrossRef] [PubMed]
  20. D. L. Foxall, B. E. Hoppel, and H. Hariharan, “Calibration of the radio frequency field for magnetic resonance imaging,” Magn. Reson. Med.35(2), 229–236 (1996).
    [CrossRef] [PubMed]
  21. B. Madore, “UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression,” Magn. Reson. Med.52(2), 310–320 (2004).
    [CrossRef] [PubMed]
  22. R. L. Cardenas, K. H. Cheng, L. J. Verhey, P. Xia, L. Davis, and B. Cannon, “A self consistent normalized calibration protocol for three dimensional magnetic resonance gel dosimetry,” Magn. Reson. Imaging20(9), 667–679 (2002).
    [CrossRef] [PubMed]
  23. J. Bushberg, J. Seibert, E. Leidholdt, and J. Boone, The Essential Physics of Medical Imaging, 2nd ed. (Lippincott Williams & Wilkins, Philadelphia, 2002).
  24. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
    [CrossRef] [PubMed]
  25. S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
    [CrossRef] [PubMed]
  26. S. D. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613–620 (2003).
    [CrossRef]
  27. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72(3), 1817–1824 (2001).
    [CrossRef]
  28. S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett.19(23), 1934–1936 (1994).
    [CrossRef] [PubMed]
  29. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
    [CrossRef] [PubMed]
  30. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt.36(1), 10–20 (1997).
    [CrossRef] [PubMed]
  31. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt.11(4), 044005 (2006).
    [CrossRef] [PubMed]
  32. A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4512–4530 (2011).
    [CrossRef] [PubMed]
  33. A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol.17(8), 1031–1039 (2010).
    [CrossRef] [PubMed]
  34. M. A. Mastanduno, S. Jiang, R. DiFlorio-Alexander, B. W. Pogue, and K. D. Paulsen, “Remote positioning optical breast magnetic resonance coil for slice-selection during image-guided near-infrared spectroscopy of breast cancer,” J. Biomed. Opt.16(6), 066001 (2011).
    [CrossRef] [PubMed]
  35. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
    [CrossRef] [PubMed]
  36. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
    [CrossRef] [PubMed]
  37. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt.42(16), 3117–3128 (2003).
    [CrossRef] [PubMed]
  38. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt.38(25), 5480–5490 (1999).
    [CrossRef] [PubMed]
  39. S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt.34(34), 8026–8037 (1995).
    [CrossRef] [PubMed]
  40. S. R. Arridge, M. Scheiger, and D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” Proc. SPIE1767, 372–383 (1992).
    [CrossRef]
  41. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44(11), 2082–2093 (2005).
    [CrossRef] [PubMed]
  42. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005).
    [PubMed]
  43. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
    [CrossRef] [PubMed]
  44. M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46(14), 2743–2756 (2007).
    [CrossRef] [PubMed]
  45. J. Wang, S. D. Jiang, Z. Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys.37(7), 3715–3724 (2010).
    [CrossRef] [PubMed]
  46. M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46(14), 2743–2756 (2007).
    [CrossRef] [PubMed]
  47. B. W. Pogue, K. D. Paulsen, C. Abele, and H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt.5(2), 185–193 (2000).
    [CrossRef] [PubMed]
  48. C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008).
    [CrossRef] [PubMed]
  49. S. Jiang, B. W. Pogue, T. O. McBride, and K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom,” J. Biomed. Opt.8(2), 308–315 (2003).
    [CrossRef] [PubMed]
  50. J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13(4), 041305 (2008).
    [CrossRef] [PubMed]
  51. M. A. Mastanduno, S. Jiang, R. diFlorio-Alexander, B. Pogue, and K. D. Paulsen, “Nine-wavelength spectroscopy guided by magnetic resonance imaging improves breast cancer characterization,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), BW3A.3.

2011 (2)

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4512–4530 (2011).
[CrossRef] [PubMed]

M. A. Mastanduno, S. Jiang, R. DiFlorio-Alexander, B. W. Pogue, and K. D. Paulsen, “Remote positioning optical breast magnetic resonance coil for slice-selection during image-guided near-infrared spectroscopy of breast cancer,” J. Biomed. Opt.16(6), 066001 (2011).
[CrossRef] [PubMed]

2010 (4)

J. Wang, S. D. Jiang, Z. Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys.37(7), 3715–3724 (2010).
[CrossRef] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol.17(8), 1031–1039 (2010).
[CrossRef] [PubMed]

W. A. Weber, “Quantitative analysis of PET studies,” Radiother. Oncol.96(3), 308–310 (2010).
[CrossRef] [PubMed]

X. Li, D. Zhang, and B. Liu, “A generic geometric calibration method for tomographic imaging systems with flat-panel detectors--a detailed implementation guide,” Med. Phys.37(7), 3844–3854 (2010).
[CrossRef] [PubMed]

2009 (2)

C. J. Hourdakis, A. Boziari, and E. Koumbouli, “The effect of a compression paddle on energy response, calibration and measurement with mammographic dosimeters using ionization chambers and solid-state detectors,” Phys. Med. Biol.54(4), 1047–1059 (2009).
[CrossRef] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

2008 (4)

X. Mou, X. Chen, L. Sun, H. Yu, Z. Ji, and L. Zhang, “The impact of calibration phantom errors on dual-energy digital mammography,” Phys. Med. Biol.53(22), 6321–6336 (2008).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008).
[CrossRef] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13(4), 041305 (2008).
[CrossRef] [PubMed]

2007 (4)

M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46(14), 2743–2756 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
[CrossRef] [PubMed]

M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46(14), 2743–2756 (2007).
[CrossRef] [PubMed]

S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
[CrossRef] [PubMed]

2006 (4)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

K. Yang, A. L. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys.33(6), 1695–1706 (2006).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt.11(4), 044005 (2006).
[CrossRef] [PubMed]

2005 (4)

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44(11), 2082–2093 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005).
[PubMed]

L. Mercier, T. Langø, F. Lindseth, and D. L. Collins, “A review of calibration techniques for freehand 3-D ultrasound systems,” Ultrasound Med. Biol.31(4), 449–471 (2005).
[CrossRef] [PubMed]

Y. Cho, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “Accurate technique for complete geometric calibration of cone-beam computed tomography systems,” Med. Phys.32(4), 968–983 (2005).
[CrossRef] [PubMed]

2004 (2)

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum.75(12), 5262–5270 (2004).
[CrossRef]

B. Madore, “UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression,” Magn. Reson. Med.52(2), 310–320 (2004).
[CrossRef] [PubMed]

2003 (6)

S. D. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613–620 (2003).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt.42(16), 3117–3128 (2003).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30(2), 235–247 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42(1), 135–145 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42(16), 3081–3094 (2003).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, T. O. McBride, and K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom,” J. Biomed. Opt.8(2), 308–315 (2003).
[CrossRef] [PubMed]

2002 (2)

L. Geworski, B. O. Knoop, M. de Wit, V. Ivancević, R. Bares, and D. L. Munz, “Multicenter comparison of calibration and cross calibration of PET scanners,” J. Nucl. Med.43(5), 635–639 (2002).
[PubMed]

R. L. Cardenas, K. H. Cheng, L. J. Verhey, P. Xia, L. Davis, and B. Cannon, “A self consistent normalized calibration protocol for three dimensional magnetic resonance gel dosimetry,” Magn. Reson. Imaging20(9), 667–679 (2002).
[CrossRef] [PubMed]

2001 (2)

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72(3), 1817–1824 (2001).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72, 1817–1824 (2001).
[CrossRef]

2000 (1)

B. W. Pogue, K. D. Paulsen, C. Abele, and H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt.5(2), 185–193 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

C. Kimme-Smith, C. Lewis, M. Beifuss, M. B. Williams, and L. W. Bassett, “Establishing minimum performance standards, calibration intervals, and optimal exposure values for a whole breast digital mammography unit,” Med. Phys.25(12), 2410–2416 (1998).
[CrossRef] [PubMed]

1997 (2)

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt.36(1), 10–20 (1997).
[CrossRef] [PubMed]

1996 (2)

D. L. Foxall, B. E. Hoppel, and H. Hariharan, “Calibration of the radio frequency field for magnetic resonance imaging,” Magn. Reson. Med.35(2), 229–236 (1996).
[CrossRef] [PubMed]

U. Schneider, E. Pedroni, and A. Lomax, “The calibration of CT Hounsfield units for radiotherapy treatment planning,” Phys. Med. Biol.41(1), 111–124 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (2)

S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett.19(23), 1934–1936 (1994).
[CrossRef] [PubMed]

P. R. Detmer, G. Bashein, T. Hodges, K. W. Beach, E. P. Filer, D. H. Burns, and D. E. Strandness., “3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation,” Ultrasound Med. Biol.20(9), 923–936 (1994).
[CrossRef] [PubMed]

1992 (1)

S. R. Arridge, M. Scheiger, and D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” Proc. SPIE1767, 372–383 (1992).
[CrossRef]

1990 (1)

R. A. Smith and D. R. Bacon, “A multiple-frequency hydrophone calibration technique,” J. Acoust. Soc. Am.87(5), 2231–2243 (1990).
[CrossRef] [PubMed]

1989 (1)

H. W. Reist, O. Stadelmann, and W. Kleeb, “Study on the stability of the calibration and normalization in PET and the influence of drifts on the accuracy of quantification,” Eur. J. Nucl. Med.15(11), 732–735 (1989).
[CrossRef] [PubMed]

Abele, C.

B. W. Pogue, K. D. Paulsen, C. Abele, and H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt.5(2), 185–193 (2000).
[CrossRef] [PubMed]

Anderson, E. R.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt.36(1), 10–20 (1997).
[CrossRef] [PubMed]

S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett.19(23), 1934–1936 (1994).
[CrossRef] [PubMed]

Arridge, S. R.

Bacon, D. R.

R. A. Smith and D. R. Bacon, “A multiple-frequency hydrophone calibration technique,” J. Acoust. Soc. Am.87(5), 2231–2243 (1990).
[CrossRef] [PubMed]

Bares, R.

L. Geworski, B. O. Knoop, M. de Wit, V. Ivancević, R. Bares, and D. L. Munz, “Multicenter comparison of calibration and cross calibration of PET scanners,” J. Nucl. Med.43(5), 635–639 (2002).
[PubMed]

Barth, R. J.

J. Wang, S. D. Jiang, Z. Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys.37(7), 3715–3724 (2010).
[CrossRef] [PubMed]

Bashein, G.

P. R. Detmer, G. Bashein, T. Hodges, K. W. Beach, E. P. Filer, D. H. Burns, and D. E. Strandness., “3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation,” Ultrasound Med. Biol.20(9), 923–936 (1994).
[CrossRef] [PubMed]

Bassett, L. W.

C. Kimme-Smith, C. Lewis, M. Beifuss, M. B. Williams, and L. W. Bassett, “Establishing minimum performance standards, calibration intervals, and optimal exposure values for a whole breast digital mammography unit,” Med. Phys.25(12), 2410–2416 (1998).
[CrossRef] [PubMed]

Beach, K. W.

P. R. Detmer, G. Bashein, T. Hodges, K. W. Beach, E. P. Filer, D. H. Burns, and D. E. Strandness., “3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation,” Ultrasound Med. Biol.20(9), 923–936 (1994).
[CrossRef] [PubMed]

Beifuss, M.

C. Kimme-Smith, C. Lewis, M. Beifuss, M. B. Williams, and L. W. Bassett, “Establishing minimum performance standards, calibration intervals, and optimal exposure values for a whole breast digital mammography unit,” Med. Phys.25(12), 2410–2416 (1998).
[CrossRef] [PubMed]

Boas, D. A.

Boone, J. M.

K. Yang, A. L. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys.33(6), 1695–1706 (2006).
[CrossRef] [PubMed]

Bouman, C. A.

Boziari, A.

C. J. Hourdakis, A. Boziari, and E. Koumbouli, “The effect of a compression paddle on energy response, calibration and measurement with mammographic dosimeters using ionization chambers and solid-state detectors,” Phys. Med. Biol.54(4), 1047–1059 (2009).
[CrossRef] [PubMed]

Brenner, M.

Brooksby, B.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum.75(12), 5262–5270 (2004).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt.42(16), 3117–3128 (2003).
[CrossRef] [PubMed]

Burns, D. H.

P. R. Detmer, G. Bashein, T. Hodges, K. W. Beach, E. P. Filer, D. H. Burns, and D. E. Strandness., “3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation,” Ultrasound Med. Biol.20(9), 923–936 (1994).
[CrossRef] [PubMed]

Butler, J.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4512–4530 (2011).
[CrossRef] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol.17(8), 1031–1039 (2010).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt.11(4), 044005 (2006).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Cannon, B.

R. L. Cardenas, K. H. Cheng, L. J. Verhey, P. Xia, L. Davis, and B. Cannon, “A self consistent normalized calibration protocol for three dimensional magnetic resonance gel dosimetry,” Magn. Reson. Imaging20(9), 667–679 (2002).
[CrossRef] [PubMed]

Cardenas, R. L.

R. L. Cardenas, K. H. Cheng, L. J. Verhey, P. Xia, L. Davis, and B. Cannon, “A self consistent normalized calibration protocol for three dimensional magnetic resonance gel dosimetry,” Magn. Reson. Imaging20(9), 667–679 (2002).
[CrossRef] [PubMed]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008).
[CrossRef] [PubMed]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt.11(4), 044005 (2006).
[CrossRef] [PubMed]

Cerussi, A. E.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4512–4530 (2011).
[CrossRef] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol.17(8), 1031–1039 (2010).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

Chance, B.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30(2), 235–247 (2003).
[CrossRef] [PubMed]

Chen, X.

X. Mou, X. Chen, L. Sun, H. Yu, Z. Ji, and L. Zhang, “The impact of calibration phantom errors on dual-energy digital mammography,” Phys. Med. Biol.53(22), 6321–6336 (2008).
[CrossRef] [PubMed]

Cheng, K. H.

R. L. Cardenas, K. H. Cheng, L. J. Verhey, P. Xia, L. Davis, and B. Cannon, “A self consistent normalized calibration protocol for three dimensional magnetic resonance gel dosimetry,” Magn. Reson. Imaging20(9), 667–679 (2002).
[CrossRef] [PubMed]

Cho, Y.

Y. Cho, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “Accurate technique for complete geometric calibration of cone-beam computed tomography systems,” Med. Phys.32(4), 968–983 (2005).
[CrossRef] [PubMed]

Choe, R.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44(11), 2082–2093 (2005).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30(2), 235–247 (2003).
[CrossRef] [PubMed]

Collins, D. L.

L. Mercier, T. Langø, F. Lindseth, and D. L. Collins, “A review of calibration techniques for freehand 3-D ultrasound systems,” Ultrasound Med. Biol.31(4), 449–471 (2005).
[CrossRef] [PubMed]

Coquoz, O.

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt.36(1), 10–20 (1997).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Corlu, A.

Culver, J. P.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30(2), 235–247 (2003).
[CrossRef] [PubMed]

Davis, L.

R. L. Cardenas, K. H. Cheng, L. J. Verhey, P. Xia, L. Davis, and B. Cannon, “A self consistent normalized calibration protocol for three dimensional magnetic resonance gel dosimetry,” Magn. Reson. Imaging20(9), 667–679 (2002).
[CrossRef] [PubMed]

Davis, S. C.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13(4), 041305 (2008).
[CrossRef] [PubMed]

de Wit, M.

L. Geworski, B. O. Knoop, M. de Wit, V. Ivancević, R. Bares, and D. L. Munz, “Multicenter comparison of calibration and cross calibration of PET scanners,” J. Nucl. Med.43(5), 635–639 (2002).
[PubMed]

Dehghani, H.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum.75(12), 5262–5270 (2004).
[CrossRef]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42(1), 135–145 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt.42(16), 3117–3128 (2003).
[CrossRef] [PubMed]

Delpy, D. T.

S. R. Arridge, M. Scheiger, and D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” Proc. SPIE1767, 372–383 (1992).
[CrossRef]

Detmer, P. R.

P. R. Detmer, G. Bashein, T. Hodges, K. W. Beach, E. P. Filer, D. H. Burns, and D. E. Strandness., “3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation,” Ultrasound Med. Biol.20(9), 923–936 (1994).
[CrossRef] [PubMed]

DiFlorio-Alexander, R.

M. A. Mastanduno, S. Jiang, R. DiFlorio-Alexander, B. W. Pogue, and K. D. Paulsen, “Remote positioning optical breast magnetic resonance coil for slice-selection during image-guided near-infrared spectroscopy of breast cancer,” J. Biomed. Opt.16(6), 066001 (2011).
[CrossRef] [PubMed]

diFlorio-Alexander, R. M.

J. Wang, S. D. Jiang, Z. Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys.37(7), 3715–3724 (2010).
[CrossRef] [PubMed]

Doyley, M.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum.75(12), 5262–5270 (2004).
[CrossRef]

Doyley, M. M.

S. D. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613–620 (2003).
[CrossRef]

Durduran, T.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44(11), 2082–2093 (2005).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30(2), 235–247 (2003).
[CrossRef] [PubMed]

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt.11(4), 044005 (2006).
[CrossRef] [PubMed]

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Filer, E. P.

P. R. Detmer, G. Bashein, T. Hodges, K. W. Beach, E. P. Filer, D. H. Burns, and D. E. Strandness., “3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation,” Ultrasound Med. Biol.20(9), 923–936 (1994).
[CrossRef] [PubMed]

Fishkin, J. B.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt.36(1), 10–20 (1997).
[CrossRef] [PubMed]

Foxall, D. L.

D. L. Foxall, B. E. Hoppel, and H. Hariharan, “Calibration of the radio frequency field for magnetic resonance imaging,” Magn. Reson. Med.35(2), 229–236 (1996).
[CrossRef] [PubMed]

Gerety, E. D.

Geworski, L.

L. Geworski, B. O. Knoop, M. de Wit, V. Ivancević, R. Bares, and D. L. Munz, “Multicenter comparison of calibration and cross calibration of PET scanners,” J. Nucl. Med.43(5), 635–639 (2002).
[PubMed]

Gibson, J. J.

S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
[CrossRef] [PubMed]

Gross, J. D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Hariharan, H.

D. L. Foxall, B. E. Hoppel, and H. Hariharan, “Calibration of the radio frequency field for magnetic resonance imaging,” Magn. Reson. Med.35(2), 229–236 (1996).
[CrossRef] [PubMed]

Hartov, A.

S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
[CrossRef] [PubMed]

Haskell, R. C.

S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett.19(23), 1934–1936 (1994).
[CrossRef] [PubMed]

Hillman, E. M.

Hodges, T.

P. R. Detmer, G. Bashein, T. Hodges, K. W. Beach, E. P. Filer, D. H. Burns, and D. E. Strandness., “3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation,” Ultrasound Med. Biol.20(9), 923–936 (1994).
[CrossRef] [PubMed]

Holboke, M. J.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30(2), 235–247 (2003).
[CrossRef] [PubMed]

Hoppel, B. E.

D. L. Foxall, B. E. Hoppel, and H. Hariharan, “Calibration of the radio frequency field for magnetic resonance imaging,” Magn. Reson. Med.35(2), 229–236 (1996).
[CrossRef] [PubMed]

Hourdakis, C. J.

C. J. Hourdakis, A. Boziari, and E. Koumbouli, “The effect of a compression paddle on energy response, calibration and measurement with mammographic dosimeters using ionization chambers and solid-state detectors,” Phys. Med. Biol.54(4), 1047–1059 (2009).
[CrossRef] [PubMed]

Hsiang, D.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4512–4530 (2011).
[CrossRef] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol.17(8), 1031–1039 (2010).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt.11(4), 044005 (2006).
[CrossRef] [PubMed]

Ivancevic, V.

L. Geworski, B. O. Knoop, M. de Wit, V. Ivancević, R. Bares, and D. L. Munz, “Multicenter comparison of calibration and cross calibration of PET scanners,” J. Nucl. Med.43(5), 635–639 (2002).
[PubMed]

Jaffray, D. A.

Y. Cho, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “Accurate technique for complete geometric calibration of cone-beam computed tomography systems,” Med. Phys.32(4), 968–983 (2005).
[CrossRef] [PubMed]

Ji, Z.

X. Mou, X. Chen, L. Sun, H. Yu, Z. Ji, and L. Zhang, “The impact of calibration phantom errors on dual-energy digital mammography,” Phys. Med. Biol.53(22), 6321–6336 (2008).
[CrossRef] [PubMed]

Jiang, S.

M. A. Mastanduno, S. Jiang, R. DiFlorio-Alexander, B. W. Pogue, and K. D. Paulsen, “Remote positioning optical breast magnetic resonance coil for slice-selection during image-guided near-infrared spectroscopy of breast cancer,” J. Biomed. Opt.16(6), 066001 (2011).
[CrossRef] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13(4), 041305 (2008).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum.75(12), 5262–5270 (2004).
[CrossRef]

S. Jiang, B. W. Pogue, T. O. McBride, and K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom,” J. Biomed. Opt.8(2), 308–315 (2003).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72, 1817–1824 (2001).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72(3), 1817–1824 (2001).
[CrossRef]

Jiang, S. D.

J. Wang, S. D. Jiang, Z. Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys.37(7), 3715–3724 (2010).
[CrossRef] [PubMed]

S. D. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613–620 (2003).
[CrossRef]

Kaufman, H.

B. W. Pogue, K. D. Paulsen, C. Abele, and H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt.5(2), 185–193 (2000).
[CrossRef] [PubMed]

Kaufman, P. A.

J. Wang, S. D. Jiang, Z. Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys.37(7), 3715–3724 (2010).
[CrossRef] [PubMed]

Kimme-Smith, C.

C. Kimme-Smith, C. Lewis, M. Beifuss, M. B. Williams, and L. W. Bassett, “Establishing minimum performance standards, calibration intervals, and optimal exposure values for a whole breast digital mammography unit,” Med. Phys.25(12), 2410–2416 (1998).
[CrossRef] [PubMed]

Kleeb, W.

H. W. Reist, O. Stadelmann, and W. Kleeb, “Study on the stability of the calibration and normalization in PET and the influence of drifts on the accuracy of quantification,” Eur. J. Nucl. Med.15(11), 732–735 (1989).
[CrossRef] [PubMed]

Knoop, B. O.

L. Geworski, B. O. Knoop, M. de Wit, V. Ivancević, R. Bares, and D. L. Munz, “Multicenter comparison of calibration and cross calibration of PET scanners,” J. Nucl. Med.43(5), 635–639 (2002).
[PubMed]

Kogel, C.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum.75(12), 5262–5270 (2004).
[CrossRef]

Kogel, C. A.

S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
[CrossRef] [PubMed]

Koumbouli, E.

C. J. Hourdakis, A. Boziari, and E. Koumbouli, “The effect of a compression paddle on energy response, calibration and measurement with mammographic dosimeters using ionization chambers and solid-state detectors,” Phys. Med. Biol.54(4), 1047–1059 (2009).
[CrossRef] [PubMed]

Kwan, A. L.

K. Yang, A. L. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys.33(6), 1695–1706 (2006).
[CrossRef] [PubMed]

Langø, T.

L. Mercier, T. Langø, F. Lindseth, and D. L. Collins, “A review of calibration techniques for freehand 3-D ultrasound systems,” Ultrasound Med. Biol.31(4), 449–471 (2005).
[CrossRef] [PubMed]

Lee, K.

Lewis, C.

C. Kimme-Smith, C. Lewis, M. Beifuss, M. B. Williams, and L. W. Bassett, “Establishing minimum performance standards, calibration intervals, and optimal exposure values for a whole breast digital mammography unit,” Med. Phys.25(12), 2410–2416 (1998).
[CrossRef] [PubMed]

Li, X.

X. Li, D. Zhang, and B. Liu, “A generic geometric calibration method for tomographic imaging systems with flat-panel detectors--a detailed implementation guide,” Med. Phys.37(7), 3844–3854 (2010).
[CrossRef] [PubMed]

Li, Z. Z.

J. Wang, S. D. Jiang, Z. Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys.37(7), 3715–3724 (2010).
[CrossRef] [PubMed]

Lindseth, F.

L. Mercier, T. Langø, F. Lindseth, and D. L. Collins, “A review of calibration techniques for freehand 3-D ultrasound systems,” Ultrasound Med. Biol.31(4), 449–471 (2005).
[CrossRef] [PubMed]

Liu, B.

X. Li, D. Zhang, and B. Liu, “A generic geometric calibration method for tomographic imaging systems with flat-panel detectors--a detailed implementation guide,” Med. Phys.37(7), 3844–3854 (2010).
[CrossRef] [PubMed]

Lomax, A.

U. Schneider, E. Pedroni, and A. Lomax, “The calibration of CT Hounsfield units for radiotherapy treatment planning,” Phys. Med. Biol.41(1), 111–124 (1996).
[CrossRef] [PubMed]

Madore, B.

B. Madore, “UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression,” Magn. Reson. Med.52(2), 310–320 (2004).
[CrossRef] [PubMed]

Madsen, S. J.

S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett.19(23), 1934–1936 (1994).
[CrossRef] [PubMed]

Mastanduno, M. A.

M. A. Mastanduno, S. Jiang, R. DiFlorio-Alexander, B. W. Pogue, and K. D. Paulsen, “Remote positioning optical breast magnetic resonance coil for slice-selection during image-guided near-infrared spectroscopy of breast cancer,” J. Biomed. Opt.16(6), 066001 (2011).
[CrossRef] [PubMed]

McBride, T. O.

S. Jiang, B. W. Pogue, T. O. McBride, and K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom,” J. Biomed. Opt.8(2), 308–315 (2003).
[CrossRef] [PubMed]

S. D. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613–620 (2003).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72(3), 1817–1824 (2001).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72, 1817–1824 (2001).
[CrossRef]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt.38(25), 5480–5490 (1999).
[CrossRef] [PubMed]

Meaney, P. M.

S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
[CrossRef] [PubMed]

Mehta, R. S.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4512–4530 (2011).
[CrossRef] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol.17(8), 1031–1039 (2010).
[CrossRef] [PubMed]

Mercier, L.

L. Mercier, T. Langø, F. Lindseth, and D. L. Collins, “A review of calibration techniques for freehand 3-D ultrasound systems,” Ultrasound Med. Biol.31(4), 449–471 (2005).
[CrossRef] [PubMed]

Millane, R. P.

Miller, D. F.

K. Yang, A. L. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys.33(6), 1695–1706 (2006).
[CrossRef] [PubMed]

Milstein, A. B.

Moseley, D. J.

Y. Cho, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “Accurate technique for complete geometric calibration of cone-beam computed tomography systems,” Med. Phys.32(4), 968–983 (2005).
[CrossRef] [PubMed]

Mou, X.

X. Mou, X. Chen, L. Sun, H. Yu, Z. Ji, and L. Zhang, “The impact of calibration phantom errors on dual-energy digital mammography,” Phys. Med. Biol.53(22), 6321–6336 (2008).
[CrossRef] [PubMed]

Munz, D. L.

L. Geworski, B. O. Knoop, M. de Wit, V. Ivancević, R. Bares, and D. L. Munz, “Multicenter comparison of calibration and cross calibration of PET scanners,” J. Nucl. Med.43(5), 635–639 (2002).
[PubMed]

Nissilä, I.

Ntziachristos, V.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30(2), 235–247 (2003).
[CrossRef] [PubMed]

Oh, S.

Osterberg, U. L.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72(3), 1817–1824 (2001).
[CrossRef]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt.38(25), 5480–5490 (1999).
[CrossRef] [PubMed]

Österberg, U. L.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72, 1817–1824 (2001).
[CrossRef]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

Paulsen, K. D.

M. A. Mastanduno, S. Jiang, R. DiFlorio-Alexander, B. W. Pogue, and K. D. Paulsen, “Remote positioning optical breast magnetic resonance coil for slice-selection during image-guided near-infrared spectroscopy of breast cancer,” J. Biomed. Opt.16(6), 066001 (2011).
[CrossRef] [PubMed]

J. Wang, S. D. Jiang, Z. Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys.37(7), 3715–3724 (2010).
[CrossRef] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008).
[CrossRef] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13(4), 041305 (2008).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum.75(12), 5262–5270 (2004).
[CrossRef]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42(1), 135–145 (2003).
[CrossRef] [PubMed]

S. D. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613–620 (2003).
[CrossRef]

S. Jiang, B. W. Pogue, T. O. McBride, and K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom,” J. Biomed. Opt.8(2), 308–315 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt.42(16), 3117–3128 (2003).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72(3), 1817–1824 (2001).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, K. D. Paulsen, C. Abele, and H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt.5(2), 185–193 (2000).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt.38(25), 5480–5490 (1999).
[CrossRef] [PubMed]

Pedroni, E.

U. Schneider, E. Pedroni, and A. Lomax, “The calibration of CT Hounsfield units for radiotherapy treatment planning,” Phys. Med. Biol.41(1), 111–124 (1996).
[CrossRef] [PubMed]

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Pham, T.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Pogue, B. W.

M. A. Mastanduno, S. Jiang, R. DiFlorio-Alexander, B. W. Pogue, and K. D. Paulsen, “Remote positioning optical breast magnetic resonance coil for slice-selection during image-guided near-infrared spectroscopy of breast cancer,” J. Biomed. Opt.16(6), 066001 (2011).
[CrossRef] [PubMed]

J. Wang, S. D. Jiang, Z. Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys.37(7), 3715–3724 (2010).
[CrossRef] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008).
[CrossRef] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13(4), 041305 (2008).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum.75(12), 5262–5270 (2004).
[CrossRef]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42(1), 135–145 (2003).
[CrossRef] [PubMed]

S. D. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613–620 (2003).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt.42(16), 3117–3128 (2003).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, T. O. McBride, and K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom,” J. Biomed. Opt.8(2), 308–315 (2003).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72(3), 1817–1824 (2001).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, K. D. Paulsen, C. Abele, and H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt.5(2), 185–193 (2000).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt.38(25), 5480–5490 (1999).
[CrossRef] [PubMed]

Poplack, S. B.

Poplack, S. P.

S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum.75(12), 5262–5270 (2004).
[CrossRef]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42(1), 135–145 (2003).
[CrossRef] [PubMed]

S. D. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613–620 (2003).
[CrossRef]

Reist, H. W.

H. W. Reist, O. Stadelmann, and W. Kleeb, “Study on the stability of the calibration and normalization in PET and the influence of drifts on the accuracy of quantification,” Eur. J. Nucl. Med.15(11), 732–735 (1989).
[CrossRef] [PubMed]

Scheiger, M.

S. R. Arridge, M. Scheiger, and D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” Proc. SPIE1767, 372–383 (1992).
[CrossRef]

Schneider, U.

U. Schneider, E. Pedroni, and A. Lomax, “The calibration of CT Hounsfield units for radiotherapy treatment planning,” Phys. Med. Biol.41(1), 111–124 (1996).
[CrossRef] [PubMed]

Schweiger, M.

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt.11(4), 044005 (2006).
[CrossRef] [PubMed]

Shudong, J.

Siewerdsen, J. H.

Y. Cho, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “Accurate technique for complete geometric calibration of cone-beam computed tomography systems,” Med. Phys.32(4), 968–983 (2005).
[CrossRef] [PubMed]

Slemp, A.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30(2), 235–247 (2003).
[CrossRef] [PubMed]

Smith, R. A.

R. A. Smith and D. R. Bacon, “A multiple-frequency hydrophone calibration technique,” J. Acoust. Soc. Am.87(5), 2231–2243 (1990).
[CrossRef] [PubMed]

Soho, S. K.

S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
[CrossRef] [PubMed]

Srinivasan, S.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008).
[CrossRef] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13(4), 041305 (2008).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005).
[PubMed]

Stadelmann, O.

H. W. Reist, O. Stadelmann, and W. Kleeb, “Study on the stability of the calibration and normalization in PET and the influence of drifts on the accuracy of quantification,” Eur. J. Nucl. Med.15(11), 732–735 (1989).
[CrossRef] [PubMed]

Strandness, D. E.

P. R. Detmer, G. Bashein, T. Hodges, K. W. Beach, E. P. Filer, D. H. Burns, and D. E. Strandness., “3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation,” Ultrasound Med. Biol.20(9), 923–936 (1994).
[CrossRef] [PubMed]

Sun, L.

X. Mou, X. Chen, L. Sun, H. Yu, Z. Ji, and L. Zhang, “The impact of calibration phantom errors on dual-energy digital mammography,” Phys. Med. Biol.53(22), 6321–6336 (2008).
[CrossRef] [PubMed]

Tanamai, V. W.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4512–4530 (2011).
[CrossRef] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol.17(8), 1031–1039 (2010).
[CrossRef] [PubMed]

Tosteson, T. D.

S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

Tromberg, B. J.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4512–4530 (2011).
[CrossRef] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol.17(8), 1031–1039 (2010).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt.11(4), 044005 (2006).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt.36(1), 10–20 (1997).
[CrossRef] [PubMed]

S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett.19(23), 1934–1936 (1994).
[CrossRef] [PubMed]

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Verhey, L. J.

R. L. Cardenas, K. H. Cheng, L. J. Verhey, P. Xia, L. Davis, and B. Cannon, “A self consistent normalized calibration protocol for three dimensional magnetic resonance gel dosimetry,” Magn. Reson. Imaging20(9), 667–679 (2002).
[CrossRef] [PubMed]

Wang, J.

J. Wang, S. D. Jiang, Z. Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys.37(7), 3715–3724 (2010).
[CrossRef] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13(4), 041305 (2008).
[CrossRef] [PubMed]

Weaver, J.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

Weaver, J. B.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum.75(12), 5262–5270 (2004).
[CrossRef]

Webb, K. J.

Weber, W. A.

W. A. Weber, “Quantitative analysis of PET studies,” Radiother. Oncol.96(3), 308–310 (2010).
[CrossRef] [PubMed]

Wells, W. A.

S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005).
[PubMed]

Williams, M. B.

C. Kimme-Smith, C. Lewis, M. Beifuss, M. B. Williams, and L. W. Bassett, “Establishing minimum performance standards, calibration intervals, and optimal exposure values for a whole breast digital mammography unit,” Med. Phys.25(12), 2410–2416 (1998).
[CrossRef] [PubMed]

Xia, P.

R. L. Cardenas, K. H. Cheng, L. J. Verhey, P. Xia, L. Davis, and B. Cannon, “A self consistent normalized calibration protocol for three dimensional magnetic resonance gel dosimetry,” Magn. Reson. Imaging20(9), 667–679 (2002).
[CrossRef] [PubMed]

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
[CrossRef] [PubMed]

Yang, K.

K. Yang, A. L. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys.33(6), 1695–1706 (2006).
[CrossRef] [PubMed]

Yodh, A. G.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44(11), 2082–2093 (2005).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30(2), 235–247 (2003).
[CrossRef] [PubMed]

Yu, H.

X. Mou, X. Chen, L. Sun, H. Yu, Z. Ji, and L. Zhang, “The impact of calibration phantom errors on dual-energy digital mammography,” Phys. Med. Biol.53(22), 6321–6336 (2008).
[CrossRef] [PubMed]

Zhang, D.

X. Li, D. Zhang, and B. Liu, “A generic geometric calibration method for tomographic imaging systems with flat-panel detectors--a detailed implementation guide,” Med. Phys.37(7), 3844–3854 (2010).
[CrossRef] [PubMed]

Zhang, L.

X. Mou, X. Chen, L. Sun, H. Yu, Z. Ji, and L. Zhang, “The impact of calibration phantom errors on dual-energy digital mammography,” Phys. Med. Biol.53(22), 6321–6336 (2008).
[CrossRef] [PubMed]

Zhang, Q.

Zubkov, L.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30(2), 235–247 (2003).
[CrossRef] [PubMed]

Acad. Radiol. (1)

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol.17(8), 1031–1039 (2010).
[CrossRef] [PubMed]

Appl. Opt. (9)

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt.36(1), 10–20 (1997).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42(1), 135–145 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42(16), 3081–3094 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt.42(16), 3117–3128 (2003).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt.38(25), 5480–5490 (1999).
[CrossRef] [PubMed]

S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt.34(34), 8026–8037 (1995).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44(11), 2082–2093 (2005).
[CrossRef] [PubMed]

M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46(14), 2743–2756 (2007).
[CrossRef] [PubMed]

M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46(14), 2743–2756 (2007).
[CrossRef] [PubMed]

Commun. Numer. Methods Eng. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Eur. J. Nucl. Med. (1)

H. W. Reist, O. Stadelmann, and W. Kleeb, “Study on the stability of the calibration and normalization in PET and the influence of drifts on the accuracy of quantification,” Eur. J. Nucl. Med.15(11), 732–735 (1989).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13(4), 041305 (2008).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

R. A. Smith and D. R. Bacon, “A multiple-frequency hydrophone calibration technique,” J. Acoust. Soc. Am.87(5), 2231–2243 (1990).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

M. A. Mastanduno, S. Jiang, R. DiFlorio-Alexander, B. W. Pogue, and K. D. Paulsen, “Remote positioning optical breast magnetic resonance coil for slice-selection during image-guided near-infrared spectroscopy of breast cancer,” J. Biomed. Opt.16(6), 066001 (2011).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt.11(4), 044005 (2006).
[CrossRef] [PubMed]

B. W. Pogue, K. D. Paulsen, C. Abele, and H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt.5(2), 185–193 (2000).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, T. O. McBride, and K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom,” J. Biomed. Opt.8(2), 308–315 (2003).
[CrossRef] [PubMed]

J. Electron. Imaging (1)

S. D. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613–620 (2003).
[CrossRef]

J. Nucl. Med. (1)

L. Geworski, B. O. Knoop, M. de Wit, V. Ivancević, R. Bares, and D. L. Munz, “Multicenter comparison of calibration and cross calibration of PET scanners,” J. Nucl. Med.43(5), 635–639 (2002).
[PubMed]

Magn. Reson. Imaging (1)

R. L. Cardenas, K. H. Cheng, L. J. Verhey, P. Xia, L. Davis, and B. Cannon, “A self consistent normalized calibration protocol for three dimensional magnetic resonance gel dosimetry,” Magn. Reson. Imaging20(9), 667–679 (2002).
[CrossRef] [PubMed]

Magn. Reson. Med. (1)

B. Madore, “UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression,” Magn. Reson. Med.52(2), 310–320 (2004).
[CrossRef] [PubMed]

Magn. Reson. Med. (1)

D. L. Foxall, B. E. Hoppel, and H. Hariharan, “Calibration of the radio frequency field for magnetic resonance imaging,” Magn. Reson. Med.35(2), 229–236 (1996).
[CrossRef] [PubMed]

Med. Phys. (1)

J. Wang, S. D. Jiang, Z. Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys.37(7), 3715–3724 (2010).
[CrossRef] [PubMed]

Med. Phys. (7)

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007).
[CrossRef] [PubMed]

K. Yang, A. L. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys.33(6), 1695–1706 (2006).
[CrossRef] [PubMed]

X. Li, D. Zhang, and B. Liu, “A generic geometric calibration method for tomographic imaging systems with flat-panel detectors--a detailed implementation guide,” Med. Phys.37(7), 3844–3854 (2010).
[CrossRef] [PubMed]

C. Kimme-Smith, C. Lewis, M. Beifuss, M. B. Williams, and L. W. Bassett, “Establishing minimum performance standards, calibration intervals, and optimal exposure values for a whole breast digital mammography unit,” Med. Phys.25(12), 2410–2416 (1998).
[CrossRef] [PubMed]

Y. Cho, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “Accurate technique for complete geometric calibration of cone-beam computed tomography systems,” Med. Phys.32(4), 968–983 (2005).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30(2), 235–247 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett.19(23), 1934–1936 (1994).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997).
[CrossRef] [PubMed]

Philos. Transact. A Math. Phys. Eng. Sci. (1)

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4512–4530 (2011).
[CrossRef] [PubMed]

Phys. Med. Biol. (3)

U. Schneider, E. Pedroni, and A. Lomax, “The calibration of CT Hounsfield units for radiotherapy treatment planning,” Phys. Med. Biol.41(1), 111–124 (1996).
[CrossRef] [PubMed]

C. J. Hourdakis, A. Boziari, and E. Koumbouli, “The effect of a compression paddle on energy response, calibration and measurement with mammographic dosimeters using ionization chambers and solid-state detectors,” Phys. Med. Biol.54(4), 1047–1059 (2009).
[CrossRef] [PubMed]

X. Mou, X. Chen, L. Sun, H. Yu, Z. Ji, and L. Zhang, “The impact of calibration phantom errors on dual-energy digital mammography,” Phys. Med. Biol.53(22), 6321–6336 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. R. Arridge, M. Scheiger, and D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” Proc. SPIE1767, 372–383 (1992).
[CrossRef]

Radiology (1)

S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology243(2), 350–359 (2007).
[CrossRef] [PubMed]

Radiother. Oncol. (1)

W. A. Weber, “Quantitative analysis of PET studies,” Radiother. Oncol.96(3), 308–310 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum.75(12), 5262–5270 (2004).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72, 1817–1824 (2001).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum.72(3), 1817–1824 (2001).
[CrossRef]

Technol. Cancer Res. Treat. (1)

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005).
[PubMed]

Ultrasound Med. Biol. (2)

P. R. Detmer, G. Bashein, T. Hodges, K. W. Beach, E. P. Filer, D. H. Burns, and D. E. Strandness., “3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation,” Ultrasound Med. Biol.20(9), 923–936 (1994).
[CrossRef] [PubMed]

L. Mercier, T. Langø, F. Lindseth, and D. L. Collins, “A review of calibration techniques for freehand 3-D ultrasound systems,” Ultrasound Med. Biol.31(4), 449–471 (2005).
[CrossRef] [PubMed]

Other (2)

J. Bushberg, J. Seibert, E. Leidholdt, and J. Boone, The Essential Physics of Medical Imaging, 2nd ed. (Lippincott Williams & Wilkins, Philadelphia, 2002).

M. A. Mastanduno, S. Jiang, R. diFlorio-Alexander, B. Pogue, and K. D. Paulsen, “Nine-wavelength spectroscopy guided by magnetic resonance imaging improves breast cancer characterization,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), BW3A.3.

Supplementary Material (1)

» Media 1: MOV (1446 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Outline of calibration process used with the MRI-guided diffuse optical spectroscopy. (b) Diffuse optical spectroscopy system rack. (c) Calibration imaging geometry with a source fiber in the center for light delivery. (d) Motorized OD filter wheels used to automatically vary the incident laser intensity applied to the phantom and received by the detector array. (e) Example phantoms in the parallel plate geometry. (f) Reconstructed 3D image volume. (g) Cross-section of imaged total hemoglobin estimates that are within 5% of the true value.

Fig. 2
Fig. 2

Intra-PMT calibration. (a) Amplitude recorded over a large range of input intensities and a region of linearity is selected. (b) Same as (a) for phase. (c) Calibrated amplitude for each individual detector at every gain setting after slopes and offsets are fit to the data in (a). (d) Same as (c) for phase.

Fig. 3
Fig. 3

Inter-PMT calibration. (a) Amplitude. (b) Phase. Box plots show the standard deviation of each gain setting at three stages of calibration. Intra-PMT calibration reduces the standard deviation significantly, but after inter-PMT calibration each source–detector pair is equivalent.

Fig. 4
Fig. 4

Central source testing. Box plots show the normalized standard deviation of 240 identical path length measurements before and after calibration. (a) Amplitude. (b) Phase.

Fig. 5
Fig. 5

System repeatability evaluated from five calibrated data sets: (a) Mean amplitude, (b) Standard deviation in amplitude, (c) Mean phase, (d) Standard deviation in phase. Data sets were collected with both constant and variable gains. Each box shows the median of each averaged data set while the spread represents the associated variability.

Fig. 6
Fig. 6

Uncalibrated, calibrated, and modeled data using a normal source, variable gain settings, and circular geometry. These measurements are equivalent to the patient imaging geometry and show agreement with the model data. (a) Amplitude. (b) Phase.

Fig. 7
Fig. 7

Phantom study in the parallel plate geometry. (a) 3D representation of combined maximum intensity projection MR image and 3D rendering of optical solution of HbT. (b) Coronal plane of optical imaging. (c) Quantitative hemoglobin overlaid. (d) Oxygen saturation. (e) Actual phantom cut in half. (f) Water fraction. (g) Scatter amplitude. (h) Scatter power. Color bars reflect the values of the two regions in each case.

Fig. 8
Fig. 8

Phantom study using the pentagonal geometry. (a) 3D representation of combined maximum intensity projection MR image and 3D rendering of optical solution of HbT (Media 1). (b) Coronal plane of optical imaging. (c) Quantitative hemoglobin overlayed, (d) Oxygen saturation, (e) Actual phantom cut in half . (f) water fraction, (g) scatter amplitude, (h) scatter power. Color bars reflects the values of the two regions in each case.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

· D Φ ( r , ω ) + ( μ a + i ω c ) Φ ( r , ω ) = S ( r , ω )
( J T J + λ I ) Δ c = J T Δ δ

Metrics