Abstract

The detection of ultrasound in photoacoustic tomography (PAT) and ultrasonography (US) usually relies on ultrasonic transducers in contact with the biological tissue. This is a major drawback for important potential applications such as surgery and small animal imaging. Here we report the use of remote optical detection, as used in industrial laser-ultrasonics, to detect ultrasound in biological tissues. This strategy enables non-contact implementation of PAT and US without exceeding laser exposure safety limits. The method uses suitably shaped laser pulses and a confocal Fabry-Perot interferometer in differential configuration to reach quantum-limited sensitivity. Endogenous and exogenous inclusions exhibiting optical and acoustic contrasts were detected ex vivo in chicken breast and calf brain specimens. Inclusions down to 0.5 mm in size were detected at depths well exceeding 1 cm. The method could significantly expand the scope of applications of PAT and US in biomedical imaging.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, NJ, 2007).
  2. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus1(4), 602–631 (2011).
    [CrossRef]
  3. L. V. Wang, ed., Photoacoustic Imaging and Spectroscopy (CRC Press, Boca Raton, FL, 2009).
  4. V. Ntziachristos, J. S. Yoo, and G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt.15(6), 066024 (2010).
    [CrossRef] [PubMed]
  5. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010).
    [CrossRef] [PubMed]
  6. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
    [CrossRef] [PubMed]
  7. E. Z. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, and W. Drexler, “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Express2(8), 2202–2215 (2011).
    [CrossRef] [PubMed]
  8. R. G. M. Kolkman, E. Blomme, T. Cool, M. Bilcke, T. G. van Leeuwen, W. Steenbergen, K. A. Grimbergen, and G. J. den Heeten, “Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms,” J. Biomed. Opt.15(5), 055011 (2010).
    [CrossRef] [PubMed]
  9. Z. Xie, S. L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express19(10), 9027–9034 (2011).
    [CrossRef] [PubMed]
  10. R. Nuster, H. Gruen, B. Reitinger, P. Burgholzer, S. Gratt, K. Passler, and G. Paltauf, “Downstream Fabry-Perot interferometer for acoustic wave monitoring in photoacoustic tomography,” Opt. Lett.36(6), 981–983 (2011).
    [CrossRef] [PubMed]
  11. B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt.8(2), 273–280 (2003).
    [CrossRef] [PubMed]
  12. C. B. Scruby and L. E. Drain, Laser-Ultrasonics: Techniques and Applications (Adam Hilger, Bristol, UK, 1990).
  13. J.-P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett.47(1), 14–16 (1985).
    [CrossRef]
  14. J.-P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control33(5), 485–499 (1986).
    [CrossRef] [PubMed]
  15. R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett.59(25), 3233–3235 (1991).
    [CrossRef]
  16. A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett.65(8), 932–934 (1994).
    [CrossRef]
  17. American National Standard for the Safe Use of Lasers ANSI Z136, 1–2007 (Laser Institute of America, Orlando, Florida, 2007).
  18. T. Berer, A. Hochreiner, S. Zamiri, and P. Burgholzer, “Remote photoacoustic imaging on solid material using a two-wave mixing interferometer,” Opt. Lett.35(24), 4151–4153 (2010).
    [CrossRef] [PubMed]
  19. A. Blouin, C. Padioleau, C. Néron, D. Lévesque, and J.-P. Monchalin, “Differential confocal Fabry-Perot for the optical detection of ultrasound,” in Review of Progress in Quantitative Nondestructive Evaluation, AIP Conference Proceedings, Volume 894 (AIP, NY, 2007), pp. 193–200.
  20. J. Davies, F. Simonetti, M. Lowe, and P. Cawley, “Review of synthetically focused guided wave imaging techniques with application to defect sizing,” in Quantitative Nondestructive Evaluation, AIP Conference Proceedings, Volume 820 (AIP, NY, 2006), pp. 142–149.
  21. D. Lévesque, A. Blouin, C. Néron, and J. P. Monchalin, “Performance of laser-ultrasonic F-SAFT imaging,” Ultrasonics40(10), 1057–1063 (2002).
    [CrossRef] [PubMed]
  22. S. Prahl, “Optical absorption of hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  23. A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE3601, 256–267 (1999).
    [CrossRef]

2011

2010

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

T. Berer, A. Hochreiner, S. Zamiri, and P. Burgholzer, “Remote photoacoustic imaging on solid material using a two-wave mixing interferometer,” Opt. Lett.35(24), 4151–4153 (2010).
[CrossRef] [PubMed]

V. Ntziachristos, J. S. Yoo, and G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt.15(6), 066024 (2010).
[CrossRef] [PubMed]

R. G. M. Kolkman, E. Blomme, T. Cool, M. Bilcke, T. G. van Leeuwen, W. Steenbergen, K. A. Grimbergen, and G. J. den Heeten, “Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms,” J. Biomed. Opt.15(5), 055011 (2010).
[CrossRef] [PubMed]

2003

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt.8(2), 273–280 (2003).
[CrossRef] [PubMed]

2002

D. Lévesque, A. Blouin, C. Néron, and J. P. Monchalin, “Performance of laser-ultrasonic F-SAFT imaging,” Ultrasonics40(10), 1057–1063 (2002).
[CrossRef] [PubMed]

1999

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE3601, 256–267 (1999).
[CrossRef]

1994

A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett.65(8), 932–934 (1994).
[CrossRef]

1991

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett.59(25), 3233–3235 (1991).
[CrossRef]

1986

J.-P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control33(5), 485–499 (1986).
[CrossRef] [PubMed]

1985

J.-P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett.47(1), 14–16 (1985).
[CrossRef]

Alex, A.

Andreev, V. G.

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE3601, 256–267 (1999).
[CrossRef]

Beard, P.

Berer, T.

Bilcke, M.

R. G. M. Kolkman, E. Blomme, T. Cool, M. Bilcke, T. G. van Leeuwen, W. Steenbergen, K. A. Grimbergen, and G. J. den Heeten, “Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms,” J. Biomed. Opt.15(5), 055011 (2010).
[CrossRef] [PubMed]

Blomme, E.

R. G. M. Kolkman, E. Blomme, T. Cool, M. Bilcke, T. G. van Leeuwen, W. Steenbergen, K. A. Grimbergen, and G. J. den Heeten, “Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms,” J. Biomed. Opt.15(5), 055011 (2010).
[CrossRef] [PubMed]

Blouin, A.

D. Lévesque, A. Blouin, C. Néron, and J. P. Monchalin, “Performance of laser-ultrasonic F-SAFT imaging,” Ultrasonics40(10), 1057–1063 (2002).
[CrossRef] [PubMed]

A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett.65(8), 932–934 (1994).
[CrossRef]

Burgholzer, P.

Carson, P. L.

Chen, S. L.

Cool, T.

R. G. M. Kolkman, E. Blomme, T. Cool, M. Bilcke, T. G. van Leeuwen, W. Steenbergen, K. A. Grimbergen, and G. J. den Heeten, “Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms,” J. Biomed. Opt.15(5), 055011 (2010).
[CrossRef] [PubMed]

Cox, B.

den Heeten, G. J.

R. G. M. Kolkman, E. Blomme, T. Cool, M. Bilcke, T. G. van Leeuwen, W. Steenbergen, K. A. Grimbergen, and G. J. den Heeten, “Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms,” J. Biomed. Opt.15(5), 055011 (2010).
[CrossRef] [PubMed]

Drexler, W.

Esenaliev, R. O.

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE3601, 256–267 (1999).
[CrossRef]

Fawzi, A.

Glittenberg, C.

Gratt, S.

Grimbergen, K. A.

R. G. M. Kolkman, E. Blomme, T. Cool, M. Bilcke, T. G. van Leeuwen, W. Steenbergen, K. A. Grimbergen, and G. J. den Heeten, “Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms,” J. Biomed. Opt.15(5), 055011 (2010).
[CrossRef] [PubMed]

Gruen, H.

Guo, L. J.

Hochreiner, A.

Hofer, B.

Hu, J.

Ing, R. K.

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett.59(25), 3233–3235 (1991).
[CrossRef]

Jiang, M.

Jiao, S.

Karabutov, A. A.

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE3601, 256–267 (1999).
[CrossRef]

Kolkman, R. G. M.

R. G. M. Kolkman, E. Blomme, T. Cool, M. Bilcke, T. G. van Leeuwen, W. Steenbergen, K. A. Grimbergen, and G. J. den Heeten, “Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms,” J. Biomed. Opt.15(5), 055011 (2010).
[CrossRef] [PubMed]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Laufer, J.

Lévesque, D.

D. Lévesque, A. Blouin, C. Néron, and J. P. Monchalin, “Performance of laser-ultrasonic F-SAFT imaging,” Ultrasonics40(10), 1057–1063 (2002).
[CrossRef] [PubMed]

Ling, T.

Mikic, B. B.

B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt.8(2), 273–280 (2003).
[CrossRef] [PubMed]

Monchalin, J. P.

D. Lévesque, A. Blouin, C. Néron, and J. P. Monchalin, “Performance of laser-ultrasonic F-SAFT imaging,” Ultrasonics40(10), 1057–1063 (2002).
[CrossRef] [PubMed]

Monchalin, J.-P.

A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett.65(8), 932–934 (1994).
[CrossRef]

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett.59(25), 3233–3235 (1991).
[CrossRef]

J.-P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control33(5), 485–499 (1986).
[CrossRef] [PubMed]

J.-P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett.47(1), 14–16 (1985).
[CrossRef]

Néron, C.

D. Lévesque, A. Blouin, C. Néron, and J. P. Monchalin, “Performance of laser-ultrasonic F-SAFT imaging,” Ultrasonics40(10), 1057–1063 (2002).
[CrossRef] [PubMed]

Nishioka, N. S.

B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt.8(2), 273–280 (2003).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, J. S. Yoo, and G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt.15(6), 066024 (2010).
[CrossRef] [PubMed]

Nuster, R.

Oraevsky, A. A.

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE3601, 256–267 (1999).
[CrossRef]

Paltauf, G.

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Passler, K.

Payne, B. P.

B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt.8(2), 273–280 (2003).
[CrossRef] [PubMed]

Pedley, B.

Povazay, B.

Puliafito, C. A.

Reitinger, B.

Shung, K. K.

Steenbergen, W.

R. G. M. Kolkman, E. Blomme, T. Cool, M. Bilcke, T. G. van Leeuwen, W. Steenbergen, K. A. Grimbergen, and G. J. den Heeten, “Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms,” J. Biomed. Opt.15(5), 055011 (2010).
[CrossRef] [PubMed]

Stoica, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Treeby, B.

van Dam, G. M.

V. Ntziachristos, J. S. Yoo, and G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt.15(6), 066024 (2010).
[CrossRef] [PubMed]

van Leeuwen, T. G.

R. G. M. Kolkman, E. Blomme, T. Cool, M. Bilcke, T. G. van Leeuwen, W. Steenbergen, K. A. Grimbergen, and G. J. den Heeten, “Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms,” J. Biomed. Opt.15(5), 055011 (2010).
[CrossRef] [PubMed]

Venugopalan, V.

B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt.8(2), 273–280 (2003).
[CrossRef] [PubMed]

Wang, L. V.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, X.

Z. Xie, S. L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express19(10), 9027–9034 (2011).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Xie, Z.

Yoo, J. S.

V. Ntziachristos, J. S. Yoo, and G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt.15(6), 066024 (2010).
[CrossRef] [PubMed]

Zamiri, S.

Zhang, E. Z.

Zhang, H. F.

Zhou, Q.

Appl. Phys. Lett.

J.-P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett.47(1), 14–16 (1985).
[CrossRef]

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett.59(25), 3233–3235 (1991).
[CrossRef]

A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett.65(8), 932–934 (1994).
[CrossRef]

Biomed. Opt. Express

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

J.-P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control33(5), 485–499 (1986).
[CrossRef] [PubMed]

Interface Focus

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus1(4), 602–631 (2011).
[CrossRef]

J. Biomed. Opt.

V. Ntziachristos, J. S. Yoo, and G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt.15(6), 066024 (2010).
[CrossRef] [PubMed]

R. G. M. Kolkman, E. Blomme, T. Cool, M. Bilcke, T. G. van Leeuwen, W. Steenbergen, K. A. Grimbergen, and G. J. den Heeten, “Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms,” J. Biomed. Opt.15(5), 055011 (2010).
[CrossRef] [PubMed]

B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt.8(2), 273–280 (2003).
[CrossRef] [PubMed]

Nat. Biotechnol.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE3601, 256–267 (1999).
[CrossRef]

Ultrasonics

D. Lévesque, A. Blouin, C. Néron, and J. P. Monchalin, “Performance of laser-ultrasonic F-SAFT imaging,” Ultrasonics40(10), 1057–1063 (2002).
[CrossRef] [PubMed]

Other

S. Prahl, “Optical absorption of hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/index.html .

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, NJ, 2007).

American National Standard for the Safe Use of Lasers ANSI Z136, 1–2007 (Laser Institute of America, Orlando, Florida, 2007).

A. Blouin, C. Padioleau, C. Néron, D. Lévesque, and J.-P. Monchalin, “Differential confocal Fabry-Perot for the optical detection of ultrasound,” in Review of Progress in Quantitative Nondestructive Evaluation, AIP Conference Proceedings, Volume 894 (AIP, NY, 2007), pp. 193–200.

J. Davies, F. Simonetti, M. Lowe, and P. Cawley, “Review of synthetically focused guided wave imaging techniques with application to defect sizing,” in Quantitative Nondestructive Evaluation, AIP Conference Proceedings, Volume 820 (AIP, NY, 2006), pp. 142–149.

L. V. Wang, ed., Photoacoustic Imaging and Spectroscopy (CRC Press, Boca Raton, FL, 2009).

C. B. Scruby and L. E. Drain, Laser-Ultrasonics: Techniques and Applications (Adam Hilger, Bristol, UK, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Layout of the detection laser. MO, Nd:YAG cw master oscillator; ISO, optical isolator; HW, half-wave plate; PBS, polarizing beam splitter; AM, amplitude modulator; IMOD, intensity modulator; TFP, thin-film polarizer; LR, Nd:YAG laser rod; FL, flashlamp; QW, quarter-wave plate. Other components are plane dielectric mirrors. (b) Pulse shape at the output of the detection laser without pulse shaping. (c) Pulse shape tailored for the experiment using the IMOD. The generation laser pulse occurs at t = 0 µs (green lines in b and c).

Fig. 2
Fig. 2

(a) Schematic diagram of the biological tissue scanning setup: LA, lenses assembly; L, lens; M, plane mirror; BS, beam splitter; P, gold coated hypotenuse prism. (b) Schematic diagram of the CFPI in differential configuration: PBS, polarizing beam splitter; PZM, piezoelectrically actuated mirror mount; VA, variable attenuator; DD, differential detector.

Fig. 3
Fig. 3

Calculated amplitude (blue) and phase (red) of the demodulation response of the CFPI.

Fig. 4
Fig. 4

Reconstruction methods. (a) One-way path used in NCPAT imaging mode. (b) Two-way path used in NCUS imaging mode. Same color code as in Fig. 2.

Fig. 5
Fig. 5

Images of a chicken breast specimen. (a) NCPAT image obtained with the following embedded objects (respective diameters in parenthesis): i, blood vessel phantom (1 mm); ii, white painted metal wire (0.8 mm); iii, blood vessel phantom (0.5 mm); iv, unpainted greyish metal wire (0.7 mm). (b) Corresponding NCUS image. All scales are in mm except for amplitude profiles (in arbitrary units).

Fig. 6
Fig. 6

Images of calf brain specimens. (a) NCPAT image obtained with the following embedded objects (respective diameters in parenthesis): i, unpainted grayish metal wire (0.7 mm); ii, blood vessel phantom (1.1 mm); iii, blood vessel phantom (0.7 mm); iv, white painted metal wire (0.8 mm). (b) NCUS image obtained with a second calf brain specimen in which two metal wires were embedded (0.7 mm diameters). All scales are in mm except for amplitude profiles in a (in arbitrary units).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ I = 2IeB
I=η eλ hc P
σ ε = 1 S λ 4π σ I I
p= Z 2 ε t
σ p = Zfλ 4S 2eB I

Metrics