Abstract

There is strong clinical evidence that controlling cerebral venous oxygenation (oxyhemoglobin saturation) is critically important for patients with severe traumatic brain injury as well as for patients undergoing cardiac surgery. However, the only available method for cerebral venous blood oxygenation monitoring is invasive and requires catheterization of the internal jugular vein. We designed and built a novel optoacoustic monitor of cerebral venous oxygenation as measured in the superior sagittal sinus (SSS), the large midline cerebral vein. To the best of our knowledge, optical monitoring of cerebral venous blood oxygenation through overlying extracerebral blood is reported for the first time in this paper. The system was capable of detecting SSS signals in vivo at 700, 800, and 1064 nm through the thick (5–6 mm) sheep skull containing the circulating blood. The high (submillimeter) in-depth resolution of the system provided identification of the SSS peaks in the optoacoustic signals. The SSS peak amplitude closely followed the actual SSS blood oxygenation measured invasively using catheterization, blood sampling, and “gold standard” CO-Oximetry. Our data indicate the system may provide accurate measurement of the SSS blood oxygenation in patients with extracerebral blood over the SSS.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Soehle, M. Jaeger, and J. Meixensberger, “Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage,” Neurol. Res.25(4), 411–417 (2003).
    [CrossRef] [PubMed]
  2. J. M. Murkin, “Perioperative detection of brain oxygenation and clinical outcomes in cardiac surgery,” Semin. Cardiothorac. Vasc. Anesth.8(1), 13–14 (2004).
    [CrossRef] [PubMed]
  3. C. Metz, M. Holzschuh, T. Bein, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, “Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury,” J. Cereb. Blood Flow Metab.18(3), 332–343 (1998).
    [CrossRef] [PubMed]
  4. W. J. Stevens, “Multimodal monitoring: head injury management using SjvO2 and LICOX,” J. Neurosci. Nurs.36(6), 332–339 (2004).
    [CrossRef] [PubMed]
  5. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
    [CrossRef] [PubMed]
  6. J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
    [CrossRef] [PubMed]
  7. R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, and D. S. Prough, “Optoacoustic technique for non-invasive continuous monitoring of blood oxygenation,” in Biomedical Topical Meetings (Optical Society of America, Washington DC, 2000), pp. 272–274.
  8. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt.41(22), 4722–4731 (2002).
    [CrossRef] [PubMed]
  9. Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, “Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep,” Anesthesiology102(1), 69–75 (2005).
    [CrossRef] [PubMed]
  10. Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, “Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein,” Opt. Lett.31(12), 1827–1829 (2006).
    [CrossRef] [PubMed]
  11. H. P. Brecht, D. S. Prough, Y. Y. Petrov, I. Patrikeev, I. Y. Petrova, D. J. Deyo, I. Cicenaite, and R. O. Esenaliev, “In vivo monitoring of blood oxygenation in large veins with a triple-wavelength optoacoustic system,” Opt. Express15(24), 16261–16269 (2007).
    [CrossRef] [PubMed]
  12. I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, “Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system,” Opt. Express17(9), 7285–7294 (2009).
    [CrossRef] [PubMed]
  13. X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
    [CrossRef] [PubMed]
  14. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
    [CrossRef]
  15. B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions,” J. Biol. Chem.148, 173–183 (1943).
  16. Y. Y. Petrov, D. S. Prough, D. J. Deyo, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “In vivo noninvasive monitoring of cerebral blood with optoacoustic technique,” in 26th Annual International Conference of IEEE Engineering in Medicine and Biology Society (IEEE, NY, 2004), pp. 2052–2054.
  17. S. Jacques, “Optical absorption of melanin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/melanin/mua.html .
  18. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt.12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  19. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
    [CrossRef] [PubMed]
  20. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, Bellingham, WA, 2000).
  21. S. Prahl, “Optical absorption of hemoglobin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  22. “ANSI Z136.1—2000,” in American National Standard for Safe Use of Lasers (The Laser Institute of America, Orlando, FL, 2000).
  23. P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express15(6), 3301–3311 (2007).
    [CrossRef] [PubMed]
  24. F. J. Fry and J. E. Barger, “Acoustical properties of the human skull,” J. Acoust. Soc. Am.63(5), 1576–1590 (1978).
    [CrossRef] [PubMed]
  25. J. Enderle, S. Blanchard, and J. Bronzino, Introduction to Biomedical Engineering (Academic, San Diego, CA, 2000), Chap. 15.
  26. I. Kuwahira, U. Kamiya, T. Iwamoto, Y. Moue, T. Urano, Y. Ohta, and N. C. Gonzalez, “Splenic contraction-induced reversible increase in hemoglobin concentration in intermittent hypoxia,” J. Appl. Physiol.86(1), 181–187 (1999).
    [PubMed]
  27. M. X. Richardson, R. de Bruijn, and E. Schagatay, “Hypoxia augments apnea-induced increase in hemoglobin concentration and hematocrit,” Eur. J. Appl. Physiol.105(1), 63–68 (2009).
    [CrossRef] [PubMed]
  28. T. Oka, T. Itoi, and K. Hamaoka, “Impaired transient elevation of blood hemoglobin in response to acute hypoxia in neonates with asplenia,” Pediatr. Int.49(6), 898–902 (2007).
    [CrossRef] [PubMed]
  29. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express2(9), 2655–2664 (2011).
    [CrossRef] [PubMed]
  30. V. G. Andreev, Y. Y. Petrov, D. S. Prough, I. Y. Petrova, and R. O. Esenaliev, “Novel optoacoustic array for noninvasive monitoring of blood parameters,” Proc. SPIE7177, 71770O, 71770O-6 (2009).
    [CrossRef]
  31. A. Taruttis, E. Herzog, D. Razansky, and V. Ntziachristos, “Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography,” Opt. Express18(19), 19592–19602 (2010).
    [CrossRef] [PubMed]
  32. J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express19(3), 2093–2104 (2011).
    [CrossRef] [PubMed]

2011 (2)

2010 (1)

2009 (3)

I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, “Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system,” Opt. Express17(9), 7285–7294 (2009).
[CrossRef] [PubMed]

M. X. Richardson, R. de Bruijn, and E. Schagatay, “Hypoxia augments apnea-induced increase in hemoglobin concentration and hematocrit,” Eur. J. Appl. Physiol.105(1), 63–68 (2009).
[CrossRef] [PubMed]

V. G. Andreev, Y. Y. Petrov, D. S. Prough, I. Y. Petrova, and R. O. Esenaliev, “Novel optoacoustic array for noninvasive monitoring of blood parameters,” Proc. SPIE7177, 71770O, 71770O-6 (2009).
[CrossRef]

2007 (3)

2006 (2)

Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, “Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein,” Opt. Lett.31(12), 1827–1829 (2006).
[CrossRef] [PubMed]

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

2005 (1)

Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, “Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep,” Anesthesiology102(1), 69–75 (2005).
[CrossRef] [PubMed]

2004 (3)

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

J. M. Murkin, “Perioperative detection of brain oxygenation and clinical outcomes in cardiac surgery,” Semin. Cardiothorac. Vasc. Anesth.8(1), 13–14 (2004).
[CrossRef] [PubMed]

W. J. Stevens, “Multimodal monitoring: head injury management using SjvO2 and LICOX,” J. Neurosci. Nurs.36(6), 332–339 (2004).
[CrossRef] [PubMed]

2003 (1)

M. Soehle, M. Jaeger, and J. Meixensberger, “Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage,” Neurol. Res.25(4), 411–417 (2003).
[CrossRef] [PubMed]

2002 (1)

1999 (1)

I. Kuwahira, U. Kamiya, T. Iwamoto, Y. Moue, T. Urano, Y. Ohta, and N. C. Gonzalez, “Splenic contraction-induced reversible increase in hemoglobin concentration in intermittent hypoxia,” J. Appl. Physiol.86(1), 181–187 (1999).
[PubMed]

1998 (2)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

C. Metz, M. Holzschuh, T. Bein, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, “Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury,” J. Cereb. Blood Flow Metab.18(3), 332–343 (1998).
[CrossRef] [PubMed]

1990 (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

1978 (1)

F. J. Fry and J. E. Barger, “Acoustical properties of the human skull,” J. Acoust. Soc. Am.63(5), 1576–1590 (1978).
[CrossRef] [PubMed]

1977 (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
[CrossRef] [PubMed]

1973 (1)

1943 (1)

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions,” J. Biol. Chem.148, 173–183 (1943).

Andreev, V. G.

V. G. Andreev, Y. Y. Petrov, D. S. Prough, I. Y. Petrova, and R. O. Esenaliev, “Novel optoacoustic array for noninvasive monitoring of blood parameters,” Proc. SPIE7177, 71770O, 71770O-6 (2009).
[CrossRef]

Barger, J. E.

F. J. Fry and J. E. Barger, “Acoustical properties of the human skull,” J. Acoust. Soc. Am.63(5), 1576–1590 (1978).
[CrossRef] [PubMed]

Bein, T.

C. Metz, M. Holzschuh, T. Bein, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, “Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury,” J. Cereb. Blood Flow Metab.18(3), 332–343 (1998).
[CrossRef] [PubMed]

Brawanski, A.

C. Metz, M. Holzschuh, T. Bein, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, “Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury,” J. Cereb. Blood Flow Metab.18(3), 332–343 (1998).
[CrossRef] [PubMed]

Brecht, H. P.

Burgholzer, P.

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

Choi, J. H.

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

Cicenaite, I.

Comelli, D.

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

de Bruijn, R.

M. X. Richardson, R. de Bruijn, and E. Schagatay, “Hypoxia augments apnea-induced increase in hemoglobin concentration and hematocrit,” Eur. J. Appl. Physiol.105(1), 63–68 (2009).
[CrossRef] [PubMed]

Deyo, D. J.

Esenaliev, R. O.

V. G. Andreev, Y. Y. Petrov, D. S. Prough, I. Y. Petrova, and R. O. Esenaliev, “Novel optoacoustic array for noninvasive monitoring of blood parameters,” Proc. SPIE7177, 71770O, 71770O-6 (2009).
[CrossRef]

I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, “Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system,” Opt. Express17(9), 7285–7294 (2009).
[CrossRef] [PubMed]

H. P. Brecht, D. S. Prough, Y. Y. Petrov, I. Patrikeev, I. Y. Petrova, D. J. Deyo, I. Cicenaite, and R. O. Esenaliev, “In vivo monitoring of blood oxygenation in large veins with a triple-wavelength optoacoustic system,” Opt. Express15(24), 16261–16269 (2007).
[CrossRef] [PubMed]

Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, “Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein,” Opt. Lett.31(12), 1827–1829 (2006).
[CrossRef] [PubMed]

Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, “Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep,” Anesthesiology102(1), 69–75 (2005).
[CrossRef] [PubMed]

R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt.41(22), 4722–4731 (2002).
[CrossRef] [PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Farina, A.

Fry, F. J.

F. J. Fry and J. E. Barger, “Acoustical properties of the human skull,” J. Acoust. Soc. Am.63(5), 1576–1590 (1978).
[CrossRef] [PubMed]

Gonzalez, N. C.

I. Kuwahira, U. Kamiya, T. Iwamoto, Y. Moue, T. Urano, Y. Ohta, and N. C. Gonzalez, “Splenic contraction-induced reversible increase in hemoglobin concentration in intermittent hypoxia,” J. Appl. Physiol.86(1), 181–187 (1999).
[PubMed]

Gratt, S.

Gratton, E.

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

Gupta, R.

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

Hale, G. M.

Hamaoka, K.

T. Oka, T. Itoi, and K. Hamaoka, “Impaired transient elevation of blood hemoglobin in response to acute hypoxia in neonates with asplenia,” Pediatr. Int.49(6), 898–902 (2007).
[CrossRef] [PubMed]

Herzog, E.

Holzschuh, M.

C. Metz, M. Holzschuh, T. Bein, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, “Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury,” J. Cereb. Blood Flow Metab.18(3), 332–343 (1998).
[CrossRef] [PubMed]

Horecker, B. L.

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions,” J. Biol. Chem.148, 173–183 (1943).

Hueber, D.

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

Itoi, T.

T. Oka, T. Itoi, and K. Hamaoka, “Impaired transient elevation of blood hemoglobin in response to acute hypoxia in neonates with asplenia,” Pediatr. Int.49(6), 898–902 (2007).
[CrossRef] [PubMed]

Iwamoto, T.

I. Kuwahira, U. Kamiya, T. Iwamoto, Y. Moue, T. Urano, Y. Ohta, and N. C. Gonzalez, “Splenic contraction-induced reversible increase in hemoglobin concentration in intermittent hypoxia,” J. Appl. Physiol.86(1), 181–187 (1999).
[PubMed]

Jaeger, M.

M. Soehle, M. Jaeger, and J. Meixensberger, “Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage,” Neurol. Res.25(4), 411–417 (2003).
[CrossRef] [PubMed]

Jöbsis, F. F.

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
[CrossRef] [PubMed]

Jose, J.

Kallenbach, B.

C. Metz, M. Holzschuh, T. Bein, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, “Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury,” J. Cereb. Blood Flow Metab.18(3), 332–343 (1998).
[CrossRef] [PubMed]

Kamiya, U.

I. Kuwahira, U. Kamiya, T. Iwamoto, Y. Moue, T. Urano, Y. Ohta, and N. C. Gonzalez, “Splenic contraction-induced reversible increase in hemoglobin concentration in intermittent hypoxia,” J. Appl. Physiol.86(1), 181–187 (1999).
[PubMed]

Kienle, A.

Klasing, M.

Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, “Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep,” Anesthesiology102(1), 69–75 (2005).
[CrossRef] [PubMed]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Ku, G.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

Kuwahira, I.

I. Kuwahira, U. Kamiya, T. Iwamoto, Y. Moue, T. Urano, Y. Ohta, and N. C. Gonzalez, “Splenic contraction-induced reversible increase in hemoglobin concentration in intermittent hypoxia,” J. Appl. Physiol.86(1), 181–187 (1999).
[PubMed]

Larin, K. V.

Larina, I. V.

Manohar, S.

Mantulin, W.

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

Meixensberger, J.

M. Soehle, M. Jaeger, and J. Meixensberger, “Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage,” Neurol. Res.25(4), 411–417 (2003).
[CrossRef] [PubMed]

Metz, C.

C. Metz, M. Holzschuh, T. Bein, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, “Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury,” J. Cereb. Blood Flow Metab.18(3), 332–343 (1998).
[CrossRef] [PubMed]

Michalos, A.

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

Motamedi, M.

Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, “Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep,” Anesthesiology102(1), 69–75 (2005).
[CrossRef] [PubMed]

R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt.41(22), 4722–4731 (2002).
[CrossRef] [PubMed]

Moue, Y.

I. Kuwahira, U. Kamiya, T. Iwamoto, Y. Moue, T. Urano, Y. Ohta, and N. C. Gonzalez, “Splenic contraction-induced reversible increase in hemoglobin concentration in intermittent hypoxia,” J. Appl. Physiol.86(1), 181–187 (1999).
[PubMed]

Murkin, J. M.

J. M. Murkin, “Perioperative detection of brain oxygenation and clinical outcomes in cardiac surgery,” Semin. Cardiothorac. Vasc. Anesth.8(1), 13–14 (2004).
[CrossRef] [PubMed]

Ntziachristos, V.

Nuster, R.

Ohta, Y.

I. Kuwahira, U. Kamiya, T. Iwamoto, Y. Moue, T. Urano, Y. Ohta, and N. C. Gonzalez, “Splenic contraction-induced reversible increase in hemoglobin concentration in intermittent hypoxia,” J. Appl. Physiol.86(1), 181–187 (1999).
[PubMed]

Oka, T.

T. Oka, T. Itoi, and K. Hamaoka, “Impaired transient elevation of blood hemoglobin in response to acute hypoxia in neonates with asplenia,” Pediatr. Int.49(6), 898–902 (2007).
[CrossRef] [PubMed]

Paltauf, G.

Passler, K.

Patrikeev, I.

Patrikeev, I. A.

Petrov, Y. Y.

Petrova, I. Y.

Pifferi, A.

Piras, D.

Polzonetti, C.

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

Prahl, S. A.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

Prough, D. S.

I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, “Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system,” Opt. Express17(9), 7285–7294 (2009).
[CrossRef] [PubMed]

V. G. Andreev, Y. Y. Petrov, D. S. Prough, I. Y. Petrova, and R. O. Esenaliev, “Novel optoacoustic array for noninvasive monitoring of blood parameters,” Proc. SPIE7177, 71770O, 71770O-6 (2009).
[CrossRef]

H. P. Brecht, D. S. Prough, Y. Y. Petrov, I. Patrikeev, I. Y. Petrova, D. J. Deyo, I. Cicenaite, and R. O. Esenaliev, “In vivo monitoring of blood oxygenation in large veins with a triple-wavelength optoacoustic system,” Opt. Express15(24), 16261–16269 (2007).
[CrossRef] [PubMed]

Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, “Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein,” Opt. Lett.31(12), 1827–1829 (2006).
[CrossRef] [PubMed]

Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, “Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep,” Anesthesiology102(1), 69–75 (2005).
[CrossRef] [PubMed]

R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt.41(22), 4722–4731 (2002).
[CrossRef] [PubMed]

Querry, M. R.

Razansky, D.

Resink, S.

Richardson, M. X.

M. X. Richardson, R. de Bruijn, and E. Schagatay, “Hypoxia augments apnea-induced increase in hemoglobin concentration and hematocrit,” Eur. J. Appl. Physiol.105(1), 63–68 (2009).
[CrossRef] [PubMed]

Rothoerl, R.

C. Metz, M. Holzschuh, T. Bein, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, “Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury,” J. Cereb. Blood Flow Metab.18(3), 332–343 (1998).
[CrossRef] [PubMed]

Safonova, L. P.

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

Schagatay, E.

M. X. Richardson, R. de Bruijn, and E. Schagatay, “Hypoxia augments apnea-induced increase in hemoglobin concentration and hematocrit,” Eur. J. Appl. Physiol.105(1), 63–68 (2009).
[CrossRef] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Slump, C. H.

Soehle, M.

M. Soehle, M. Jaeger, and J. Meixensberger, “Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage,” Neurol. Res.25(4), 411–417 (2003).
[CrossRef] [PubMed]

Steenbergen, W.

Stevens, W. J.

W. J. Stevens, “Multimodal monitoring: head injury management using SjvO2 and LICOX,” J. Neurosci. Nurs.36(6), 332–339 (2004).
[CrossRef] [PubMed]

Stoica, G.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

Taeger, K.

C. Metz, M. Holzschuh, T. Bein, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, “Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury,” J. Cereb. Blood Flow Metab.18(3), 332–343 (1998).
[CrossRef] [PubMed]

Taroni, P.

Taruttis, A.

Toronov, V.

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

Urano, T.

I. Kuwahira, U. Kamiya, T. Iwamoto, Y. Moue, T. Urano, Y. Ohta, and N. C. Gonzalez, “Splenic contraction-induced reversible increase in hemoglobin concentration in intermittent hypoxia,” J. Appl. Physiol.86(1), 181–187 (1999).
[PubMed]

van Hespen, J. C. G.

van Leeuwen, T. G.

Wang, L. V.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

Wang, X.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

Welch, A. J.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

Willemink, R. G. H.

Woertgen, C.

C. Metz, M. Holzschuh, T. Bein, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, “Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury,” J. Cereb. Blood Flow Metab.18(3), 332–343 (1998).
[CrossRef] [PubMed]

Wolf, M.

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

Wolf, U.

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

Xie, X.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

Anesthesiology (1)

Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, “Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep,” Anesthesiology102(1), 69–75 (2005).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Eur. J. Appl. Physiol. (1)

M. X. Richardson, R. de Bruijn, and E. Schagatay, “Hypoxia augments apnea-induced increase in hemoglobin concentration and hematocrit,” Eur. J. Appl. Physiol.105(1), 63–68 (2009).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

J. Acoust. Soc. Am. (1)

F. J. Fry and J. E. Barger, “Acoustical properties of the human skull,” J. Acoust. Soc. Am.63(5), 1576–1590 (1978).
[CrossRef] [PubMed]

J. Appl. Physiol. (1)

I. Kuwahira, U. Kamiya, T. Iwamoto, Y. Moue, T. Urano, Y. Ohta, and N. C. Gonzalez, “Splenic contraction-induced reversible increase in hemoglobin concentration in intermittent hypoxia,” J. Appl. Physiol.86(1), 181–187 (1999).
[PubMed]

J. Biol. Chem. (1)

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions,” J. Biol. Chem.148, 173–183 (1943).

J. Biomed. Opt. (2)

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt.9(1), 221–229 (2004).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

C. Metz, M. Holzschuh, T. Bein, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, “Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury,” J. Cereb. Blood Flow Metab.18(3), 332–343 (1998).
[CrossRef] [PubMed]

J. Neurosci. Nurs. (1)

W. J. Stevens, “Multimodal monitoring: head injury management using SjvO2 and LICOX,” J. Neurosci. Nurs.36(6), 332–339 (2004).
[CrossRef] [PubMed]

Neurol. Res. (1)

M. Soehle, M. Jaeger, and J. Meixensberger, “Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage,” Neurol. Res.25(4), 411–417 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Pediatr. Int. (1)

T. Oka, T. Itoi, and K. Hamaoka, “Impaired transient elevation of blood hemoglobin in response to acute hypoxia in neonates with asplenia,” Pediatr. Int.49(6), 898–902 (2007).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Proc. SPIE (1)

V. G. Andreev, Y. Y. Petrov, D. S. Prough, I. Y. Petrova, and R. O. Esenaliev, “Novel optoacoustic array for noninvasive monitoring of blood parameters,” Proc. SPIE7177, 71770O, 71770O-6 (2009).
[CrossRef]

Science (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
[CrossRef] [PubMed]

Semin. Cardiothorac. Vasc. Anesth. (1)

J. M. Murkin, “Perioperative detection of brain oxygenation and clinical outcomes in cardiac surgery,” Semin. Cardiothorac. Vasc. Anesth.8(1), 13–14 (2004).
[CrossRef] [PubMed]

Other (7)

R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, and D. S. Prough, “Optoacoustic technique for non-invasive continuous monitoring of blood oxygenation,” in Biomedical Topical Meetings (Optical Society of America, Washington DC, 2000), pp. 272–274.

Y. Y. Petrov, D. S. Prough, D. J. Deyo, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “In vivo noninvasive monitoring of cerebral blood with optoacoustic technique,” in 26th Annual International Conference of IEEE Engineering in Medicine and Biology Society (IEEE, NY, 2004), pp. 2052–2054.

S. Jacques, “Optical absorption of melanin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/melanin/mua.html .

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, Bellingham, WA, 2000).

S. Prahl, “Optical absorption of hemoglobin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/hemoglobin/index.html .

“ANSI Z136.1—2000,” in American National Standard for Safe Use of Lasers (The Laser Institute of America, Orlando, FL, 2000).

J. Enderle, S. Blanchard, and J. Bronzino, Introduction to Biomedical Engineering (Academic, San Diego, CA, 2000), Chap. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic drawing of the experimental setup used in this study.

Fig. 2
Fig. 2

Optoacoustic signals from the sheep skull and SSS at wavelengths of 700 nm (a), 805 nm (b), and 1064 nm (c) for different SSS blood oxygenations: 75% (blue line), 30% (green line), and 95% (red line).

Fig. 3
Fig. 3

Optoacoustic signals from the sheep skull with a diploic vein and the SSS at 700 nm (a), 800 nm (b), and 1064 nm (c) for different SSS blood oxygenations: 89%, 17.5%, and 94%.

Fig. 4
Fig. 4

Amplitudes of the SSS and diploic vein peaks (blue line with triangles and pink line with open dots, respectively) in normalized optoacoustic signals at the wavelength of 700 nm.

Fig. 5
Fig. 5

Invasively measured SSS blood oxygenation (black line with dots) and the amplitude of SSS signals measured through the diploic vein (colored lines with triangles) at the wavelengths of 700 nm (a), 800 nm (b), and 1064 nm (c).

Fig. 6
Fig. 6

Total hemoglobin concentration (red line with dots, left axis) and SSS blood oxygenation (black line with dots, right axis) measured in blood samples from two different sheep: (a) and (b), respectively.

Fig. 7
Fig. 7

Total hemoglobin concentration (red line with dots, left axis) and the peak-to-peak SSS signal amplitude at 800 nm (green line with dots, right axis). The data are for two different sheep: (a) and (b), respectively.

Fig. 8
Fig. 8

Invasively measured SSS blood oxygenation (black line with dots) and the ratios of the SSS signal amplitudes (colored line with triangles) measured at 700 nm (a) and 1064 nm (b) to those measured at 800 nm.

Fig. 9
Fig. 9

Correlation of the ratios of the SSS signal amplitudes at 700 nm (blue triangles) and 1064 nm (red dots) to those measured at 800 nm with actual SSS blood oxygenation. The lines of the corresponding color are linear fit to the data sets (R2 = 0.71 and 0.91 for 700 nm and 1064 nm, respectively).

Fig. 10
Fig. 10

(a) Correlation between optoacoustically predicted and actual SSS blood oxygenation. (b) Standard deviation and bias of the difference between predicted and actual oxygenation.

Metrics