A. Liemert and A. Kienle, “Analytical solution of the radiative transfer equation for the infinite-space fluence,” Phys. Rev. A83, 015804 (2011).

[CrossRef]

M. Machida, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “The Greens function for the radiative transport equation in the slab geometry,” J. Phys. A: Math. Theor.43, 065402 (2010).

[CrossRef]

Y. Lu, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol.55, 4625–4645 (2010).

[CrossRef]
[PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. III. Frequency-domain and time-domain results,” J. Opt. Soc. Am. A27, 1723–1742 (2010).

[CrossRef]

A. Liemert and A. Kienle, “Analytical solutions of the simplified spherical harmonics equations,” Opt. Lett.35, 3507–3509 (2010).

[CrossRef]
[PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries,” Appl. Opt.48, D62–D73 (2009).

[CrossRef]
[PubMed]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol.54, 2493–2509 (2009).

[CrossRef]
[PubMed]

L. Zhang, G. Gao, H. He, and H. Zhao, “Three-dimentional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors,” Opt. Express16, 7214–7222 (2008).

[CrossRef]
[PubMed]

A. Liebert, H. Wabnitz, N. Żołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express16, 13188–13202 (2008).

[CrossRef]
[PubMed]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast equivalent phantoms and optical mammograms,” Phys. Rev. E76, 061908 (2007).

[CrossRef]

F. Martelli, A. Sassaroli, A. Pifferi, A. Torricelli, L. Spinelli, and G. Zaccanti, “Heuristic Green’s function of the time dependent radiative transfer equation for a semi-infinite medium,” Opt. Express15, 18168–18175 (2007).

[CrossRef]
[PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. I. Theory,” J. Opt. Soc. Am. A48, 2105–2118 (2006).

[CrossRef]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villinger, and J. Steinbrink, “Non-invasive detection of fluorescence from exogeneous chromophores in the adult human brain,” NeuroImage31, 600–608 (2006).

[CrossRef]
[PubMed]

B. Wassermann, “Limits of high-order perturbation theory in time-domain optical mammography,” Phys. Rev. E74, 031908 (2006).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol.50, 4913–4930 (2005).

[CrossRef]
[PubMed]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys.202, 323–345 (2005).

[CrossRef]

J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A20, 714–727 (2003).

[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42, 3081–3094 (2003).

[CrossRef]
[PubMed]

A. D. Klose and A. H. Hielscher, “Fluorescence tomography with simulated data based on the equation of radiative tranfer,” Opt. Lett.28, 1019–1021 (2003).

[CrossRef]
[PubMed]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys.35, R61–R76 (2002).

[CrossRef]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol.13, 195–208 (2002).

D. E. Hyde, T. J. Farrel, M. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol.46, 369–383 (2001).

[CrossRef]
[PubMed]

M. Sadoqi, P. Riseborough, and S. Kumar, “Analytical models of time resolved fluorescence spectroscopy in tissues,” Phys. Med. Biol.46, 2725–2743 (2001).

[CrossRef]
[PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26, 893–895 (2001).

[CrossRef]

D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, “Analytical solutions for time-resolved imaging in a turbid medium such as tissue,” Opt. Express16, 13188–13202 (2001).

R. Graaff and K. Rinzema, “Practical improvements on photon diffusion theory: application to isotropic scattering,” Phys. Med. Biol.46, 3043–3050 (2001).

[CrossRef]
[PubMed]

H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt.37, 5337–5343 (1998).

[CrossRef]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt.37, 7392–7400 (1998).

[CrossRef]

V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: An extention for highly absorbing media and small source-detector separations,” Phys. Rev. E58, 2395–2407 (1998).

[CrossRef]

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68, 603–632 (1998).

[PubMed]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett.21, 158–160 (1996).

[CrossRef]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogenous turbid media: analytic solutions and applications,” Appl. Opt.35, 3746–3758 (1996).

[CrossRef]
[PubMed]

D. R. Braichotte, J. F. Savary, P. Monnier, and H. E. van den Bergh, “Optimizing light dosimetry in photodynamic theraphy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Laser Surg. Med.19, 340–346 (1996).

[CrossRef]

C. L. Hutchinson, J. R. Lakowicz, and E. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: A computational study,” NeuroImage68, 1574–1582 (1995).

S. Andersson-Engels and B. C. Wilson, “In vivo fluorescence in clinical oncology: fundamental and practical issues,” J. Cell. Pharmacol.3, 66–79 (1992).

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol.50, 4913–4930 (2005).

[CrossRef]
[PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).

[CrossRef]

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol.42, 803–814 (1997).

[CrossRef]
[PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42, 3081–3094 (2003).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett.21, 158–160 (1996).

[CrossRef]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogenous turbid media: analytic solutions and applications,” Appl. Opt.35, 3746–3758 (1996).

[CrossRef]
[PubMed]

D. R. Braichotte, J. F. Savary, P. Monnier, and H. E. van den Bergh, “Optimizing light dosimetry in photodynamic theraphy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Laser Surg. Med.19, 340–346 (1996).

[CrossRef]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol.13, 195–208 (2002).

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogenous turbid media: analytic solutions and applications,” Appl. Opt.35, 3746–3758 (1996).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett.21, 158–160 (1996).

[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).

[CrossRef]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol.54, 2493–2509 (2009).

[CrossRef]
[PubMed]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys.35, R61–R76 (2002).

[CrossRef]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys.35, R61–R76 (2002).

[CrossRef]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys.35, R61–R76 (2002).

[CrossRef]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol.54, 2493–2509 (2009).

[CrossRef]
[PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. ZaccantiLight Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, Bellingham, 2010).

[CrossRef]
[PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).

[CrossRef]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villinger, and J. Steinbrink, “Non-invasive detection of fluorescence from exogeneous chromophores in the adult human brain,” NeuroImage31, 600–608 (2006).

[CrossRef]
[PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. III. Frequency-domain and time-domain results,” J. Opt. Soc. Am. A27, 1723–1742 (2010).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries,” Appl. Opt.48, D62–D73 (2009).

[CrossRef]
[PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. I. Theory,” J. Opt. Soc. Am. A48, 2105–2118 (2006).

[CrossRef]

D. E. Hyde, T. J. Farrel, M. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol.46, 369–383 (2001).

[CrossRef]
[PubMed]

R. Graaff and K. Rinzema, “Practical improvements on photon diffusion theory: application to isotropic scattering,” Phys. Med. Biol.46, 3043–3050 (2001).

[CrossRef]
[PubMed]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast equivalent phantoms and optical mammograms,” Phys. Rev. E76, 061908 (2007).

[CrossRef]

C. L. Hutchinson, J. R. Lakowicz, and E. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: A computational study,” NeuroImage68, 1574–1582 (1995).

D. E. Hyde, T. J. Farrel, M. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol.46, 369–383 (2001).

[CrossRef]
[PubMed]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt.37, 7392–7400 (1998).

[CrossRef]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. ZaccantiLight Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, Bellingham, 2010).

[CrossRef]
[PubMed]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol.50, 4913–4930 (2005).

[CrossRef]
[PubMed]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol.54, 2493–2509 (2009).

[CrossRef]
[PubMed]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys.202, 323–345 (2005).

[CrossRef]

A. D. Klose and A. H. Hielscher, “Fluorescence tomography with simulated data based on the equation of radiative tranfer,” Opt. Lett.28, 1019–1021 (2003).

[CrossRef]
[PubMed]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol.50, 4913–4930 (2005).

[CrossRef]
[PubMed]

M. Sadoqi, P. Riseborough, and S. Kumar, “Analytical models of time resolved fluorescence spectroscopy in tissues,” Phys. Med. Biol.46, 2725–2743 (2001).

[CrossRef]
[PubMed]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast equivalent phantoms and optical mammograms,” Phys. Rev. E76, 061908 (2007).

[CrossRef]

C. L. Hutchinson, J. R. Lakowicz, and E. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: A computational study,” NeuroImage68, 1574–1582 (1995).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).

[CrossRef]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett.21, 158–160 (1996).

[CrossRef]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogenous turbid media: analytic solutions and applications,” Appl. Opt.35, 3746–3758 (1996).

[CrossRef]
[PubMed]

A. Liebert, H. Wabnitz, N. Żołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express16, 13188–13202 (2008).

[CrossRef]
[PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villinger, and J. Steinbrink, “Non-invasive detection of fluorescence from exogeneous chromophores in the adult human brain,” NeuroImage31, 600–608 (2006).

[CrossRef]
[PubMed]

Y. Lu, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol.55, 4625–4645 (2010).

[CrossRef]
[PubMed]

A. Liebert, H. Wabnitz, N. Żołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express16, 13188–13202 (2008).

[CrossRef]
[PubMed]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast equivalent phantoms and optical mammograms,” Phys. Rev. E76, 061908 (2007).

[CrossRef]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villinger, and J. Steinbrink, “Non-invasive detection of fluorescence from exogeneous chromophores in the adult human brain,” NeuroImage31, 600–608 (2006).

[CrossRef]
[PubMed]

M. Machida, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “The Greens function for the radiative transport equation in the slab geometry,” J. Phys. A: Math. Theor.43, 065402 (2010).

[CrossRef]

M. Machida, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “The Greens function for the radiative transport equation in the slab geometry,” J. Phys. A: Math. Theor.43, 065402 (2010).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. III. Frequency-domain and time-domain results,” J. Opt. Soc. Am. A27, 1723–1742 (2010).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries,” Appl. Opt.48, D62–D73 (2009).

[CrossRef]
[PubMed]

F. Martelli, A. Sassaroli, A. Pifferi, A. Torricelli, L. Spinelli, and G. Zaccanti, “Heuristic Green’s function of the time dependent radiative transfer equation for a semi-infinite medium,” Opt. Express15, 18168–18175 (2007).

[CrossRef]
[PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. I. Theory,” J. Opt. Soc. Am. A48, 2105–2118 (2006).

[CrossRef]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt.37, 7392–7400 (1998).

[CrossRef]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. ZaccantiLight Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, Bellingham, 2010).

[CrossRef]
[PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villinger, and J. Steinbrink, “Non-invasive detection of fluorescence from exogeneous chromophores in the adult human brain,” NeuroImage31, 600–608 (2006).

[CrossRef]
[PubMed]

D. R. Braichotte, J. F. Savary, P. Monnier, and H. E. van den Bergh, “Optimizing light dosimetry in photodynamic theraphy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Laser Surg. Med.19, 340–346 (1996).

[CrossRef]

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol.42, 803–814 (1997).

[CrossRef]
[PubMed]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys.202, 323–345 (2005).

[CrossRef]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol.13, 195–208 (2002).

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26, 893–895 (2001).

[CrossRef]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett.21, 158–160 (1996).

[CrossRef]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogenous turbid media: analytic solutions and applications,” Appl. Opt.35, 3746–3758 (1996).

[CrossRef]
[PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villinger, and J. Steinbrink, “Non-invasive detection of fluorescence from exogeneous chromophores in the adult human brain,” NeuroImage31, 600–608 (2006).

[CrossRef]
[PubMed]

J. C. J. Paasschens, “Solution of the time-dependent Boltzmann equation,” Phys. Rev. E56, 1135–1141 (1997).

[CrossRef]

M. Machida, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “The Greens function for the radiative transport equation in the slab geometry,” J. Phys. A: Math. Theor.43, 065402 (2010).

[CrossRef]

F. Martelli, A. Sassaroli, A. Pifferi, A. Torricelli, L. Spinelli, and G. Zaccanti, “Heuristic Green’s function of the time dependent radiative transfer equation for a semi-infinite medium,” Opt. Express15, 18168–18175 (2007).

[CrossRef]
[PubMed]

J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A20, 714–727 (2003).

[CrossRef]

Y. Lu, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol.55, 4625–4645 (2010).

[CrossRef]
[PubMed]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast equivalent phantoms and optical mammograms,” Phys. Rev. E76, 061908 (2007).

[CrossRef]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villinger, and J. Steinbrink, “Non-invasive detection of fluorescence from exogeneous chromophores in the adult human brain,” NeuroImage31, 600–608 (2006).

[CrossRef]
[PubMed]

R. Graaff and K. Rinzema, “Practical improvements on photon diffusion theory: application to isotropic scattering,” Phys. Med. Biol.46, 3043–3050 (2001).

[CrossRef]
[PubMed]

M. Sadoqi, P. Riseborough, and S. Kumar, “Analytical models of time resolved fluorescence spectroscopy in tissues,” Phys. Med. Biol.46, 2725–2743 (2001).

[CrossRef]
[PubMed]

M. Sadoqi, P. Riseborough, and S. Kumar, “Analytical models of time resolved fluorescence spectroscopy in tissues,” Phys. Med. Biol.46, 2725–2743 (2001).

[CrossRef]
[PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. III. Frequency-domain and time-domain results,” J. Opt. Soc. Am. A27, 1723–1742 (2010).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries,” Appl. Opt.48, D62–D73 (2009).

[CrossRef]
[PubMed]

F. Martelli, A. Sassaroli, A. Pifferi, A. Torricelli, L. Spinelli, and G. Zaccanti, “Heuristic Green’s function of the time dependent radiative transfer equation for a semi-infinite medium,” Opt. Express15, 18168–18175 (2007).

[CrossRef]
[PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. I. Theory,” J. Opt. Soc. Am. A48, 2105–2118 (2006).

[CrossRef]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt.37, 7392–7400 (1998).

[CrossRef]

D. R. Braichotte, J. F. Savary, P. Monnier, and H. E. van den Bergh, “Optimizing light dosimetry in photodynamic theraphy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Laser Surg. Med.19, 340–346 (1996).

[CrossRef]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast equivalent phantoms and optical mammograms,” Phys. Rev. E76, 061908 (2007).

[CrossRef]

M. Machida, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “The Greens function for the radiative transport equation in the slab geometry,” J. Phys. A: Math. Theor.43, 065402 (2010).

[CrossRef]

C. L. Hutchinson, J. R. Lakowicz, and E. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: A computational study,” NeuroImage68, 1574–1582 (1995).

Y. Lu, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol.55, 4625–4645 (2010).

[CrossRef]
[PubMed]

Y. Lu, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol.55, 4625–4645 (2010).

[CrossRef]
[PubMed]

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68, 603–632 (1998).

[PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villinger, and J. Steinbrink, “Non-invasive detection of fluorescence from exogeneous chromophores in the adult human brain,” NeuroImage31, 600–608 (2006).

[CrossRef]
[PubMed]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys.35, R61–R76 (2002).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol.50, 4913–4930 (2005).

[CrossRef]
[PubMed]

V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: An extention for highly absorbing media and small source-detector separations,” Phys. Rev. E58, 2395–2407 (1998).

[CrossRef]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys.35, R61–R76 (2002).

[CrossRef]

D. R. Braichotte, J. F. Savary, P. Monnier, and H. E. van den Bergh, “Optimizing light dosimetry in photodynamic theraphy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Laser Surg. Med.19, 340–346 (1996).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol.50, 4913–4930 (2005).

[CrossRef]
[PubMed]

V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: An extention for highly absorbing media and small source-detector separations,” Phys. Rev. E58, 2395–2407 (1998).

[CrossRef]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villinger, and J. Steinbrink, “Non-invasive detection of fluorescence from exogeneous chromophores in the adult human brain,” NeuroImage31, 600–608 (2006).

[CrossRef]
[PubMed]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol.54, 2493–2509 (2009).

[CrossRef]
[PubMed]

A. Liebert, H. Wabnitz, N. Żołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express16, 13188–13202 (2008).

[CrossRef]
[PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villinger, and J. Steinbrink, “Non-invasive detection of fluorescence from exogeneous chromophores in the adult human brain,” NeuroImage31, 600–608 (2006).

[CrossRef]
[PubMed]

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68, 603–632 (1998).

[PubMed]

Y. Lu, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol.55, 4625–4645 (2010).

[CrossRef]
[PubMed]

B. Wassermann, “Limits of high-order perturbation theory in time-domain optical mammography,” Phys. Rev. E74, 031908 (2006).

[CrossRef]

D. E. Hyde, T. J. Farrel, M. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol.46, 369–383 (2001).

[CrossRef]
[PubMed]

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68, 603–632 (1998).

[PubMed]

S. Andersson-Engels and B. C. Wilson, “In vivo fluorescence in clinical oncology: fundamental and practical issues,” J. Cell. Pharmacol.3, 66–79 (1992).

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).

[CrossRef]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett.21, 158–160 (1996).

[CrossRef]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogenous turbid media: analytic solutions and applications,” Appl. Opt.35, 3746–3758 (1996).

[CrossRef]
[PubMed]

V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: An extention for highly absorbing media and small source-detector separations,” Phys. Rev. E58, 2395–2407 (1998).

[CrossRef]

F. Martelli, A. Sassaroli, A. Pifferi, A. Torricelli, L. Spinelli, and G. Zaccanti, “Heuristic Green’s function of the time dependent radiative transfer equation for a semi-infinite medium,” Opt. Express15, 18168–18175 (2007).

[CrossRef]
[PubMed]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt.37, 7392–7400 (1998).

[CrossRef]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. ZaccantiLight Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, Bellingham, 2010).

[CrossRef]
[PubMed]

Y. Lu, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol.55, 4625–4645 (2010).

[CrossRef]
[PubMed]

M. Patterson and B. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt.33, 1963–1974 (1994).

[CrossRef]
[PubMed]

H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt.37, 5337–5343 (1998).

[CrossRef]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogenous turbid media: analytic solutions and applications,” Appl. Opt.35, 3746–3758 (1996).

[CrossRef]
[PubMed]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt.37, 7392–7400 (1998).

[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42, 3081–3094 (2003).

[CrossRef]
[PubMed]

P. N. Reinersman and K. L. Carder, “Hybrid numerical method for solution of the radiative transfer equation in one, two, or three dimensions,” Appl. Opt.43, 2734–2743 (2004).

[CrossRef]
[PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries,” Appl. Opt.48, D62–D73 (2009).

[CrossRef]
[PubMed]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol.13, 195–208 (2002).

S. Andersson-Engels and B. C. Wilson, “In vivo fluorescence in clinical oncology: fundamental and practical issues,” J. Cell. Pharmacol.3, 66–79 (1992).

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys.202, 323–345 (2005).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. I. Theory,” J. Opt. Soc. Am. A48, 2105–2118 (2006).

[CrossRef]

A. Kienle and M. S. Patterson, “Improved solution of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14, 246–524 (1997).

[CrossRef]

J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A20, 714–727 (2003).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. III. Frequency-domain and time-domain results,” J. Opt. Soc. Am. A27, 1723–1742 (2010).

[CrossRef]

M. Machida, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “The Greens function for the radiative transport equation in the slab geometry,” J. Phys. A: Math. Theor.43, 065402 (2010).

[CrossRef]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys.35, R61–R76 (2002).

[CrossRef]

D. R. Braichotte, J. F. Savary, P. Monnier, and H. E. van den Bergh, “Optimizing light dosimetry in photodynamic theraphy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Laser Surg. Med.19, 340–346 (1996).

[CrossRef]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villinger, and J. Steinbrink, “Non-invasive detection of fluorescence from exogeneous chromophores in the adult human brain,” NeuroImage31, 600–608 (2006).

[CrossRef]
[PubMed]

C. L. Hutchinson, J. R. Lakowicz, and E. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: A computational study,” NeuroImage68, 1574–1582 (1995).

F. Martelli, A. Sassaroli, A. Pifferi, A. Torricelli, L. Spinelli, and G. Zaccanti, “Heuristic Green’s function of the time dependent radiative transfer equation for a semi-infinite medium,” Opt. Express15, 18168–18175 (2007).

[CrossRef]
[PubMed]

L. Zhang, G. Gao, H. He, and H. Zhao, “Three-dimentional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors,” Opt. Express16, 7214–7222 (2008).

[CrossRef]
[PubMed]

A. Liebert, H. Wabnitz, N. Żołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express16, 13188–13202 (2008).

[CrossRef]
[PubMed]

D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, “Analytical solutions for time-resolved imaging in a turbid medium such as tissue,” Opt. Express16, 13188–13202 (2001).

A. Liemert and A. Kienle, “Analytical solutions of the simplified spherical harmonics equations,” Opt. Lett.35, 3507–3509 (2010).

[CrossRef]
[PubMed]

A. D. Klose and A. H. Hielscher, “Fluorescence tomography with simulated data based on the equation of radiative tranfer,” Opt. Lett.28, 1019–1021 (2003).

[CrossRef]
[PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26, 893–895 (2001).

[CrossRef]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett.21, 158–160 (1996).

[CrossRef]

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68, 603–632 (1998).

[PubMed]

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol.42, 803–814 (1997).

[CrossRef]
[PubMed]

D. E. Hyde, T. J. Farrel, M. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol.46, 369–383 (2001).

[CrossRef]
[PubMed]

M. Sadoqi, P. Riseborough, and S. Kumar, “Analytical models of time resolved fluorescence spectroscopy in tissues,” Phys. Med. Biol.46, 2725–2743 (2001).

[CrossRef]
[PubMed]

Y. Lu, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol.55, 4625–4645 (2010).

[CrossRef]
[PubMed]

R. Graaff and K. Rinzema, “Practical improvements on photon diffusion theory: application to isotropic scattering,” Phys. Med. Biol.46, 3043–3050 (2001).

[CrossRef]
[PubMed]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol.54, 2493–2509 (2009).

[CrossRef]
[PubMed]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol.50, 4913–4930 (2005).

[CrossRef]
[PubMed]

A. Liemert and A. Kienle, “Analytical solution of the radiative transfer equation for the infinite-space fluence,” Phys. Rev. A83, 015804 (2011).

[CrossRef]

V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: An extention for highly absorbing media and small source-detector separations,” Phys. Rev. E58, 2395–2407 (1998).

[CrossRef]

J. C. J. Paasschens, “Solution of the time-dependent Boltzmann equation,” Phys. Rev. E56, 1135–1141 (1997).

[CrossRef]

B. Wassermann, “Limits of high-order perturbation theory in time-domain optical mammography,” Phys. Rev. E74, 031908 (2006).

[CrossRef]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast equivalent phantoms and optical mammograms,” Phys. Rev. E76, 061908 (2007).

[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).

[CrossRef]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. ZaccantiLight Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, Bellingham, 2010).

[CrossRef]
[PubMed]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).

[CrossRef]