Abstract

The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Harris, P. Wild, and D. Stopak, “Silicone rubber substrata: a new wrinkle in the study of cell locomotion,” Science208(4440), 177–179 (1980).
    [CrossRef] [PubMed]
  2. J. Lee, M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson, “Traction forces generated by locomoting keratocytes,” J. Cell Biol.127(6), 1957–1964 (1994).
    [CrossRef] [PubMed]
  3. T. Oliver, K. Jacobson, and M. Dembo, “Traction forces in locomoting cells,” Cell Motil. Cytoskeleton31(3), 225–240 (1995).
    [CrossRef] [PubMed]
  4. M. Dembo and Y. L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts,” Biophys. J.76(4), 2307–2316 (1999).
    [CrossRef] [PubMed]
  5. C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J.79(1), 144–152 (2000).
    [CrossRef] [PubMed]
  6. T. Oliver, J. Lee, and K. Jacobson, “Forces exerted by locomoting cells,” Semin. Cell Biol.5(3), 139–147 (1994).
    [CrossRef] [PubMed]
  7. S. Usami, S. L. Wung, B. A. Skierczynski, R. Skalak, and S. Chien, “Locomotion forces generated by a polymorphonuclear leukocyte,” Biophys. J.63(6), 1663–1666 (1992).
    [CrossRef] [PubMed]
  8. E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, “Determination of elastic moduli of thin layers of soft material using the atomic force microscope,” Biophys. J.82(5), 2798–2810 (2002).
    [CrossRef] [PubMed]
  9. D. C. Lin, B. Yurke, and N. A. Langrana, “Use of rigid spherical inclusions in Young’s moduli determination: application to DNA-crosslinked gels,” J. Biomech. Eng.127(4), 571–579 (2005).
    [CrossRef] [PubMed]
  10. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 1–50 (2010).
  11. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999).
    [CrossRef] [PubMed]
  12. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13(22), 8693–8698 (2005).
    [CrossRef] [PubMed]
  13. A. K. Harris, University of North Carolina at Chapel Hill, (personal communication).
  14. C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-in-one multifunctional optical microscope with a single holographic measurement,” Opt. Eng.47(8), 087001 (2008).
    [CrossRef]

2010

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 1–50 (2010).

2008

C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-in-one multifunctional optical microscope with a single holographic measurement,” Opt. Eng.47(8), 087001 (2008).
[CrossRef]

2005

C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13(22), 8693–8698 (2005).
[CrossRef] [PubMed]

D. C. Lin, B. Yurke, and N. A. Langrana, “Use of rigid spherical inclusions in Young’s moduli determination: application to DNA-crosslinked gels,” J. Biomech. Eng.127(4), 571–579 (2005).
[CrossRef] [PubMed]

2002

E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, “Determination of elastic moduli of thin layers of soft material using the atomic force microscope,” Biophys. J.82(5), 2798–2810 (2002).
[CrossRef] [PubMed]

2000

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J.79(1), 144–152 (2000).
[CrossRef] [PubMed]

1999

M. Dembo and Y. L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts,” Biophys. J.76(4), 2307–2316 (1999).
[CrossRef] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999).
[CrossRef] [PubMed]

1995

T. Oliver, K. Jacobson, and M. Dembo, “Traction forces in locomoting cells,” Cell Motil. Cytoskeleton31(3), 225–240 (1995).
[CrossRef] [PubMed]

1994

J. Lee, M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson, “Traction forces generated by locomoting keratocytes,” J. Cell Biol.127(6), 1957–1964 (1994).
[CrossRef] [PubMed]

T. Oliver, J. Lee, and K. Jacobson, “Forces exerted by locomoting cells,” Semin. Cell Biol.5(3), 139–147 (1994).
[CrossRef] [PubMed]

1992

S. Usami, S. L. Wung, B. A. Skierczynski, R. Skalak, and S. Chien, “Locomotion forces generated by a polymorphonuclear leukocyte,” Biophys. J.63(6), 1663–1666 (1992).
[CrossRef] [PubMed]

1980

A. K. Harris, P. Wild, and D. Stopak, “Silicone rubber substrata: a new wrinkle in the study of cell locomotion,” Science208(4440), 177–179 (1980).
[CrossRef] [PubMed]

Bae, Y. S.

C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-in-one multifunctional optical microscope with a single holographic measurement,” Opt. Eng.47(8), 087001 (2008).
[CrossRef]

Bevilacqua, F.

Chadwick, R. S.

E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, “Determination of elastic moduli of thin layers of soft material using the atomic force microscope,” Biophys. J.82(5), 2798–2810 (2002).
[CrossRef] [PubMed]

Chien, S.

S. Usami, S. L. Wung, B. A. Skierczynski, R. Skalak, and S. Chien, “Locomotion forces generated by a polymorphonuclear leukocyte,” Biophys. J.63(6), 1663–1666 (1992).
[CrossRef] [PubMed]

Cuche, E.

Dembo, M.

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J.79(1), 144–152 (2000).
[CrossRef] [PubMed]

M. Dembo and Y. L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts,” Biophys. J.76(4), 2307–2316 (1999).
[CrossRef] [PubMed]

T. Oliver, K. Jacobson, and M. Dembo, “Traction forces in locomoting cells,” Cell Motil. Cytoskeleton31(3), 225–240 (1995).
[CrossRef] [PubMed]

Depeursinge, C.

Dimitriadis, E. K.

E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, “Determination of elastic moduli of thin layers of soft material using the atomic force microscope,” Biophys. J.82(5), 2798–2810 (2002).
[CrossRef] [PubMed]

Harris, A. K.

A. K. Harris, P. Wild, and D. Stopak, “Silicone rubber substrata: a new wrinkle in the study of cell locomotion,” Science208(4440), 177–179 (1980).
[CrossRef] [PubMed]

Horkay, F.

E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, “Determination of elastic moduli of thin layers of soft material using the atomic force microscope,” Biophys. J.82(5), 2798–2810 (2002).
[CrossRef] [PubMed]

Ishihara, A.

J. Lee, M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson, “Traction forces generated by locomoting keratocytes,” J. Cell Biol.127(6), 1957–1964 (1994).
[CrossRef] [PubMed]

Jacobson, K.

T. Oliver, K. Jacobson, and M. Dembo, “Traction forces in locomoting cells,” Cell Motil. Cytoskeleton31(3), 225–240 (1995).
[CrossRef] [PubMed]

J. Lee, M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson, “Traction forces generated by locomoting keratocytes,” J. Cell Biol.127(6), 1957–1964 (1994).
[CrossRef] [PubMed]

T. Oliver, J. Lee, and K. Jacobson, “Forces exerted by locomoting cells,” Semin. Cell Biol.5(3), 139–147 (1994).
[CrossRef] [PubMed]

Kachar, B.

E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, “Determination of elastic moduli of thin layers of soft material using the atomic force microscope,” Biophys. J.82(5), 2798–2810 (2002).
[CrossRef] [PubMed]

Kim, D. Y.

C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-in-one multifunctional optical microscope with a single holographic measurement,” Opt. Eng.47(8), 087001 (2008).
[CrossRef]

Kim, M. K.

Langrana, N. A.

D. C. Lin, B. Yurke, and N. A. Langrana, “Use of rigid spherical inclusions in Young’s moduli determination: application to DNA-crosslinked gels,” J. Biomech. Eng.127(4), 571–579 (2005).
[CrossRef] [PubMed]

Lee, J.

T. Oliver, J. Lee, and K. Jacobson, “Forces exerted by locomoting cells,” Semin. Cell Biol.5(3), 139–147 (1994).
[CrossRef] [PubMed]

J. Lee, M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson, “Traction forces generated by locomoting keratocytes,” J. Cell Biol.127(6), 1957–1964 (1994).
[CrossRef] [PubMed]

Leonard, M.

J. Lee, M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson, “Traction forces generated by locomoting keratocytes,” J. Cell Biol.127(6), 1957–1964 (1994).
[CrossRef] [PubMed]

Lin, D. C.

D. C. Lin, B. Yurke, and N. A. Langrana, “Use of rigid spherical inclusions in Young’s moduli determination: application to DNA-crosslinked gels,” J. Biomech. Eng.127(4), 571–579 (2005).
[CrossRef] [PubMed]

Liu, C.

C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-in-one multifunctional optical microscope with a single holographic measurement,” Opt. Eng.47(8), 087001 (2008).
[CrossRef]

Lo, C. M.

C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13(22), 8693–8698 (2005).
[CrossRef] [PubMed]

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J.79(1), 144–152 (2000).
[CrossRef] [PubMed]

Mann, C. J.

Maresca, J.

E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, “Determination of elastic moduli of thin layers of soft material using the atomic force microscope,” Biophys. J.82(5), 2798–2810 (2002).
[CrossRef] [PubMed]

Oliver, T.

T. Oliver, K. Jacobson, and M. Dembo, “Traction forces in locomoting cells,” Cell Motil. Cytoskeleton31(3), 225–240 (1995).
[CrossRef] [PubMed]

J. Lee, M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson, “Traction forces generated by locomoting keratocytes,” J. Cell Biol.127(6), 1957–1964 (1994).
[CrossRef] [PubMed]

T. Oliver, J. Lee, and K. Jacobson, “Forces exerted by locomoting cells,” Semin. Cell Biol.5(3), 139–147 (1994).
[CrossRef] [PubMed]

Skalak, R.

S. Usami, S. L. Wung, B. A. Skierczynski, R. Skalak, and S. Chien, “Locomotion forces generated by a polymorphonuclear leukocyte,” Biophys. J.63(6), 1663–1666 (1992).
[CrossRef] [PubMed]

Skierczynski, B. A.

S. Usami, S. L. Wung, B. A. Skierczynski, R. Skalak, and S. Chien, “Locomotion forces generated by a polymorphonuclear leukocyte,” Biophys. J.63(6), 1663–1666 (1992).
[CrossRef] [PubMed]

Stopak, D.

A. K. Harris, P. Wild, and D. Stopak, “Silicone rubber substrata: a new wrinkle in the study of cell locomotion,” Science208(4440), 177–179 (1980).
[CrossRef] [PubMed]

Usami, S.

S. Usami, S. L. Wung, B. A. Skierczynski, R. Skalak, and S. Chien, “Locomotion forces generated by a polymorphonuclear leukocyte,” Biophys. J.63(6), 1663–1666 (1992).
[CrossRef] [PubMed]

Wang, H. B.

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J.79(1), 144–152 (2000).
[CrossRef] [PubMed]

Wang, Y. L.

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J.79(1), 144–152 (2000).
[CrossRef] [PubMed]

M. Dembo and Y. L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts,” Biophys. J.76(4), 2307–2316 (1999).
[CrossRef] [PubMed]

Wild, P.

A. K. Harris, P. Wild, and D. Stopak, “Silicone rubber substrata: a new wrinkle in the study of cell locomotion,” Science208(4440), 177–179 (1980).
[CrossRef] [PubMed]

Wung, S. L.

S. Usami, S. L. Wung, B. A. Skierczynski, R. Skalak, and S. Chien, “Locomotion forces generated by a polymorphonuclear leukocyte,” Biophys. J.63(6), 1663–1666 (1992).
[CrossRef] [PubMed]

Yang, W. Z.

C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-in-one multifunctional optical microscope with a single holographic measurement,” Opt. Eng.47(8), 087001 (2008).
[CrossRef]

Yu, L. F.

Yurke, B.

D. C. Lin, B. Yurke, and N. A. Langrana, “Use of rigid spherical inclusions in Young’s moduli determination: application to DNA-crosslinked gels,” J. Biomech. Eng.127(4), 571–579 (2005).
[CrossRef] [PubMed]

Biophys. J.

M. Dembo and Y. L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts,” Biophys. J.76(4), 2307–2316 (1999).
[CrossRef] [PubMed]

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J.79(1), 144–152 (2000).
[CrossRef] [PubMed]

S. Usami, S. L. Wung, B. A. Skierczynski, R. Skalak, and S. Chien, “Locomotion forces generated by a polymorphonuclear leukocyte,” Biophys. J.63(6), 1663–1666 (1992).
[CrossRef] [PubMed]

E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, “Determination of elastic moduli of thin layers of soft material using the atomic force microscope,” Biophys. J.82(5), 2798–2810 (2002).
[CrossRef] [PubMed]

Cell Motil. Cytoskeleton

T. Oliver, K. Jacobson, and M. Dembo, “Traction forces in locomoting cells,” Cell Motil. Cytoskeleton31(3), 225–240 (1995).
[CrossRef] [PubMed]

J. Biomech. Eng.

D. C. Lin, B. Yurke, and N. A. Langrana, “Use of rigid spherical inclusions in Young’s moduli determination: application to DNA-crosslinked gels,” J. Biomech. Eng.127(4), 571–579 (2005).
[CrossRef] [PubMed]

J. Cell Biol.

J. Lee, M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson, “Traction forces generated by locomoting keratocytes,” J. Cell Biol.127(6), 1957–1964 (1994).
[CrossRef] [PubMed]

Opt. Eng.

C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-in-one multifunctional optical microscope with a single holographic measurement,” Opt. Eng.47(8), 087001 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Science

A. K. Harris, P. Wild, and D. Stopak, “Silicone rubber substrata: a new wrinkle in the study of cell locomotion,” Science208(4440), 177–179 (1980).
[CrossRef] [PubMed]

Semin. Cell Biol.

T. Oliver, J. Lee, and K. Jacobson, “Forces exerted by locomoting cells,” Semin. Cell Biol.5(3), 139–147 (1994).
[CrossRef] [PubMed]

SPIE Rev.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 1–50 (2010).

Other

A. K. Harris, University of North Carolina at Chapel Hill, (personal communication).

Supplementary Material (1)

» Media 1: MOV (26089 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

DHM setup. M’s: mirrors; BS’s: beam splitters; MO’s: microscope objectives; S: sample object

Fig. 2
Fig. 2

Schematic of the cell-substrate sample (lower) and the corresponding optical thickness profile (upper).

Fig. 3
Fig. 3

DHM analysis of fibroblasts wrinkling the silicone rubber film. The field of view is 190 × 176 μm2 with 800 × 742 pixels. a) Hologram; b) Angular spectrum; c) Amplitude image; d) Quantitative phase image; e) Bright field image.

Fig. 4
Fig. 4

Multimode imaging from a single hologram. The field of view is 190 × 176 μm2 with 800 × 742 pixels. a) dark field; b) Zernike+; c) Zernike–; d) DIC; e) spiral DIC.

Fig. 5
Fig. 5

Examples of cells wrinkling a silicone rubber film. The field of view was 190 × 176 μm2 with 800 × 742 pixels. a), e) and i) Bright field images; b), f) and j) Quantitative phase images; c), g) and k) Cross-sections of phase profiles along highlighted lines AB in b), CD in f) and EF in j); d), h) and l) Pseudo-color 3-D rendering of phase images b), f) and j).

Fig. 6
Fig. 6

An excerpt of several frames from phase movie recordings of cells wrinkling a silicone rubber film (Media 1). The field of view was 190 × 176 μm2 with 800 × 742 pixels. Time interval of two contiguous images above was around 30 min.

Fig. 7
Fig. 7

Phase profiles scaled as physical thickness and plotted in proportion to horizontal distance. a) Wrinkled area H from Fig. 5c). b) Wrinkled area I from Fig. 5g). c) Wrinkled area J from Fig. 3k). In each case, the average of 10 adjacent profiles is presented.

Metrics