Abstract

This paper presents a generally applicable approach for the highly specific detection of blood proteins. Thrombin and thrombin-binding aptamers are chosen for demonstration purposes. The sensor was prepared by immobilizing amine-terminated aptamers onto a gold modified surface using a two-step self-assembled monolayer (SAM) immobilization technique and the physical detection is performed using Surface Plasmon Resonance (SPR). The developed sensor has an optimal detectable range of 5–1000 nM and the results show the sensor has good reversibility, sensitivity and selectivity. Furthermore, the sensor shows the potential of being improved and standardized for direct detection of other blood proteins for clinical applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. American Diabetes Association, “Standards of medical care in diabetes--2011,” Diabetes Care34(Suppl 1), S11–S61 (2011).
    [CrossRef] [PubMed]
  2. P. A. Behnisch, K. Hosoe, and S.-i. Sakai, “Bioanalytical screening methods for dioxins and dioxin-like compounds a review of bioassay/biomarker technology,” Environ. Int.27(5), 413–439 (2001).
    [CrossRef] [PubMed]
  3. A. G. Renehan, M. Zwahlen, C. Minder, S. T. O’Dwyer, S. M. Shalet, and M. Egger, “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis,” Lancet363(9418), 1346–1353 (2004).
    [CrossRef] [PubMed]
  4. E. M. Voss, G. S. Cembrowski, B. L. Clasen, M. L. Spencer, M. B. Ainslie, and B. Haig, “Evaluation of capillary collection system for HbA1c specimens,” Diabetes Care15(5), 700–701 (1992).
    [CrossRef] [PubMed]
  5. R. R. Little, H. M. Wiedmeyer, D. H. Huang, D. E. Goldstein, R. G. Parsons, R. Kowal, and M. Johnston, “A simple blood collection device for analysis of glycohemoglobin (GHB),” Clin. Chem.44(Suppl. 6), A139 (1998).
  6. T. N. Higgins, “QA aspects for HbA1c measurements,” Clin. Biochem.41(1-2), 88–90 (2008).
    [CrossRef] [PubMed]
  7. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.19(24), 2062–2064 (1994).
    [CrossRef] [PubMed]
  8. O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45(2), 165–177 (1999).
    [PubMed]
  9. B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng.44(12), 1221–1227 (1997).
    [CrossRef] [PubMed]
  10. K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett.4(4), 312–317 (2007).
    [CrossRef]
  11. J. T. Liu, L. Y. Chen, M. C. Shih, Y. Chang, and W. Y. Chen, “The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance,” Anal. Biochem.375(1), 90–96 (2008).
    [CrossRef] [PubMed]
  12. C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem.76(1), 78–85 (2004).
    [CrossRef] [PubMed]
  13. N. Vigneshwaran, G. Bijukumar, N. Karmakar, S. Anand, and A. Misra, “Autofluorescence characterization of advanced glycation end products of hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc.61(1-2), 163–170 (2005).
    [CrossRef] [PubMed]
  14. L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature355(6360), 564–566 (1992).
    [CrossRef] [PubMed]
  15. A. D. S. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature346(6287), 818–822 (1990).
    [CrossRef] [PubMed]
  16. A. Abbas, M. J. Linman, and Q. A. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011).
    [CrossRef] [PubMed]
  17. C. W. Chi, Y. H. Lao, Y. S. Li, and L. C. Chen, “A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection,” Biosens. Bioelectron.26(7), 3346–3352 (2011).
    [CrossRef] [PubMed]
  18. G. H. Liang, S. Y. Cai, P. Zhang, Y. Y. Peng, H. Chen, S. Zhang, and J. L. Kong, “Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles,” Anal. Chim. Acta689(2), 243–249 (2011).
    [CrossRef] [PubMed]
  19. B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, and K. W. Plaxco, “An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids,” J. Am. Chem. Soc.128(10), 3138–3139 (2006).
    [CrossRef] [PubMed]
  20. H. A. Ho and M. Leclerc, “Optical sensors based on hybrid aptamer/conjugated polymer complexes,” J. Am. Chem. Soc.126(5), 1384–1387 (2004).
    [CrossRef] [PubMed]
  21. J. W. Liu and Y. Lu, “Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles,” Angew. Chem. Int. Ed. Engl.45(1), 90–94 (2005).
    [CrossRef] [PubMed]
  22. R. A. Potyrailo, R. C. Conrad, A. D. Ellington, and G. M. Hieftje, “Adapting selected nucleic acid ligands (aptamers) to biosensors,” Anal. Chem.70(16), 3419–3425 (1998).
    [CrossRef] [PubMed]
  23. M. N. Stojanovic, P. de Prada, and D. W. Landry, “Aptamer-based folding fluorescent sensor for cocaine,” J. Am. Chem. Soc.123(21), 4928–4931 (2001).
    [CrossRef] [PubMed]
  24. Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor,” Angew. Chem. Int. Ed. Engl.44(34), 5456–5459 (2005).
    [CrossRef] [PubMed]
  25. C. Polonschii, S. David, S. Tombelli, M. Mascini, and M. Gheorghiu, “A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance,” Talanta80(5), 2157–2164 (2010).
    [CrossRef] [PubMed]
  26. V. Ostatná, H. Vaisocherová, J. Homola, and T. Hianik, “Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance,” Anal. Bioanal. Chem.391(5), 1861–1869 (2008).
    [CrossRef] [PubMed]
  27. S. Balamurugan, A. Obubuafo, S. A. Soper, R. L. McCarley, and D. A. Spivak, “Designing highly specific biosensing surfaces using aptamer monolayers on gold,” Langmuir22(14), 6446–6453 (2006).
    [CrossRef] [PubMed]
  28. S. Skeie, G. Thue, and S. Sandberg, “Interpretation of hemoglobin A(1c) (HbA(1c)) values among diabetic patients: implications for quality specifications for HbA(1c),” Clin. Chem.47(7), 1212–1217 (2001).
    [PubMed]
  29. X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, “Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization,” Langmuir21(1), 348–353 (2005).
    [CrossRef] [PubMed]
  30. D. M. Tasset, M. F. Kubik, and W. Steiner, “Oligonucleotide inhibitors of human thrombin that bind distinct epitopes,” J. Mol. Biol.272(5), 688–698 (1997).
    [CrossRef] [PubMed]
  31. D. B. Sacks, D. E. Bruns, D. E. Goldstein, N. K. Maclaren, J. M. McDonald, and M. Parrott, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care25(4), 750–786 (2002).
    [CrossRef]
  32. N. S. Kolatkar, G. S. Cembrowski, P. L. Callahan, and D. D. Etzwiler, “Intensive diabetes management requires very precise testing of glycohemoglobin,” Clin. Chem.40(8), 1608–1610 (1994).
    [PubMed]
  33. L. Q. Wang, L. Y. Li, Y. Xu, G. F. Cheng, P. A. He, and Y. Z. Fang, “Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation,” Talanta79(3), 557–561 (2009).
    [CrossRef] [PubMed]
  34. V. Pavlov, Y. Xiao, B. Shlyahovsky, and I. Willner, “Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin,” J. Am. Chem. Soc.126(38), 11768–11769 (2004).
    [CrossRef] [PubMed]
  35. H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc.127(34), 11906–11907 (2005).
    [CrossRef] [PubMed]
  36. Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor,” Angew. Chem.117(34), 5592–5595 (2005).
    [CrossRef]
  37. C. C. Chou, C. H. Chen, T. T. Lee, and K. Peck, “Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression,” Nucleic Acids Res.32(12), e99 (2004).
    [CrossRef] [PubMed]
  38. J. W. Lee, S. J. Sim, S. M. Cho, and J. Lee, “Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody,” Biosens. Bioelectron.20(7), 1422–1427 (2005).
    [CrossRef] [PubMed]
  39. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
    [CrossRef] [PubMed]
  40. Y. Higashimoto, S. Yamagishi, K. Nakamura, T. Matsui, M. Takeuchi, M. Noguchi, and H. Inoue, “In vitro selection of DNA aptamers that block toxic effects of AGE on cultured retinal pericytes,” Microvasc. Res.74(1), 65–69 (2007).
    [CrossRef] [PubMed]

2011

American Diabetes Association, “Standards of medical care in diabetes--2011,” Diabetes Care34(Suppl 1), S11–S61 (2011).
[CrossRef] [PubMed]

A. Abbas, M. J. Linman, and Q. A. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

C. W. Chi, Y. H. Lao, Y. S. Li, and L. C. Chen, “A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection,” Biosens. Bioelectron.26(7), 3346–3352 (2011).
[CrossRef] [PubMed]

G. H. Liang, S. Y. Cai, P. Zhang, Y. Y. Peng, H. Chen, S. Zhang, and J. L. Kong, “Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles,” Anal. Chim. Acta689(2), 243–249 (2011).
[CrossRef] [PubMed]

2010

C. Polonschii, S. David, S. Tombelli, M. Mascini, and M. Gheorghiu, “A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance,” Talanta80(5), 2157–2164 (2010).
[CrossRef] [PubMed]

2009

L. Q. Wang, L. Y. Li, Y. Xu, G. F. Cheng, P. A. He, and Y. Z. Fang, “Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation,” Talanta79(3), 557–561 (2009).
[CrossRef] [PubMed]

2008

V. Ostatná, H. Vaisocherová, J. Homola, and T. Hianik, “Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance,” Anal. Bioanal. Chem.391(5), 1861–1869 (2008).
[CrossRef] [PubMed]

J. T. Liu, L. Y. Chen, M. C. Shih, Y. Chang, and W. Y. Chen, “The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance,” Anal. Biochem.375(1), 90–96 (2008).
[CrossRef] [PubMed]

T. N. Higgins, “QA aspects for HbA1c measurements,” Clin. Biochem.41(1-2), 88–90 (2008).
[CrossRef] [PubMed]

2007

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett.4(4), 312–317 (2007).
[CrossRef]

Y. Higashimoto, S. Yamagishi, K. Nakamura, T. Matsui, M. Takeuchi, M. Noguchi, and H. Inoue, “In vitro selection of DNA aptamers that block toxic effects of AGE on cultured retinal pericytes,” Microvasc. Res.74(1), 65–69 (2007).
[CrossRef] [PubMed]

2006

B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, and K. W. Plaxco, “An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids,” J. Am. Chem. Soc.128(10), 3138–3139 (2006).
[CrossRef] [PubMed]

S. Balamurugan, A. Obubuafo, S. A. Soper, R. L. McCarley, and D. A. Spivak, “Designing highly specific biosensing surfaces using aptamer monolayers on gold,” Langmuir22(14), 6446–6453 (2006).
[CrossRef] [PubMed]

2005

N. Vigneshwaran, G. Bijukumar, N. Karmakar, S. Anand, and A. Misra, “Autofluorescence characterization of advanced glycation end products of hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc.61(1-2), 163–170 (2005).
[CrossRef] [PubMed]

J. W. Liu and Y. Lu, “Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles,” Angew. Chem. Int. Ed. Engl.45(1), 90–94 (2005).
[CrossRef] [PubMed]

Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor,” Angew. Chem. Int. Ed. Engl.44(34), 5456–5459 (2005).
[CrossRef] [PubMed]

X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, “Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization,” Langmuir21(1), 348–353 (2005).
[CrossRef] [PubMed]

H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc.127(34), 11906–11907 (2005).
[CrossRef] [PubMed]

Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor,” Angew. Chem.117(34), 5592–5595 (2005).
[CrossRef]

J. W. Lee, S. J. Sim, S. M. Cho, and J. Lee, “Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody,” Biosens. Bioelectron.20(7), 1422–1427 (2005).
[CrossRef] [PubMed]

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

2004

C. C. Chou, C. H. Chen, T. T. Lee, and K. Peck, “Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression,” Nucleic Acids Res.32(12), e99 (2004).
[CrossRef] [PubMed]

V. Pavlov, Y. Xiao, B. Shlyahovsky, and I. Willner, “Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin,” J. Am. Chem. Soc.126(38), 11768–11769 (2004).
[CrossRef] [PubMed]

H. A. Ho and M. Leclerc, “Optical sensors based on hybrid aptamer/conjugated polymer complexes,” J. Am. Chem. Soc.126(5), 1384–1387 (2004).
[CrossRef] [PubMed]

C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem.76(1), 78–85 (2004).
[CrossRef] [PubMed]

A. G. Renehan, M. Zwahlen, C. Minder, S. T. O’Dwyer, S. M. Shalet, and M. Egger, “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis,” Lancet363(9418), 1346–1353 (2004).
[CrossRef] [PubMed]

2002

D. B. Sacks, D. E. Bruns, D. E. Goldstein, N. K. Maclaren, J. M. McDonald, and M. Parrott, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care25(4), 750–786 (2002).
[CrossRef]

2001

M. N. Stojanovic, P. de Prada, and D. W. Landry, “Aptamer-based folding fluorescent sensor for cocaine,” J. Am. Chem. Soc.123(21), 4928–4931 (2001).
[CrossRef] [PubMed]

S. Skeie, G. Thue, and S. Sandberg, “Interpretation of hemoglobin A(1c) (HbA(1c)) values among diabetic patients: implications for quality specifications for HbA(1c),” Clin. Chem.47(7), 1212–1217 (2001).
[PubMed]

P. A. Behnisch, K. Hosoe, and S.-i. Sakai, “Bioanalytical screening methods for dioxins and dioxin-like compounds a review of bioassay/biomarker technology,” Environ. Int.27(5), 413–439 (2001).
[CrossRef] [PubMed]

1999

O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45(2), 165–177 (1999).
[PubMed]

1998

R. R. Little, H. M. Wiedmeyer, D. H. Huang, D. E. Goldstein, R. G. Parsons, R. Kowal, and M. Johnston, “A simple blood collection device for analysis of glycohemoglobin (GHB),” Clin. Chem.44(Suppl. 6), A139 (1998).

R. A. Potyrailo, R. C. Conrad, A. D. Ellington, and G. M. Hieftje, “Adapting selected nucleic acid ligands (aptamers) to biosensors,” Anal. Chem.70(16), 3419–3425 (1998).
[CrossRef] [PubMed]

1997

D. M. Tasset, M. F. Kubik, and W. Steiner, “Oligonucleotide inhibitors of human thrombin that bind distinct epitopes,” J. Mol. Biol.272(5), 688–698 (1997).
[CrossRef] [PubMed]

B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng.44(12), 1221–1227 (1997).
[CrossRef] [PubMed]

1994

J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.19(24), 2062–2064 (1994).
[CrossRef] [PubMed]

N. S. Kolatkar, G. S. Cembrowski, P. L. Callahan, and D. D. Etzwiler, “Intensive diabetes management requires very precise testing of glycohemoglobin,” Clin. Chem.40(8), 1608–1610 (1994).
[PubMed]

1992

L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature355(6360), 564–566 (1992).
[CrossRef] [PubMed]

E. M. Voss, G. S. Cembrowski, B. L. Clasen, M. L. Spencer, M. B. Ainslie, and B. Haig, “Evaluation of capillary collection system for HbA1c specimens,” Diabetes Care15(5), 700–701 (1992).
[CrossRef] [PubMed]

1990

A. D. S. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature346(6287), 818–822 (1990).
[CrossRef] [PubMed]

Abbas, A.

A. Abbas, M. J. Linman, and Q. A. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

Ainslie, M. B.

E. M. Voss, G. S. Cembrowski, B. L. Clasen, M. L. Spencer, M. B. Ainslie, and B. Haig, “Evaluation of capillary collection system for HbA1c specimens,” Diabetes Care15(5), 700–701 (1992).
[CrossRef] [PubMed]

Anand, S.

N. Vigneshwaran, G. Bijukumar, N. Karmakar, S. Anand, and A. Misra, “Autofluorescence characterization of advanced glycation end products of hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc.61(1-2), 163–170 (2005).
[CrossRef] [PubMed]

Baker, B. R.

B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, and K. W. Plaxco, “An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids,” J. Am. Chem. Soc.128(10), 3138–3139 (2006).
[CrossRef] [PubMed]

Balamurugan, S.

S. Balamurugan, A. Obubuafo, S. A. Soper, R. L. McCarley, and D. A. Spivak, “Designing highly specific biosensing surfaces using aptamer monolayers on gold,” Langmuir22(14), 6446–6453 (2006).
[CrossRef] [PubMed]

Behnisch, P. A.

P. A. Behnisch, K. Hosoe, and S.-i. Sakai, “Bioanalytical screening methods for dioxins and dioxin-like compounds a review of bioassay/biomarker technology,” Environ. Int.27(5), 413–439 (2001).
[CrossRef] [PubMed]

Bijukumar, G.

N. Vigneshwaran, G. Bijukumar, N. Karmakar, S. Anand, and A. Misra, “Autofluorescence characterization of advanced glycation end products of hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc.61(1-2), 163–170 (2005).
[CrossRef] [PubMed]

Bock, L. C.

L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature355(6360), 564–566 (1992).
[CrossRef] [PubMed]

Bruns, D. E.

D. B. Sacks, D. E. Bruns, D. E. Goldstein, N. K. Maclaren, J. M. McDonald, and M. Parrott, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care25(4), 750–786 (2002).
[CrossRef]

Cai, S. Y.

G. H. Liang, S. Y. Cai, P. Zhang, Y. Y. Peng, H. Chen, S. Zhang, and J. L. Kong, “Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles,” Anal. Chim. Acta689(2), 243–249 (2011).
[CrossRef] [PubMed]

Callahan, P. L.

N. S. Kolatkar, G. S. Cembrowski, P. L. Callahan, and D. D. Etzwiler, “Intensive diabetes management requires very precise testing of glycohemoglobin,” Clin. Chem.40(8), 1608–1610 (1994).
[PubMed]

Cameron, B. D.

B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng.44(12), 1221–1227 (1997).
[CrossRef] [PubMed]

Cembrowski, G. S.

N. S. Kolatkar, G. S. Cembrowski, P. L. Callahan, and D. D. Etzwiler, “Intensive diabetes management requires very precise testing of glycohemoglobin,” Clin. Chem.40(8), 1608–1610 (1994).
[PubMed]

E. M. Voss, G. S. Cembrowski, B. L. Clasen, M. L. Spencer, M. B. Ainslie, and B. Haig, “Evaluation of capillary collection system for HbA1c specimens,” Diabetes Care15(5), 700–701 (1992).
[CrossRef] [PubMed]

Chang, Y.

J. T. Liu, L. Y. Chen, M. C. Shih, Y. Chang, and W. Y. Chen, “The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance,” Anal. Biochem.375(1), 90–96 (2008).
[CrossRef] [PubMed]

Chen, C. H.

C. C. Chou, C. H. Chen, T. T. Lee, and K. Peck, “Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression,” Nucleic Acids Res.32(12), e99 (2004).
[CrossRef] [PubMed]

Chen, H.

G. H. Liang, S. Y. Cai, P. Zhang, Y. Y. Peng, H. Chen, S. Zhang, and J. L. Kong, “Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles,” Anal. Chim. Acta689(2), 243–249 (2011).
[CrossRef] [PubMed]

Chen, L. C.

C. W. Chi, Y. H. Lao, Y. S. Li, and L. C. Chen, “A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection,” Biosens. Bioelectron.26(7), 3346–3352 (2011).
[CrossRef] [PubMed]

Chen, L. Y.

J. T. Liu, L. Y. Chen, M. C. Shih, Y. Chang, and W. Y. Chen, “The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance,” Anal. Biochem.375(1), 90–96 (2008).
[CrossRef] [PubMed]

Chen, W. Y.

J. T. Liu, L. Y. Chen, M. C. Shih, Y. Chang, and W. Y. Chen, “The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance,” Anal. Biochem.375(1), 90–96 (2008).
[CrossRef] [PubMed]

Cheng, G. F.

L. Q. Wang, L. Y. Li, Y. Xu, G. F. Cheng, P. A. He, and Y. Z. Fang, “Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation,” Talanta79(3), 557–561 (2009).
[CrossRef] [PubMed]

Cheng, Q. A.

A. Abbas, M. J. Linman, and Q. A. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

Chi, C. W.

C. W. Chi, Y. H. Lao, Y. S. Li, and L. C. Chen, “A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection,” Biosens. Bioelectron.26(7), 3346–3352 (2011).
[CrossRef] [PubMed]

Cho, S. M.

J. W. Lee, S. J. Sim, S. M. Cho, and J. Lee, “Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody,” Biosens. Bioelectron.20(7), 1422–1427 (2005).
[CrossRef] [PubMed]

Chou, C. C.

C. C. Chou, C. H. Chen, T. T. Lee, and K. Peck, “Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression,” Nucleic Acids Res.32(12), e99 (2004).
[CrossRef] [PubMed]

Clasen, B. L.

E. M. Voss, G. S. Cembrowski, B. L. Clasen, M. L. Spencer, M. B. Ainslie, and B. Haig, “Evaluation of capillary collection system for HbA1c specimens,” Diabetes Care15(5), 700–701 (1992).
[CrossRef] [PubMed]

Conrad, R. C.

R. A. Potyrailo, R. C. Conrad, A. D. Ellington, and G. M. Hieftje, “Adapting selected nucleic acid ligands (aptamers) to biosensors,” Anal. Chem.70(16), 3419–3425 (1998).
[CrossRef] [PubMed]

Cóte, G. L.

B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng.44(12), 1221–1227 (1997).
[CrossRef] [PubMed]

David, S.

C. Polonschii, S. David, S. Tombelli, M. Mascini, and M. Gheorghiu, “A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance,” Talanta80(5), 2157–2164 (2010).
[CrossRef] [PubMed]

de Prada, P.

M. N. Stojanovic, P. de Prada, and D. W. Landry, “Aptamer-based folding fluorescent sensor for cocaine,” J. Am. Chem. Soc.123(21), 4928–4931 (2001).
[CrossRef] [PubMed]

Doctor, E. H.

B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, and K. W. Plaxco, “An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids,” J. Am. Chem. Soc.128(10), 3138–3139 (2006).
[CrossRef] [PubMed]

Egger, M.

A. G. Renehan, M. Zwahlen, C. Minder, S. T. O’Dwyer, S. M. Shalet, and M. Egger, “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis,” Lancet363(9418), 1346–1353 (2004).
[CrossRef] [PubMed]

Ellington, A. D.

R. A. Potyrailo, R. C. Conrad, A. D. Ellington, and G. M. Hieftje, “Adapting selected nucleic acid ligands (aptamers) to biosensors,” Anal. Chem.70(16), 3419–3425 (1998).
[CrossRef] [PubMed]

Ellington, A. D. S.

A. D. S. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature346(6287), 818–822 (1990).
[CrossRef] [PubMed]

Estroff, L. A.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Etzwiler, D. D.

N. S. Kolatkar, G. S. Cembrowski, P. L. Callahan, and D. D. Etzwiler, “Intensive diabetes management requires very precise testing of glycohemoglobin,” Clin. Chem.40(8), 1608–1610 (1994).
[PubMed]

Fang, Y. Z.

L. Q. Wang, L. Y. Li, Y. Xu, G. F. Cheng, P. A. He, and Y. Z. Fang, “Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation,” Talanta79(3), 557–561 (2009).
[CrossRef] [PubMed]

Fantini, S.

Franceschini, M. A.

Gheorghiu, M.

C. Polonschii, S. David, S. Tombelli, M. Mascini, and M. Gheorghiu, “A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance,” Talanta80(5), 2157–2164 (2010).
[CrossRef] [PubMed]

Ghosn, M. G.

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett.4(4), 312–317 (2007).
[CrossRef]

Goldstein, D. E.

D. B. Sacks, D. E. Bruns, D. E. Goldstein, N. K. Maclaren, J. M. McDonald, and M. Parrott, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care25(4), 750–786 (2002).
[CrossRef]

R. R. Little, H. M. Wiedmeyer, D. H. Huang, D. E. Goldstein, R. G. Parsons, R. Kowal, and M. Johnston, “A simple blood collection device for analysis of glycohemoglobin (GHB),” Clin. Chem.44(Suppl. 6), A139 (1998).

Granada, J. F.

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett.4(4), 312–317 (2007).
[CrossRef]

Gratton, E.

Griffin, L. C.

L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature355(6360), 564–566 (1992).
[CrossRef] [PubMed]

Haig, B.

E. M. Voss, G. S. Cembrowski, B. L. Clasen, M. L. Spencer, M. B. Ainslie, and B. Haig, “Evaluation of capillary collection system for HbA1c specimens,” Diabetes Care15(5), 700–701 (1992).
[CrossRef] [PubMed]

Haynes, C. L.

C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem.76(1), 78–85 (2004).
[CrossRef] [PubMed]

He, P. A.

L. Q. Wang, L. Y. Li, Y. Xu, G. F. Cheng, P. A. He, and Y. Z. Fang, “Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation,” Talanta79(3), 557–561 (2009).
[CrossRef] [PubMed]

Heeger, A. J.

B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, and K. W. Plaxco, “An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids,” J. Am. Chem. Soc.128(10), 3138–3139 (2006).
[CrossRef] [PubMed]

Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor,” Angew. Chem. Int. Ed. Engl.44(34), 5456–5459 (2005).
[CrossRef] [PubMed]

Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor,” Angew. Chem.117(34), 5592–5595 (2005).
[CrossRef]

Hianik, T.

V. Ostatná, H. Vaisocherová, J. Homola, and T. Hianik, “Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance,” Anal. Bioanal. Chem.391(5), 1861–1869 (2008).
[CrossRef] [PubMed]

Hieftje, G. M.

R. A. Potyrailo, R. C. Conrad, A. D. Ellington, and G. M. Hieftje, “Adapting selected nucleic acid ligands (aptamers) to biosensors,” Anal. Chem.70(16), 3419–3425 (1998).
[CrossRef] [PubMed]

Higashimoto, Y.

Y. Higashimoto, S. Yamagishi, K. Nakamura, T. Matsui, M. Takeuchi, M. Noguchi, and H. Inoue, “In vitro selection of DNA aptamers that block toxic effects of AGE on cultured retinal pericytes,” Microvasc. Res.74(1), 65–69 (2007).
[CrossRef] [PubMed]

Higgins, T. N.

T. N. Higgins, “QA aspects for HbA1c measurements,” Clin. Biochem.41(1-2), 88–90 (2008).
[CrossRef] [PubMed]

Ho, H. A.

H. A. Ho and M. Leclerc, “Optical sensors based on hybrid aptamer/conjugated polymer complexes,” J. Am. Chem. Soc.126(5), 1384–1387 (2004).
[CrossRef] [PubMed]

Homola, J.

V. Ostatná, H. Vaisocherová, J. Homola, and T. Hianik, “Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance,” Anal. Bioanal. Chem.391(5), 1861–1869 (2008).
[CrossRef] [PubMed]

Hosoe, K.

P. A. Behnisch, K. Hosoe, and S.-i. Sakai, “Bioanalytical screening methods for dioxins and dioxin-like compounds a review of bioassay/biomarker technology,” Environ. Int.27(5), 413–439 (2001).
[CrossRef] [PubMed]

Huang, D. H.

R. R. Little, H. M. Wiedmeyer, D. H. Huang, D. E. Goldstein, R. G. Parsons, R. Kowal, and M. Johnston, “A simple blood collection device for analysis of glycohemoglobin (GHB),” Clin. Chem.44(Suppl. 6), A139 (1998).

Inoue, H.

Y. Higashimoto, S. Yamagishi, K. Nakamura, T. Matsui, M. Takeuchi, M. Noguchi, and H. Inoue, “In vitro selection of DNA aptamers that block toxic effects of AGE on cultured retinal pericytes,” Microvasc. Res.74(1), 65–69 (2007).
[CrossRef] [PubMed]

Ivers, S. N.

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett.4(4), 312–317 (2007).
[CrossRef]

Johnston, M.

R. R. Little, H. M. Wiedmeyer, D. H. Huang, D. E. Goldstein, R. G. Parsons, R. Kowal, and M. Johnston, “A simple blood collection device for analysis of glycohemoglobin (GHB),” Clin. Chem.44(Suppl. 6), A139 (1998).

Karmakar, N.

N. Vigneshwaran, G. Bijukumar, N. Karmakar, S. Anand, and A. Misra, “Autofluorescence characterization of advanced glycation end products of hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc.61(1-2), 163–170 (2005).
[CrossRef] [PubMed]

Khalil, O. S.

O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45(2), 165–177 (1999).
[PubMed]

Kim, B. K.

H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc.127(34), 11906–11907 (2005).
[CrossRef] [PubMed]

Kim, H.

H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc.127(34), 11906–11907 (2005).
[CrossRef] [PubMed]

Kim, Y. H.

H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc.127(34), 11906–11907 (2005).
[CrossRef] [PubMed]

Knoll, W.

X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, “Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization,” Langmuir21(1), 348–353 (2005).
[CrossRef] [PubMed]

Kolatkar, N. S.

N. S. Kolatkar, G. S. Cembrowski, P. L. Callahan, and D. D. Etzwiler, “Intensive diabetes management requires very precise testing of glycohemoglobin,” Clin. Chem.40(8), 1608–1610 (1994).
[PubMed]

Kong, J. L.

G. H. Liang, S. Y. Cai, P. Zhang, Y. Y. Peng, H. Chen, S. Zhang, and J. L. Kong, “Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles,” Anal. Chim. Acta689(2), 243–249 (2011).
[CrossRef] [PubMed]

Kowal, R.

R. R. Little, H. M. Wiedmeyer, D. H. Huang, D. E. Goldstein, R. G. Parsons, R. Kowal, and M. Johnston, “A simple blood collection device for analysis of glycohemoglobin (GHB),” Clin. Chem.44(Suppl. 6), A139 (1998).

Kriebel, J. K.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Kubik, M. F.

D. M. Tasset, M. F. Kubik, and W. Steiner, “Oligonucleotide inhibitors of human thrombin that bind distinct epitopes,” J. Mol. Biol.272(5), 688–698 (1997).
[CrossRef] [PubMed]

Lai, R. Y.

B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, and K. W. Plaxco, “An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids,” J. Am. Chem. Soc.128(10), 3138–3139 (2006).
[CrossRef] [PubMed]

Landry, D. W.

M. N. Stojanovic, P. de Prada, and D. W. Landry, “Aptamer-based folding fluorescent sensor for cocaine,” J. Am. Chem. Soc.123(21), 4928–4931 (2001).
[CrossRef] [PubMed]

Lao, Y. H.

C. W. Chi, Y. H. Lao, Y. S. Li, and L. C. Chen, “A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection,” Biosens. Bioelectron.26(7), 3346–3352 (2011).
[CrossRef] [PubMed]

Larin, K. V.

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett.4(4), 312–317 (2007).
[CrossRef]

Latham, J. A.

L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature355(6360), 564–566 (1992).
[CrossRef] [PubMed]

Leclerc, M.

H. A. Ho and M. Leclerc, “Optical sensors based on hybrid aptamer/conjugated polymer complexes,” J. Am. Chem. Soc.126(5), 1384–1387 (2004).
[CrossRef] [PubMed]

Lee, J.

J. W. Lee, S. J. Sim, S. M. Cho, and J. Lee, “Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody,” Biosens. Bioelectron.20(7), 1422–1427 (2005).
[CrossRef] [PubMed]

Lee, J. O.

H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc.127(34), 11906–11907 (2005).
[CrossRef] [PubMed]

Lee, J. W.

J. W. Lee, S. J. Sim, S. M. Cho, and J. Lee, “Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody,” Biosens. Bioelectron.20(7), 1422–1427 (2005).
[CrossRef] [PubMed]

Lee, T. T.

C. C. Chou, C. H. Chen, T. T. Lee, and K. Peck, “Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression,” Nucleic Acids Res.32(12), e99 (2004).
[CrossRef] [PubMed]

Li, L. Y.

L. Q. Wang, L. Y. Li, Y. Xu, G. F. Cheng, P. A. He, and Y. Z. Fang, “Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation,” Talanta79(3), 557–561 (2009).
[CrossRef] [PubMed]

Li, Y. S.

C. W. Chi, Y. H. Lao, Y. S. Li, and L. C. Chen, “A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection,” Biosens. Bioelectron.26(7), 3346–3352 (2011).
[CrossRef] [PubMed]

Liang, G. H.

G. H. Liang, S. Y. Cai, P. Zhang, Y. Y. Peng, H. Chen, S. Zhang, and J. L. Kong, “Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles,” Anal. Chim. Acta689(2), 243–249 (2011).
[CrossRef] [PubMed]

Linman, M. J.

A. Abbas, M. J. Linman, and Q. A. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

Little, R. R.

R. R. Little, H. M. Wiedmeyer, D. H. Huang, D. E. Goldstein, R. G. Parsons, R. Kowal, and M. Johnston, “A simple blood collection device for analysis of glycohemoglobin (GHB),” Clin. Chem.44(Suppl. 6), A139 (1998).

Liu, J. T.

J. T. Liu, L. Y. Chen, M. C. Shih, Y. Chang, and W. Y. Chen, “The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance,” Anal. Biochem.375(1), 90–96 (2008).
[CrossRef] [PubMed]

Liu, J. W.

J. W. Liu and Y. Lu, “Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles,” Angew. Chem. Int. Ed. Engl.45(1), 90–94 (2005).
[CrossRef] [PubMed]

Love, J. C.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Lu, Y.

J. W. Liu and Y. Lu, “Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles,” Angew. Chem. Int. Ed. Engl.45(1), 90–94 (2005).
[CrossRef] [PubMed]

Lubin, A. A.

Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor,” Angew. Chem. Int. Ed. Engl.44(34), 5456–5459 (2005).
[CrossRef] [PubMed]

Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor,” Angew. Chem.117(34), 5592–5595 (2005).
[CrossRef]

Maclaren, N. K.

D. B. Sacks, D. E. Bruns, D. E. Goldstein, N. K. Maclaren, J. M. McDonald, and M. Parrott, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care25(4), 750–786 (2002).
[CrossRef]

Maier, J. S.

Mascini, M.

C. Polonschii, S. David, S. Tombelli, M. Mascini, and M. Gheorghiu, “A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance,” Talanta80(5), 2157–2164 (2010).
[CrossRef] [PubMed]

Matsui, T.

Y. Higashimoto, S. Yamagishi, K. Nakamura, T. Matsui, M. Takeuchi, M. Noguchi, and H. Inoue, “In vitro selection of DNA aptamers that block toxic effects of AGE on cultured retinal pericytes,” Microvasc. Res.74(1), 65–69 (2007).
[CrossRef] [PubMed]

McCarley, R. L.

S. Balamurugan, A. Obubuafo, S. A. Soper, R. L. McCarley, and D. A. Spivak, “Designing highly specific biosensing surfaces using aptamer monolayers on gold,” Langmuir22(14), 6446–6453 (2006).
[CrossRef] [PubMed]

McDonald, J. M.

D. B. Sacks, D. E. Bruns, D. E. Goldstein, N. K. Maclaren, J. M. McDonald, and M. Parrott, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care25(4), 750–786 (2002).
[CrossRef]

Minder, C.

A. G. Renehan, M. Zwahlen, C. Minder, S. T. O’Dwyer, S. M. Shalet, and M. Egger, “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis,” Lancet363(9418), 1346–1353 (2004).
[CrossRef] [PubMed]

Misra, A.

N. Vigneshwaran, G. Bijukumar, N. Karmakar, S. Anand, and A. Misra, “Autofluorescence characterization of advanced glycation end products of hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc.61(1-2), 163–170 (2005).
[CrossRef] [PubMed]

Na, P. S.

H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc.127(34), 11906–11907 (2005).
[CrossRef] [PubMed]

Nakamura, K.

Y. Higashimoto, S. Yamagishi, K. Nakamura, T. Matsui, M. Takeuchi, M. Noguchi, and H. Inoue, “In vitro selection of DNA aptamers that block toxic effects of AGE on cultured retinal pericytes,” Microvasc. Res.74(1), 65–69 (2007).
[CrossRef] [PubMed]

Noguchi, M.

Y. Higashimoto, S. Yamagishi, K. Nakamura, T. Matsui, M. Takeuchi, M. Noguchi, and H. Inoue, “In vitro selection of DNA aptamers that block toxic effects of AGE on cultured retinal pericytes,” Microvasc. Res.74(1), 65–69 (2007).
[CrossRef] [PubMed]

Nuzzo, R. G.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

O’Dwyer, S. T.

A. G. Renehan, M. Zwahlen, C. Minder, S. T. O’Dwyer, S. M. Shalet, and M. Egger, “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis,” Lancet363(9418), 1346–1353 (2004).
[CrossRef] [PubMed]

Obubuafo, A.

S. Balamurugan, A. Obubuafo, S. A. Soper, R. L. McCarley, and D. A. Spivak, “Designing highly specific biosensing surfaces using aptamer monolayers on gold,” Langmuir22(14), 6446–6453 (2006).
[CrossRef] [PubMed]

Ostatná, V.

V. Ostatná, H. Vaisocherová, J. Homola, and T. Hianik, “Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance,” Anal. Bioanal. Chem.391(5), 1861–1869 (2008).
[CrossRef] [PubMed]

Parrott, M.

D. B. Sacks, D. E. Bruns, D. E. Goldstein, N. K. Maclaren, J. M. McDonald, and M. Parrott, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care25(4), 750–786 (2002).
[CrossRef]

Parsons, R. G.

R. R. Little, H. M. Wiedmeyer, D. H. Huang, D. E. Goldstein, R. G. Parsons, R. Kowal, and M. Johnston, “A simple blood collection device for analysis of glycohemoglobin (GHB),” Clin. Chem.44(Suppl. 6), A139 (1998).

Pavlov, V.

V. Pavlov, Y. Xiao, B. Shlyahovsky, and I. Willner, “Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin,” J. Am. Chem. Soc.126(38), 11768–11769 (2004).
[CrossRef] [PubMed]

Peck, K.

C. C. Chou, C. H. Chen, T. T. Lee, and K. Peck, “Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression,” Nucleic Acids Res.32(12), e99 (2004).
[CrossRef] [PubMed]

Peng, Y. Y.

G. H. Liang, S. Y. Cai, P. Zhang, Y. Y. Peng, H. Chen, S. Zhang, and J. L. Kong, “Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles,” Anal. Chim. Acta689(2), 243–249 (2011).
[CrossRef] [PubMed]

Plaxco, K. W.

B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, and K. W. Plaxco, “An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids,” J. Am. Chem. Soc.128(10), 3138–3139 (2006).
[CrossRef] [PubMed]

Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor,” Angew. Chem. Int. Ed. Engl.44(34), 5456–5459 (2005).
[CrossRef] [PubMed]

Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor,” Angew. Chem.117(34), 5592–5595 (2005).
[CrossRef]

Polonschii, C.

C. Polonschii, S. David, S. Tombelli, M. Mascini, and M. Gheorghiu, “A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance,” Talanta80(5), 2157–2164 (2010).
[CrossRef] [PubMed]

Potyrailo, R. A.

R. A. Potyrailo, R. C. Conrad, A. D. Ellington, and G. M. Hieftje, “Adapting selected nucleic acid ligands (aptamers) to biosensors,” Anal. Chem.70(16), 3419–3425 (1998).
[CrossRef] [PubMed]

Renehan, A. G.

A. G. Renehan, M. Zwahlen, C. Minder, S. T. O’Dwyer, S. M. Shalet, and M. Egger, “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis,” Lancet363(9418), 1346–1353 (2004).
[CrossRef] [PubMed]

Robelek, R.

X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, “Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization,” Langmuir21(1), 348–353 (2005).
[CrossRef] [PubMed]

Ryu, B. H.

H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc.127(34), 11906–11907 (2005).
[CrossRef] [PubMed]

Sacks, D. B.

D. B. Sacks, D. E. Bruns, D. E. Goldstein, N. K. Maclaren, J. M. McDonald, and M. Parrott, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care25(4), 750–786 (2002).
[CrossRef]

Sakai, S.-i.

P. A. Behnisch, K. Hosoe, and S.-i. Sakai, “Bioanalytical screening methods for dioxins and dioxin-like compounds a review of bioassay/biomarker technology,” Environ. Int.27(5), 413–439 (2001).
[CrossRef] [PubMed]

Sandberg, S.

S. Skeie, G. Thue, and S. Sandberg, “Interpretation of hemoglobin A(1c) (HbA(1c)) values among diabetic patients: implications for quality specifications for HbA(1c),” Clin. Chem.47(7), 1212–1217 (2001).
[PubMed]

Shalet, S. M.

A. G. Renehan, M. Zwahlen, C. Minder, S. T. O’Dwyer, S. M. Shalet, and M. Egger, “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis,” Lancet363(9418), 1346–1353 (2004).
[CrossRef] [PubMed]

Shih, M. C.

J. T. Liu, L. Y. Chen, M. C. Shih, Y. Chang, and W. Y. Chen, “The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance,” Anal. Biochem.375(1), 90–96 (2008).
[CrossRef] [PubMed]

Shlyahovsky, B.

V. Pavlov, Y. Xiao, B. Shlyahovsky, and I. Willner, “Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin,” J. Am. Chem. Soc.126(38), 11768–11769 (2004).
[CrossRef] [PubMed]

Sim, S. J.

J. W. Lee, S. J. Sim, S. M. Cho, and J. Lee, “Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody,” Biosens. Bioelectron.20(7), 1422–1427 (2005).
[CrossRef] [PubMed]

Skeie, S.

S. Skeie, G. Thue, and S. Sandberg, “Interpretation of hemoglobin A(1c) (HbA(1c)) values among diabetic patients: implications for quality specifications for HbA(1c),” Clin. Chem.47(7), 1212–1217 (2001).
[PubMed]

So, H. M.

H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc.127(34), 11906–11907 (2005).
[CrossRef] [PubMed]

Soper, S. A.

S. Balamurugan, A. Obubuafo, S. A. Soper, R. L. McCarley, and D. A. Spivak, “Designing highly specific biosensing surfaces using aptamer monolayers on gold,” Langmuir22(14), 6446–6453 (2006).
[CrossRef] [PubMed]

Spencer, M. L.

E. M. Voss, G. S. Cembrowski, B. L. Clasen, M. L. Spencer, M. B. Ainslie, and B. Haig, “Evaluation of capillary collection system for HbA1c specimens,” Diabetes Care15(5), 700–701 (1992).
[CrossRef] [PubMed]

Spivak, D. A.

S. Balamurugan, A. Obubuafo, S. A. Soper, R. L. McCarley, and D. A. Spivak, “Designing highly specific biosensing surfaces using aptamer monolayers on gold,” Langmuir22(14), 6446–6453 (2006).
[CrossRef] [PubMed]

Steiner, W.

D. M. Tasset, M. F. Kubik, and W. Steiner, “Oligonucleotide inhibitors of human thrombin that bind distinct epitopes,” J. Mol. Biol.272(5), 688–698 (1997).
[CrossRef] [PubMed]

Stojanovic, M. N.

M. N. Stojanovic, P. de Prada, and D. W. Landry, “Aptamer-based folding fluorescent sensor for cocaine,” J. Am. Chem. Soc.123(21), 4928–4931 (2001).
[CrossRef] [PubMed]

Su, X. D.

X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, “Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization,” Langmuir21(1), 348–353 (2005).
[CrossRef] [PubMed]

Szostak, J. W.

A. D. S. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature346(6287), 818–822 (1990).
[CrossRef] [PubMed]

Takeuchi, M.

Y. Higashimoto, S. Yamagishi, K. Nakamura, T. Matsui, M. Takeuchi, M. Noguchi, and H. Inoue, “In vitro selection of DNA aptamers that block toxic effects of AGE on cultured retinal pericytes,” Microvasc. Res.74(1), 65–69 (2007).
[CrossRef] [PubMed]

Tasset, D. M.

D. M. Tasset, M. F. Kubik, and W. Steiner, “Oligonucleotide inhibitors of human thrombin that bind distinct epitopes,” J. Mol. Biol.272(5), 688–698 (1997).
[CrossRef] [PubMed]

Tellez, A.

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett.4(4), 312–317 (2007).
[CrossRef]

Thue, G.

S. Skeie, G. Thue, and S. Sandberg, “Interpretation of hemoglobin A(1c) (HbA(1c)) values among diabetic patients: implications for quality specifications for HbA(1c),” Clin. Chem.47(7), 1212–1217 (2001).
[PubMed]

Tombelli, S.

C. Polonschii, S. David, S. Tombelli, M. Mascini, and M. Gheorghiu, “A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance,” Talanta80(5), 2157–2164 (2010).
[CrossRef] [PubMed]

Toole, J. J.

L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature355(6360), 564–566 (1992).
[CrossRef] [PubMed]

Vaisocherová, H.

V. Ostatná, H. Vaisocherová, J. Homola, and T. Hianik, “Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance,” Anal. Bioanal. Chem.391(5), 1861–1869 (2008).
[CrossRef] [PubMed]

Van Duyne, R. P.

C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem.76(1), 78–85 (2004).
[CrossRef] [PubMed]

Vermaas, E. H.

L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature355(6360), 564–566 (1992).
[CrossRef] [PubMed]

Vigneshwaran, N.

N. Vigneshwaran, G. Bijukumar, N. Karmakar, S. Anand, and A. Misra, “Autofluorescence characterization of advanced glycation end products of hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc.61(1-2), 163–170 (2005).
[CrossRef] [PubMed]

Voss, E. M.

E. M. Voss, G. S. Cembrowski, B. L. Clasen, M. L. Spencer, M. B. Ainslie, and B. Haig, “Evaluation of capillary collection system for HbA1c specimens,” Diabetes Care15(5), 700–701 (1992).
[CrossRef] [PubMed]

Walker, S. A.

Walsh, J. T.

C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem.76(1), 78–85 (2004).
[CrossRef] [PubMed]

Wang, L. Q.

L. Q. Wang, L. Y. Li, Y. Xu, G. F. Cheng, P. A. He, and Y. Z. Fang, “Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation,” Talanta79(3), 557–561 (2009).
[CrossRef] [PubMed]

Whitesides, G. M.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Wiedmeyer, H. M.

R. R. Little, H. M. Wiedmeyer, D. H. Huang, D. E. Goldstein, R. G. Parsons, R. Kowal, and M. Johnston, “A simple blood collection device for analysis of glycohemoglobin (GHB),” Clin. Chem.44(Suppl. 6), A139 (1998).

Willner, I.

V. Pavlov, Y. Xiao, B. Shlyahovsky, and I. Willner, “Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin,” J. Am. Chem. Soc.126(38), 11768–11769 (2004).
[CrossRef] [PubMed]

Won, K.

H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc.127(34), 11906–11907 (2005).
[CrossRef] [PubMed]

Wood, M. S.

B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, and K. W. Plaxco, “An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids,” J. Am. Chem. Soc.128(10), 3138–3139 (2006).
[CrossRef] [PubMed]

Wu, Y. J.

X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, “Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization,” Langmuir21(1), 348–353 (2005).
[CrossRef] [PubMed]

Xiao, Y.

Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor,” Angew. Chem. Int. Ed. Engl.44(34), 5456–5459 (2005).
[CrossRef] [PubMed]

Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor,” Angew. Chem.117(34), 5592–5595 (2005).
[CrossRef]

V. Pavlov, Y. Xiao, B. Shlyahovsky, and I. Willner, “Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin,” J. Am. Chem. Soc.126(38), 11768–11769 (2004).
[CrossRef] [PubMed]

Xu, Y.

L. Q. Wang, L. Y. Li, Y. Xu, G. F. Cheng, P. A. He, and Y. Z. Fang, “Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation,” Talanta79(3), 557–561 (2009).
[CrossRef] [PubMed]

Yamagishi, S.

Y. Higashimoto, S. Yamagishi, K. Nakamura, T. Matsui, M. Takeuchi, M. Noguchi, and H. Inoue, “In vitro selection of DNA aptamers that block toxic effects of AGE on cultured retinal pericytes,” Microvasc. Res.74(1), 65–69 (2007).
[CrossRef] [PubMed]

Yonzon, C. R.

C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem.76(1), 78–85 (2004).
[CrossRef] [PubMed]

Zhang, P.

G. H. Liang, S. Y. Cai, P. Zhang, Y. Y. Peng, H. Chen, S. Zhang, and J. L. Kong, “Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles,” Anal. Chim. Acta689(2), 243–249 (2011).
[CrossRef] [PubMed]

Zhang, S.

G. H. Liang, S. Y. Cai, P. Zhang, Y. Y. Peng, H. Chen, S. Zhang, and J. L. Kong, “Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles,” Anal. Chim. Acta689(2), 243–249 (2011).
[CrossRef] [PubMed]

Zhang, X. Y.

C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem.76(1), 78–85 (2004).
[CrossRef] [PubMed]

Zwahlen, M.

A. G. Renehan, M. Zwahlen, C. Minder, S. T. O’Dwyer, S. M. Shalet, and M. Egger, “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis,” Lancet363(9418), 1346–1353 (2004).
[CrossRef] [PubMed]

Anal. Bioanal. Chem.

V. Ostatná, H. Vaisocherová, J. Homola, and T. Hianik, “Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance,” Anal. Bioanal. Chem.391(5), 1861–1869 (2008).
[CrossRef] [PubMed]

Anal. Biochem.

J. T. Liu, L. Y. Chen, M. C. Shih, Y. Chang, and W. Y. Chen, “The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance,” Anal. Biochem.375(1), 90–96 (2008).
[CrossRef] [PubMed]

Anal. Chem.

C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem.76(1), 78–85 (2004).
[CrossRef] [PubMed]

R. A. Potyrailo, R. C. Conrad, A. D. Ellington, and G. M. Hieftje, “Adapting selected nucleic acid ligands (aptamers) to biosensors,” Anal. Chem.70(16), 3419–3425 (1998).
[CrossRef] [PubMed]

Anal. Chim. Acta

G. H. Liang, S. Y. Cai, P. Zhang, Y. Y. Peng, H. Chen, S. Zhang, and J. L. Kong, “Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles,” Anal. Chim. Acta689(2), 243–249 (2011).
[CrossRef] [PubMed]

Angew. Chem.

Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor,” Angew. Chem.117(34), 5592–5595 (2005).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

J. W. Liu and Y. Lu, “Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles,” Angew. Chem. Int. Ed. Engl.45(1), 90–94 (2005).
[CrossRef] [PubMed]

Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor,” Angew. Chem. Int. Ed. Engl.44(34), 5456–5459 (2005).
[CrossRef] [PubMed]

Biosens. Bioelectron.

A. Abbas, M. J. Linman, and Q. A. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

C. W. Chi, Y. H. Lao, Y. S. Li, and L. C. Chen, “A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection,” Biosens. Bioelectron.26(7), 3346–3352 (2011).
[CrossRef] [PubMed]

J. W. Lee, S. J. Sim, S. M. Cho, and J. Lee, “Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody,” Biosens. Bioelectron.20(7), 1422–1427 (2005).
[CrossRef] [PubMed]

Chem. Rev.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Clin. Biochem.

T. N. Higgins, “QA aspects for HbA1c measurements,” Clin. Biochem.41(1-2), 88–90 (2008).
[CrossRef] [PubMed]

Clin. Chem.

O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45(2), 165–177 (1999).
[PubMed]

R. R. Little, H. M. Wiedmeyer, D. H. Huang, D. E. Goldstein, R. G. Parsons, R. Kowal, and M. Johnston, “A simple blood collection device for analysis of glycohemoglobin (GHB),” Clin. Chem.44(Suppl. 6), A139 (1998).

S. Skeie, G. Thue, and S. Sandberg, “Interpretation of hemoglobin A(1c) (HbA(1c)) values among diabetic patients: implications for quality specifications for HbA(1c),” Clin. Chem.47(7), 1212–1217 (2001).
[PubMed]

N. S. Kolatkar, G. S. Cembrowski, P. L. Callahan, and D. D. Etzwiler, “Intensive diabetes management requires very precise testing of glycohemoglobin,” Clin. Chem.40(8), 1608–1610 (1994).
[PubMed]

Diabetes Care

E. M. Voss, G. S. Cembrowski, B. L. Clasen, M. L. Spencer, M. B. Ainslie, and B. Haig, “Evaluation of capillary collection system for HbA1c specimens,” Diabetes Care15(5), 700–701 (1992).
[CrossRef] [PubMed]

American Diabetes Association, “Standards of medical care in diabetes--2011,” Diabetes Care34(Suppl 1), S11–S61 (2011).
[CrossRef] [PubMed]

D. B. Sacks, D. E. Bruns, D. E. Goldstein, N. K. Maclaren, J. M. McDonald, and M. Parrott, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care25(4), 750–786 (2002).
[CrossRef]

Environ. Int.

P. A. Behnisch, K. Hosoe, and S.-i. Sakai, “Bioanalytical screening methods for dioxins and dioxin-like compounds a review of bioassay/biomarker technology,” Environ. Int.27(5), 413–439 (2001).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng.

B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng.44(12), 1221–1227 (1997).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, and K. W. Plaxco, “An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids,” J. Am. Chem. Soc.128(10), 3138–3139 (2006).
[CrossRef] [PubMed]

H. A. Ho and M. Leclerc, “Optical sensors based on hybrid aptamer/conjugated polymer complexes,” J. Am. Chem. Soc.126(5), 1384–1387 (2004).
[CrossRef] [PubMed]

V. Pavlov, Y. Xiao, B. Shlyahovsky, and I. Willner, “Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin,” J. Am. Chem. Soc.126(38), 11768–11769 (2004).
[CrossRef] [PubMed]

H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc.127(34), 11906–11907 (2005).
[CrossRef] [PubMed]

M. N. Stojanovic, P. de Prada, and D. W. Landry, “Aptamer-based folding fluorescent sensor for cocaine,” J. Am. Chem. Soc.123(21), 4928–4931 (2001).
[CrossRef] [PubMed]

J. Mol. Biol.

D. M. Tasset, M. F. Kubik, and W. Steiner, “Oligonucleotide inhibitors of human thrombin that bind distinct epitopes,” J. Mol. Biol.272(5), 688–698 (1997).
[CrossRef] [PubMed]

Lancet

A. G. Renehan, M. Zwahlen, C. Minder, S. T. O’Dwyer, S. M. Shalet, and M. Egger, “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis,” Lancet363(9418), 1346–1353 (2004).
[CrossRef] [PubMed]

Langmuir

X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, “Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization,” Langmuir21(1), 348–353 (2005).
[CrossRef] [PubMed]

S. Balamurugan, A. Obubuafo, S. A. Soper, R. L. McCarley, and D. A. Spivak, “Designing highly specific biosensing surfaces using aptamer monolayers on gold,” Langmuir22(14), 6446–6453 (2006).
[CrossRef] [PubMed]

Laser Phys. Lett.

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett.4(4), 312–317 (2007).
[CrossRef]

Microvasc. Res.

Y. Higashimoto, S. Yamagishi, K. Nakamura, T. Matsui, M. Takeuchi, M. Noguchi, and H. Inoue, “In vitro selection of DNA aptamers that block toxic effects of AGE on cultured retinal pericytes,” Microvasc. Res.74(1), 65–69 (2007).
[CrossRef] [PubMed]

Nature

L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature355(6360), 564–566 (1992).
[CrossRef] [PubMed]

A. D. S. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature346(6287), 818–822 (1990).
[CrossRef] [PubMed]

Nucleic Acids Res.

C. C. Chou, C. H. Chen, T. T. Lee, and K. Peck, “Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression,” Nucleic Acids Res.32(12), e99 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Spectrochim. Acta A Mol. Biomol. Spectrosc.

N. Vigneshwaran, G. Bijukumar, N. Karmakar, S. Anand, and A. Misra, “Autofluorescence characterization of advanced glycation end products of hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc.61(1-2), 163–170 (2005).
[CrossRef] [PubMed]

Talanta

L. Q. Wang, L. Y. Li, Y. Xu, G. F. Cheng, P. A. He, and Y. Z. Fang, “Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation,” Talanta79(3), 557–561 (2009).
[CrossRef] [PubMed]

C. Polonschii, S. David, S. Tombelli, M. Mascini, and M. Gheorghiu, “A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance,” Talanta80(5), 2157–2164 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the sensing surface functionalization procedure.

Fig. 2
Fig. 2

Nyquist plots of impedance spectra obtained in 100 mM PB solution (pH 7.2) containing 5 mM Fe(CN)63-/Fe(CN)64-: (A) Bare Au; (B) Au/MPA/EDC-NHS/EA/PPA; (C) Au/MPA/EDC-NHS/EA/PPA/APT1. The right plot shows the (Ret) of each layers. Impedance spectra were collected in the frequency range from 0.1 Hz to 100 kHz with a potential amplitude of 5 mV rms at 10 points per decade.

Fig. 3
Fig. 3

Aptamer/thrombin binding ratio in mol by the MBs coupling method.

Fig. 4
Fig. 4

SPR response of bare Au and aptamer-modified sensors. All data points were averaged from 3 experimental data readings. Samples were thrombin only (top plot) and thrombin with 400 nM BSA (bottom plot). The inlay plots are same data plotted on logarithmic scale to allow for better visualization at lower concentrations.

Fig. 5
Fig. 5

SPR responses of different sensing surfaces for 400 nM BSA (BSA group), 500 nM thrombin (Thrombin group), and 500 nM thrombin with 400 nM BSA (Thrombin + BSA group). The error bars represent the standard deviation of the values determined from three freshly prepared samples.

Fig. 6
Fig. 6

SPR responses of different sensing surfaces for 50 nM, 250 nM, 500 nM thrombin with and without 400 nM BSA, upper axis (APT1), lower axis (APT2); The zero position of lower axis has been shifted intentionally to better distinguish between data points that would be overlapping.

Metrics