Abstract

A new type of freeze-drying microscope based upon time-domain optical coherence tomography is presented here (OCT-FDM). The microscope allows for real-time, in situ 3D imaging of pharmaceutical formulations in vials relevant for manufacturing processes with a lateral resolution of <7 μm and an axial resolution of <5 μm. Correlation of volumetric structural imaging with product temperature measured during the freeze-drying cycle allowed investigation of structural changes in the product and determination of the temperature at which the freeze-dried cake collapses. This critical temperature is the most important parameter in designing freeze-drying processes of pharmaceutical products.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Arnst, A. Weintraub, J. Carey, K. Capell, and M. Arndt, “Biotech, finally,” in Business Week, June 13, 2005, issue 3937, http://www.businessweek.com/magazine/content/05_24/b3937001_mz001.htm .
  2. M. J. Pikal and S. Shah, “The collapse temperature in freeze drying: dependence on measurement methodology and rate of water removal from the glassy phase,” Int. J. Pharm.62(2-3), 165–186 (1990).
    [CrossRef]
  3. X. Tang and M. J. Pikal, “Design of freeze-drying processes for pharmaceuticals: practical advice,” Pharm. Res.21(2), 191–200 (2004).
    [CrossRef] [PubMed]
  4. E. Meister and H. Gieseler, “Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data,” J. Pharm. Sci.98(9), 3072–3087 (2009).
    [CrossRef] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  6. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
    [CrossRef]
  7. K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, and M. V. Sivak., “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc.47(6), 515–523 (1998).
    [CrossRef] [PubMed]
  8. B. D. Mac Neill, H. C. Lowe, E. Pomeranstev, D. DeJoseph, H. Yabushita, G. J. Tearney, B. E. Bouma, and I. K. Jang, “In-vivo characterization of plaque morphology by optical coherence tomography predicts coronary artery remodeling,” J. Am. Coll. Cardiol.41(6), 42 (2003).
    [CrossRef]
  9. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  10. B. Cense, N. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
    [CrossRef] [PubMed]
  11. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurements of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
    [CrossRef]
  12. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
    [CrossRef] [PubMed]
  13. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  14. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  15. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Y. Wang, M. E. Williams, and S. E. Fraser, “An optical coherence microscope for 3-dimensional imaging in developmental biology,” Opt. Express6(7), 136–146 (2000).
    [CrossRef] [PubMed]
  16. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).
  17. M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006).
    [CrossRef] [PubMed]
  18. L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett.32(23), 3423–3425 (2007).
    [CrossRef] [PubMed]
  19. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007).
    [CrossRef] [PubMed]
  20. A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE3564, 173–178 (1998).
    [CrossRef]
  21. E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express13(2), 583–594 (2005).
    [CrossRef] [PubMed]
  22. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett.28(22), 2201–2203 (2003).
    [CrossRef] [PubMed]
  23. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett.32(23), 3453–3455 (2007).
    [CrossRef] [PubMed]
  24. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett.27(16), 1415–1417 (2002).
    [CrossRef] [PubMed]
  25. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, “Three dimensional OCT images from retina and skin,” Opt. Express7(9), 292–298 (2000).
    [CrossRef] [PubMed]
  26. K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci.
    [PubMed]
  27. A. A. Barresi, S. Ghio, D. Fissore, and R. Pisano, “Freeze drying of pharmaceutical excipients close to collapse temperature: influence of the process conditions on process time and product quality,” Drying Technol.27(6), 805–816 (2009).
    [CrossRef]
  28. K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan, “Partially crystalline systems in lyophilization: II. Withstanding collapse at high primary drying temperatures and impact on protein activity recovery,” J. Pharm. Sci.94(4), 809–820 (2005).
    [CrossRef] [PubMed]
  29. J. D. Colandene, L. M. Maldonado, A. T. Creagh, J. S. Vrettos, K. G. Goad, and T. M. Spitznagel, “Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent,” J. Pharm. Sci.96(6), 1598–1608 (2007).
    [CrossRef] [PubMed]
  30. F. Fonseca, S. Passot, O. Cunin, and M. Marin, “Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media,” Biotechnol. Prog.20(1), 229–238 (2004).
    [CrossRef] [PubMed]
  31. R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, H. Gieseler, and L. M. Lewis, “Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations,” J. Pharm. Sci.99(6), 2863–2873 (2010).
    [PubMed]
  32. L. M. Lewis, R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, L. Joseph, I. Saracovan, and S. Sinha, “Characterizing the freeze-drying behavior of model protein formulations,” AAPS PharmSciTech11(4), 1580–1590 (2010).
    [CrossRef] [PubMed]
  33. D. E. Overcashier, T. W. Patapoff, and C. C. Hsu, “Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse,” J. Pharm. Sci.88(7), 688–695 (1999).
    [CrossRef] [PubMed]
  34. A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
    [CrossRef] [PubMed]
  35. S. C. Schneid, P. M. Stärtzel, P. Lettner, and H. Gieseler, “Robustness testing in pharmaceutical freeze-drying: Inter-relation of process conditions and product quality attributes studied for a vaccine formulation,” Pharm. Dev. Technol.16(6), 583–590 (2011).
    [CrossRef] [PubMed]
  36. D. Q. Wang, J. M. Hey, and S. L. Nail, “Effect of collapse on the stability of freeze-dried recombinant factor VIII and α-amylase,” J. Pharm. Sci.93(5), 1253–1263 (2004).
    [CrossRef] [PubMed]

2011 (1)

S. C. Schneid, P. M. Stärtzel, P. Lettner, and H. Gieseler, “Robustness testing in pharmaceutical freeze-drying: Inter-relation of process conditions and product quality attributes studied for a vaccine formulation,” Pharm. Dev. Technol.16(6), 583–590 (2011).
[CrossRef] [PubMed]

2010 (3)

R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, H. Gieseler, and L. M. Lewis, “Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations,” J. Pharm. Sci.99(6), 2863–2873 (2010).
[PubMed]

L. M. Lewis, R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, L. Joseph, I. Saracovan, and S. Sinha, “Characterizing the freeze-drying behavior of model protein formulations,” AAPS PharmSciTech11(4), 1580–1590 (2010).
[CrossRef] [PubMed]

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

2009 (2)

E. Meister and H. Gieseler, “Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data,” J. Pharm. Sci.98(9), 3072–3087 (2009).
[CrossRef] [PubMed]

A. A. Barresi, S. Ghio, D. Fissore, and R. Pisano, “Freeze drying of pharmaceutical excipients close to collapse temperature: influence of the process conditions on process time and product quality,” Drying Technol.27(6), 805–816 (2009).
[CrossRef]

2007 (4)

2006 (1)

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006).
[CrossRef] [PubMed]

2005 (2)

K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan, “Partially crystalline systems in lyophilization: II. Withstanding collapse at high primary drying temperatures and impact on protein activity recovery,” J. Pharm. Sci.94(4), 809–820 (2005).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express13(2), 583–594 (2005).
[CrossRef] [PubMed]

2004 (4)

B. Cense, N. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
[CrossRef] [PubMed]

D. Q. Wang, J. M. Hey, and S. L. Nail, “Effect of collapse on the stability of freeze-dried recombinant factor VIII and α-amylase,” J. Pharm. Sci.93(5), 1253–1263 (2004).
[CrossRef] [PubMed]

F. Fonseca, S. Passot, O. Cunin, and M. Marin, “Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media,” Biotechnol. Prog.20(1), 229–238 (2004).
[CrossRef] [PubMed]

X. Tang and M. J. Pikal, “Design of freeze-drying processes for pharmaceuticals: practical advice,” Pharm. Res.21(2), 191–200 (2004).
[CrossRef] [PubMed]

2003 (6)

2002 (2)

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett.27(16), 1415–1417 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

2000 (2)

1999 (2)

D. E. Overcashier, T. W. Patapoff, and C. C. Hsu, “Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse,” J. Pharm. Sci.88(7), 688–695 (1999).
[CrossRef] [PubMed]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

1998 (2)

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE3564, 173–178 (1998).
[CrossRef]

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, and M. V. Sivak., “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc.47(6), 515–523 (1998).
[CrossRef] [PubMed]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurements of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (1)

M. J. Pikal and S. Shah, “The collapse temperature in freeze drying: dependence on measurement methodology and rate of water removal from the glassy phase,” Int. J. Pharm.62(2-3), 165–186 (1990).
[CrossRef]

Ahmed, S. S.

L. M. Lewis, R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, L. Joseph, I. Saracovan, and S. Sinha, “Characterizing the freeze-drying behavior of model protein formulations,” AAPS PharmSciTech11(4), 1580–1590 (2010).
[CrossRef] [PubMed]

R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, H. Gieseler, and L. M. Lewis, “Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations,” J. Pharm. Sci.99(6), 2863–2873 (2010).
[PubMed]

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

An, L.

Bajraszewski, T.

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett.28(22), 2201–2203 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Barresi, A. A.

A. A. Barresi, S. Ghio, D. Fissore, and R. Pisano, “Freeze drying of pharmaceutical excipients close to collapse temperature: influence of the process conditions on process time and product quality,” Drying Technol.27(6), 805–816 (2009).
[CrossRef]

Bates, D.

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

Baumann, B.

Bouma, B. E.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chatterjee, K.

K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan, “Partially crystalline systems in lyophilization: II. Withstanding collapse at high primary drying temperatures and impact on protein activity recovery,” J. Pharm. Sci.94(4), 809–820 (2005).
[CrossRef] [PubMed]

Chen, T. C.

Colandene, J. D.

J. D. Colandene, L. M. Maldonado, A. T. Creagh, J. S. Vrettos, K. G. Goad, and T. M. Spitznagel, “Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent,” J. Pharm. Sci.96(6), 1598–1608 (2007).
[CrossRef] [PubMed]

Creagh, A. T.

J. D. Colandene, L. M. Maldonado, A. T. Creagh, J. S. Vrettos, K. G. Goad, and T. M. Spitznagel, “Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent,” J. Pharm. Sci.96(6), 1598–1608 (2007).
[CrossRef] [PubMed]

Cunin, O.

F. Fonseca, S. Passot, O. Cunin, and M. Marin, “Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media,” Biotechnol. Prog.20(1), 229–238 (2004).
[CrossRef] [PubMed]

de Boer, J. F.

DeJoseph, D.

B. D. Mac Neill, H. C. Lowe, E. Pomeranstev, D. DeJoseph, H. Yabushita, G. J. Tearney, B. E. Bouma, and I. K. Jang, “In-vivo characterization of plaque morphology by optical coherence tomography predicts coronary artery remodeling,” J. Am. Coll. Cardiol.41(6), 42 (2003).
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

Dunne, S.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurements of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Fercher, A. F.

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett.28(22), 2201–2203 (2003).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett.27(16), 1415–1417 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE3564, 173–178 (1998).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurements of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Ferguson, R. D.

K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci.
[PubMed]

Fernandez, A. D.

Fissore, D.

A. A. Barresi, S. Ghio, D. Fissore, and R. Pisano, “Freeze drying of pharmaceutical excipients close to collapse temperature: influence of the process conditions on process time and product quality,” Drying Technol.27(6), 805–816 (2009).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fonseca, F.

F. Fonseca, S. Passot, O. Cunin, and M. Marin, “Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media,” Biotechnol. Prog.20(1), 229–238 (2004).
[CrossRef] [PubMed]

Fraser, S. E.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Galbally-Kinney, K. L.

K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci.
[PubMed]

Ghio, S.

A. A. Barresi, S. Ghio, D. Fissore, and R. Pisano, “Freeze drying of pharmaceutical excipients close to collapse temperature: influence of the process conditions on process time and product quality,” Drying Technol.27(6), 805–816 (2009).
[CrossRef]

Gieseler, H.

S. C. Schneid, P. M. Stärtzel, P. Lettner, and H. Gieseler, “Robustness testing in pharmaceutical freeze-drying: Inter-relation of process conditions and product quality attributes studied for a vaccine formulation,” Pharm. Dev. Technol.16(6), 583–590 (2011).
[CrossRef] [PubMed]

R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, H. Gieseler, and L. M. Lewis, “Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations,” J. Pharm. Sci.99(6), 2863–2873 (2010).
[PubMed]

E. Meister and H. Gieseler, “Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data,” J. Pharm. Sci.98(9), 3072–3087 (2009).
[CrossRef] [PubMed]

Goad, K. G.

J. D. Colandene, L. M. Maldonado, A. T. Creagh, J. S. Vrettos, K. G. Goad, and T. M. Spitznagel, “Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent,” J. Pharm. Sci.96(6), 1598–1608 (2007).
[CrossRef] [PubMed]

Götzinger, E.

Greco, K.

K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci.
[PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hammer, D. X.

K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci.
[PubMed]

Haskell, R. C.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hey, J. M.

D. Q. Wang, J. M. Hey, and S. L. Nail, “Effect of collapse on the stability of freeze-dried recombinant factor VIII and α-amylase,” J. Pharm. Sci.93(5), 1253–1263 (2004).
[CrossRef] [PubMed]

Hitzenberger, C. K.

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express13(2), 583–594 (2005).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett.28(22), 2201–2203 (2003).
[CrossRef] [PubMed]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE3564, 173–178 (1998).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurements of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Hoeling, B. M.

Hsu, C. C.

D. E. Overcashier, T. W. Patapoff, and C. C. Hsu, “Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse,” J. Pharm. Sci.88(7), 688–695 (1999).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, E.

Iftimia, N.

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci.
[PubMed]

Izatt, J. A.

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, and M. V. Sivak., “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc.47(6), 515–523 (1998).
[CrossRef] [PubMed]

Jackson, D. A.

Jang, I. K.

B. D. Mac Neill, H. C. Lowe, E. Pomeranstev, D. DeJoseph, H. Yabushita, G. J. Tearney, B. E. Bouma, and I. K. Jang, “In-vivo characterization of plaque morphology by optical coherence tomography predicts coronary artery remodeling,” J. Am. Coll. Cardiol.41(6), 42 (2003).
[CrossRef]

Johnson, R. E.

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

L. M. Lewis, R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, L. Joseph, I. Saracovan, and S. Sinha, “Characterizing the freeze-drying behavior of model protein formulations,” AAPS PharmSciTech11(4), 1580–1590 (2010).
[CrossRef] [PubMed]

R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, H. Gieseler, and L. M. Lewis, “Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations,” J. Pharm. Sci.99(6), 2863–2873 (2010).
[PubMed]

Joseph, L.

L. M. Lewis, R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, L. Joseph, I. Saracovan, and S. Sinha, “Characterizing the freeze-drying behavior of model protein formulations,” AAPS PharmSciTech11(4), 1580–1590 (2010).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurements of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Kessler, W. J.

K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci.
[PubMed]

Kobayashi, K.

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, and M. V. Sivak., “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc.47(6), 515–523 (1998).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett.27(16), 1415–1417 (2002).
[CrossRef] [PubMed]

Kulkarni, M. D.

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, and M. V. Sivak., “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc.47(6), 515–523 (1998).
[CrossRef] [PubMed]

Lasser, T.

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett.32(23), 3453–3455 (2007).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Le Roux, D.

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

Leitgeb, R.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett.27(16), 1415–1417 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE3564, 173–178 (1998).
[CrossRef]

Leitgeb, R. A.

Lettner, P.

S. C. Schneid, P. M. Stärtzel, P. Lettner, and H. Gieseler, “Robustness testing in pharmaceutical freeze-drying: Inter-relation of process conditions and product quality attributes studied for a vaccine formulation,” Pharm. Dev. Technol.16(6), 583–590 (2011).
[CrossRef] [PubMed]

Lewis, L.

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

Lewis, L. M.

L. M. Lewis, R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, L. Joseph, I. Saracovan, and S. Sinha, “Characterizing the freeze-drying behavior of model protein formulations,” AAPS PharmSciTech11(4), 1580–1590 (2010).
[CrossRef] [PubMed]

R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, H. Gieseler, and L. M. Lewis, “Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations,” J. Pharm. Sci.99(6), 2863–2873 (2010).
[PubMed]

Lexer, F.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lowe, H. C.

B. D. Mac Neill, H. C. Lowe, E. Pomeranstev, D. DeJoseph, H. Yabushita, G. J. Tearney, B. E. Bouma, and I. K. Jang, “In-vivo characterization of plaque morphology by optical coherence tomography predicts coronary artery remodeling,” J. Am. Coll. Cardiol.41(6), 42 (2003).
[CrossRef]

Mac Neill, B. D.

B. D. Mac Neill, H. C. Lowe, E. Pomeranstev, D. DeJoseph, H. Yabushita, G. J. Tearney, B. E. Bouma, and I. K. Jang, “In-vivo characterization of plaque morphology by optical coherence tomography predicts coronary artery remodeling,” J. Am. Coll. Cardiol.41(6), 42 (2003).
[CrossRef]

Madden-Smith, C.

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

Maldonado, L. M.

J. D. Colandene, L. M. Maldonado, A. T. Creagh, J. S. Vrettos, K. G. Goad, and T. M. Spitznagel, “Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent,” J. Pharm. Sci.96(6), 1598–1608 (2007).
[CrossRef] [PubMed]

Marin, M.

F. Fonseca, S. Passot, O. Cunin, and M. Marin, “Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media,” Biotechnol. Prog.20(1), 229–238 (2004).
[CrossRef] [PubMed]

Meister, E.

E. Meister and H. Gieseler, “Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data,” J. Pharm. Sci.98(9), 3072–3087 (2009).
[CrossRef] [PubMed]

Michaely, R.

Molebny, S.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

Mujat, M.

K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci.
[PubMed]

Mulhall, P.

K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci.
[PubMed]

Myers, W. R.

Nail, S. L.

D. Q. Wang, J. M. Hey, and S. L. Nail, “Effect of collapse on the stability of freeze-dried recombinant factor VIII and α-amylase,” J. Pharm. Sci.93(5), 1253–1263 (2004).
[CrossRef] [PubMed]

Nassif, N.

Oldroyd, M. E.

R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, H. Gieseler, and L. M. Lewis, “Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations,” J. Pharm. Sci.99(6), 2863–2873 (2010).
[PubMed]

L. M. Lewis, R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, L. Joseph, I. Saracovan, and S. Sinha, “Characterizing the freeze-drying behavior of model protein formulations,” AAPS PharmSciTech11(4), 1580–1590 (2010).
[CrossRef] [PubMed]

Overcashier, D. E.

D. E. Overcashier, T. W. Patapoff, and C. C. Hsu, “Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse,” J. Pharm. Sci.88(7), 688–695 (1999).
[CrossRef] [PubMed]

Park, B. H.

Parker, A.

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

Passot, S.

F. Fonseca, S. Passot, O. Cunin, and M. Marin, “Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media,” Biotechnol. Prog.20(1), 229–238 (2004).
[CrossRef] [PubMed]

Patapoff, T. W.

D. E. Overcashier, T. W. Patapoff, and C. C. Hsu, “Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse,” J. Pharm. Sci.88(7), 688–695 (1999).
[CrossRef] [PubMed]

Perkins, M.

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

Petersen, D. C.

Pierce, M. C.

Pikal, M. J.

X. Tang and M. J. Pikal, “Design of freeze-drying processes for pharmaceuticals: practical advice,” Pharm. Res.21(2), 191–200 (2004).
[CrossRef] [PubMed]

M. J. Pikal and S. Shah, “The collapse temperature in freeze drying: dependence on measurement methodology and rate of water removal from the glassy phase,” Int. J. Pharm.62(2-3), 165–186 (1990).
[CrossRef]

K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci.
[PubMed]

Pircher, M.

Pisano, R.

A. A. Barresi, S. Ghio, D. Fissore, and R. Pisano, “Freeze drying of pharmaceutical excipients close to collapse temperature: influence of the process conditions on process time and product quality,” Drying Technol.27(6), 805–816 (2009).
[CrossRef]

Podoleanu, A. G.

Pomeranstev, E.

B. D. Mac Neill, H. C. Lowe, E. Pomeranstev, D. DeJoseph, H. Yabushita, G. J. Tearney, B. E. Bouma, and I. K. Jang, “In-vivo characterization of plaque morphology by optical coherence tomography predicts coronary artery remodeling,” J. Am. Coll. Cardiol.41(6), 42 (2003).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rigby-Singleton, S.

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

Roberts, C. J.

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

Rogers, J. A.

Saracovan, I.

L. M. Lewis, R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, L. Joseph, I. Saracovan, and S. Sinha, “Characterizing the freeze-drying behavior of model protein formulations,” AAPS PharmSciTech11(4), 1580–1590 (2010).
[CrossRef] [PubMed]

Sattmann, H.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE3564, 173–178 (1998).
[CrossRef]

Schneid, S. C.

S. C. Schneid, P. M. Stärtzel, P. Lettner, and H. Gieseler, “Robustness testing in pharmaceutical freeze-drying: Inter-relation of process conditions and product quality attributes studied for a vaccine formulation,” Pharm. Dev. Technol.16(6), 583–590 (2011).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sekhar, S. C.

Shah, S.

M. J. Pikal and S. Shah, “The collapse temperature in freeze drying: dependence on measurement methodology and rate of water removal from the glassy phase,” Int. J. Pharm.62(2-3), 165–186 (1990).
[CrossRef]

Shalaev, E. Y.

K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan, “Partially crystalline systems in lyophilization: II. Withstanding collapse at high primary drying temperatures and impact on protein activity recovery,” J. Pharm. Sci.94(4), 809–820 (2005).
[CrossRef] [PubMed]

Sharma, P.

K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci.
[PubMed]

Sinha, S.

L. M. Lewis, R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, L. Joseph, I. Saracovan, and S. Sinha, “Characterizing the freeze-drying behavior of model protein formulations,” AAPS PharmSciTech11(4), 1580–1590 (2010).
[CrossRef] [PubMed]

Sivak, M. V.

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, and M. V. Sivak., “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc.47(6), 515–523 (1998).
[CrossRef] [PubMed]

Spitznagel, T. M.

J. D. Colandene, L. M. Maldonado, A. T. Creagh, J. S. Vrettos, K. G. Goad, and T. M. Spitznagel, “Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent,” J. Pharm. Sci.96(6), 1598–1608 (2007).
[CrossRef] [PubMed]

Stärtzel, P. M.

S. C. Schneid, P. M. Stärtzel, P. Lettner, and H. Gieseler, “Robustness testing in pharmaceutical freeze-drying: Inter-relation of process conditions and product quality attributes studied for a vaccine formulation,” Pharm. Dev. Technol.16(6), 583–590 (2011).
[CrossRef] [PubMed]

Sticker, M.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Suryanarayanan, R.

K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan, “Partially crystalline systems in lyophilization: II. Withstanding collapse at high primary drying temperatures and impact on protein activity recovery,” J. Pharm. Sci.94(4), 809–820 (2005).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tang, X.

X. Tang and M. J. Pikal, “Design of freeze-drying processes for pharmaceuticals: practical advice,” Pharm. Res.21(2), 191–200 (2004).
[CrossRef] [PubMed]

Teagarden, D. L.

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

Tearney, G. J.

Ungersma, S. E.

Vrettos, J. S.

J. D. Colandene, L. M. Maldonado, A. T. Creagh, J. S. Vrettos, K. G. Goad, and T. M. Spitznagel, “Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent,” J. Pharm. Sci.96(6), 1598–1608 (2007).
[CrossRef] [PubMed]

Wang, D. Q.

D. Q. Wang, J. M. Hey, and S. L. Nail, “Effect of collapse on the stability of freeze-dried recombinant factor VIII and α-amylase,” J. Pharm. Sci.93(5), 1253–1263 (2004).
[CrossRef] [PubMed]

Wang, R. K.

Wang, R. Y.

Williams, M. E.

Willis, J.

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, and M. V. Sivak., “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc.47(6), 515–523 (1998).
[CrossRef] [PubMed]

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett.27(16), 1415–1417 (2002).
[CrossRef] [PubMed]

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE3564, 173–178 (1998).
[CrossRef]

Yabushita, H.

B. D. Mac Neill, H. C. Lowe, E. Pomeranstev, D. DeJoseph, H. Yabushita, G. J. Tearney, B. E. Bouma, and I. K. Jang, “In-vivo characterization of plaque morphology by optical coherence tomography predicts coronary artery remodeling,” J. Am. Coll. Cardiol.41(6), 42 (2003).
[CrossRef]

Yun, S. H.

AAPS PharmSciTech (1)

L. M. Lewis, R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, L. Joseph, I. Saracovan, and S. Sinha, “Characterizing the freeze-drying behavior of model protein formulations,” AAPS PharmSciTech11(4), 1580–1590 (2010).
[CrossRef] [PubMed]

Biotechnol. Prog. (1)

F. Fonseca, S. Passot, O. Cunin, and M. Marin, “Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media,” Biotechnol. Prog.20(1), 229–238 (2004).
[CrossRef] [PubMed]

Drying Technol. (1)

A. A. Barresi, S. Ghio, D. Fissore, and R. Pisano, “Freeze drying of pharmaceutical excipients close to collapse temperature: influence of the process conditions on process time and product quality,” Drying Technol.27(6), 805–816 (2009).
[CrossRef]

Gastrointest. Endosc. (1)

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, and M. V. Sivak., “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc.47(6), 515–523 (1998).
[CrossRef] [PubMed]

Int. J. Pharm. (1)

M. J. Pikal and S. Shah, “The collapse temperature in freeze drying: dependence on measurement methodology and rate of water removal from the glassy phase,” Int. J. Pharm.62(2-3), 165–186 (1990).
[CrossRef]

J. Am. Coll. Cardiol. (1)

B. D. Mac Neill, H. C. Lowe, E. Pomeranstev, D. DeJoseph, H. Yabushita, G. J. Tearney, B. E. Bouma, and I. K. Jang, “In-vivo characterization of plaque morphology by optical coherence tomography predicts coronary artery remodeling,” J. Am. Coll. Cardiol.41(6), 42 (2003).
[CrossRef]

J. Biomed. Opt. (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

J. Pharm. Sci. (8)

K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan, “Partially crystalline systems in lyophilization: II. Withstanding collapse at high primary drying temperatures and impact on protein activity recovery,” J. Pharm. Sci.94(4), 809–820 (2005).
[CrossRef] [PubMed]

J. D. Colandene, L. M. Maldonado, A. T. Creagh, J. S. Vrettos, K. G. Goad, and T. M. Spitznagel, “Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent,” J. Pharm. Sci.96(6), 1598–1608 (2007).
[CrossRef] [PubMed]

R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, H. Gieseler, and L. M. Lewis, “Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations,” J. Pharm. Sci.99(6), 2863–2873 (2010).
[PubMed]

E. Meister and H. Gieseler, “Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data,” J. Pharm. Sci.98(9), 3072–3087 (2009).
[CrossRef] [PubMed]

D. E. Overcashier, T. W. Patapoff, and C. C. Hsu, “Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse,” J. Pharm. Sci.88(7), 688–695 (1999).
[CrossRef] [PubMed]

A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010).
[CrossRef] [PubMed]

D. Q. Wang, J. M. Hey, and S. L. Nail, “Effect of collapse on the stability of freeze-dried recombinant factor VIII and α-amylase,” J. Pharm. Sci.93(5), 1253–1263 (2004).
[CrossRef] [PubMed]

K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci.
[PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurements of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (7)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express13(2), 583–594 (2005).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007).
[CrossRef] [PubMed]

B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Y. Wang, M. E. Williams, and S. E. Fraser, “An optical coherence microscope for 3-dimensional imaging in developmental biology,” Opt. Express6(7), 136–146 (2000).
[CrossRef] [PubMed]

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, “Three dimensional OCT images from retina and skin,” Opt. Express7(9), 292–298 (2000).
[CrossRef] [PubMed]

Opt. Lett. (5)

Pharm. Dev. Technol. (1)

S. C. Schneid, P. M. Stärtzel, P. Lettner, and H. Gieseler, “Robustness testing in pharmaceutical freeze-drying: Inter-relation of process conditions and product quality attributes studied for a vaccine formulation,” Pharm. Dev. Technol.16(6), 583–590 (2011).
[CrossRef] [PubMed]

Pharm. Res. (1)

X. Tang and M. J. Pikal, “Design of freeze-drying processes for pharmaceuticals: practical advice,” Pharm. Res.21(2), 191–200 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE3564, 173–178 (1998).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

C. Arnst, A. Weintraub, J. Carey, K. Capell, and M. Arndt, “Biotech, finally,” in Business Week, June 13, 2005, issue 3937, http://www.businessweek.com/magazine/content/05_24/b3937001_mz001.htm .

Supplementary Material (3)

» Media 1: MOV (295 KB)     
» Media 2: MOV (671 KB)     
» Media 3: MOV (741 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

TDOCT setup. SLD – 1300 nm superluminescent diode; DET—balance detector; AOM—acousto-optic modulator; Circ—circulator; Col—collimator; R—retroreflector; Obj—microscope objective; Scan—scanning optics; 90/10 and 50/50 fiber beamsplitters.

Fig. 2
Fig. 2

(a) Fiber-optic based interferometer and (b) the scanning optics.

Fig. 3
Fig. 3

(a) Zemax optical design and (b) SolidWorks mechanical design.

Fig. 4
Fig. 4

2D cross-sections of 5% sucrose freeze-dried in a vial, (a)x-y view (Media 1), and (b) z-y view (Media 2); (c) time evolution of the freeze-drying process in a 3D representation (Media 3).

Metrics