Abstract

Volumetric imaging of the Optic Nerve Head (ONH) morphometry with Optical Coherence Tomography (OCT) requires dense sampling and relatively long acquisition times. Compressive Sampling (CS) is an emerging technique to reduce volume acquisition time with minimal image degradation by sparsely sampling the object and reconstructing the missing data in software. In this report, we demonstrated real-time CS-OCT for volumetric imaging of the ONH using a 1060nm Swept-Source OCT prototype. We also showed that registration and averaging of CS-recovered volumes enhanced visualization of deep structures of the sclera and lamina cribrosa. This work validates CS-OCT as a means for reducing volume acquisition time and for preserving high-resolution in volume-averaged images. Compressive sampling can be integrated into new and existing OCT systems without changes to the optics, requiring only software changes and post-processing of acquired data.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. G. Savini, M. Carbonelli, and P. Barboni, “Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma,” Curr. Opin. Ophthalmol.22(2), 115–123 (2011).
    [CrossRef] [PubMed]
  3. J. Chen and L. Lee, “Clinical applications and new developments of optical coherence tomography: an evidence-based review,” Clin. Exp. Optom.90(5), 317–335 (2007).
    [CrossRef] [PubMed]
  4. J. F. Arevalo, A. J. Mendoza, C. F. Fernandez, J. G. Sanchez, and A. Reinaldo, “Clinical applications of optical coherence tomography in macular diseases,” in Retinal Angiography and Optical Coherence Tomography (Springer 2009), pp. 223-238.
  5. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
    [CrossRef] [PubMed]
  6. S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI 200, Vol. 5761 of Lecture Notes in Computer Science (Springer, 2009), pp. 100–107 .
  7. N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol.95(6), 804–810 (2011).
    [CrossRef] [PubMed]
  8. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]
  9. E. Lebed, P. J. Mackenzie, M. V. Sarunic, and M. F. Beg, “Rapid volumetric OCT image acquisition using compressive sampling,” Opt. Express18(20), 21003–21012 (2010).
    [CrossRef] [PubMed]
  10. I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Comm. Pure Appl. Math. 11, 1413–1457 (2004), http://dx.doi.org/10.1002/cpa.20042 .
  11. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52(2), 489–509 (2006).
    [CrossRef]
  12. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52(4), 1289–1306 (2006).
    [CrossRef]

2011 (3)

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol.95(6), 804–810 (2011).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

G. Savini, M. Carbonelli, and P. Barboni, “Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma,” Curr. Opin. Ophthalmol.22(2), 115–123 (2011).
[CrossRef] [PubMed]

2010 (1)

2007 (1)

J. Chen and L. Lee, “Clinical applications and new developments of optical coherence tomography: an evidence-based review,” Clin. Exp. Optom.90(5), 317–335 (2007).
[CrossRef] [PubMed]

2006 (2)

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52(2), 489–509 (2006).
[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52(4), 1289–1306 (2006).
[CrossRef]

2004 (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Aboul-Enein, F. C.

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol.95(6), 804–810 (2011).
[CrossRef] [PubMed]

Barboni, P.

G. Savini, M. Carbonelli, and P. Barboni, “Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma,” Curr. Opin. Ophthalmol.22(2), 115–123 (2011).
[CrossRef] [PubMed]

Beg, M. F.

Beutelspacher, S. C.

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol.95(6), 804–810 (2011).
[CrossRef] [PubMed]

Biedermann, B. R.

Candès, E. J.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52(2), 489–509 (2006).
[CrossRef]

Carbonelli, M.

G. Savini, M. Carbonelli, and P. Barboni, “Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma,” Curr. Opin. Ophthalmol.22(2), 115–123 (2011).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, J.

J. Chen and L. Lee, “Clinical applications and new developments of optical coherence tomography: an evidence-based review,” Clin. Exp. Optom.90(5), 317–335 (2007).
[CrossRef] [PubMed]

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52(4), 1289–1306 (2006).
[CrossRef]

Eigenwillig, C. M.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Huber, R.

Kircher, K.

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol.95(6), 804–810 (2011).
[CrossRef] [PubMed]

Klein, T.

Lebed, E.

Lee, L.

J. Chen and L. Lee, “Clinical applications and new developments of optical coherence tomography: an evidence-based review,” Clin. Exp. Optom.90(5), 317–335 (2007).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Mackenzie, P. J.

Macknik, S. L.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Reitner, A.

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol.95(6), 804–810 (2011).
[CrossRef] [PubMed]

Romberg, J.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52(2), 489–509 (2006).
[CrossRef]

Sarunic, M. V.

Savini, G.

G. Savini, M. Carbonelli, and P. Barboni, “Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma,” Curr. Opin. Ophthalmol.22(2), 115–123 (2011).
[CrossRef] [PubMed]

Schmidt-Erfurth, U.

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol.95(6), 804–810 (2011).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Serbecic, N.

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol.95(6), 804–810 (2011).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tao, T.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52(2), 489–509 (2006).
[CrossRef]

Wieser, W.

Br. J. Ophthalmol. (1)

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol.95(6), 804–810 (2011).
[CrossRef] [PubMed]

Clin. Exp. Optom. (1)

J. Chen and L. Lee, “Clinical applications and new developments of optical coherence tomography: an evidence-based review,” Clin. Exp. Optom.90(5), 317–335 (2007).
[CrossRef] [PubMed]

Curr. Opin. Ophthalmol. (1)

G. Savini, M. Carbonelli, and P. Barboni, “Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma,” Curr. Opin. Ophthalmol.22(2), 115–123 (2011).
[CrossRef] [PubMed]

IEEE Trans. Inf. Theory (2)

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52(2), 489–509 (2006).
[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52(4), 1289–1306 (2006).
[CrossRef]

Nat. Rev. Neurosci. (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (3)

J. F. Arevalo, A. J. Mendoza, C. F. Fernandez, J. G. Sanchez, and A. Reinaldo, “Clinical applications of optical coherence tomography in macular diseases,” in Retinal Angiography and Optical Coherence Tomography (Springer 2009), pp. 223-238.

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Comm. Pure Appl. Math. 11, 1413–1457 (2004), http://dx.doi.org/10.1002/cpa.20042 .

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI 200, Vol. 5761 of Lecture Notes in Computer Science (Springer, 2009), pp. 100–107 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The SSOCT system was constructed using a 1060nm source and a standard interferometric topology. The regular raster scan pattern was modified to acquire randomly spaced horizontal B-scans, and the full volume was generated through CS-recovery in post processing.

Fig. 2
Fig. 2

Registration and averaging procedure. Each CS-recovered Volume (1 and 3) is registered to the same reference volume (2). Then, all the registered volumes are averaged.

Fig. 3
Fig. 3

CS-Recovered results. The top row shows the position of the frames that were acquired, the second row shows the CS reconstructed summed voxel projection, the third and fourth row shows a selected B-scan and Slow scan from the CS-recovered, respectively.

Fig. 4
Fig. 4

(A) Circumferential B-scan extracted and flattened based on the BM from the fully-acquired volume showing segmented layers ILM, RNFL and BM. The TR thickness and RNFL thickness measured from the fully-acquired volume is shown in (B) and (C), respectively. (D) The circumferential B-scan extracted from a CS-acquired volume (48% missing) and the corresponding error plots are shown in (E) and (F), respectively. The large peaks in the error plots are due to the large blood vessels as pointed out by the arrows (D).

Fig. 5
Fig. 5

Comparison of single frames (top row), the average of 6 adjacent frames from a full volume acquisition (middle row) and single frames from a 6 volume CS register-and-average acquisition (bottom row). In the bottom row, the sclera is better visualized (arrow (A)) and the anterior lamina cribrosa surface is better defined (arrow (C)) by using the CS register-and-average process.

Tables (1)

Tables Icon

Table 1 Measurement Errors of CS-Recovered Data Relative to Fully-acquired Volume

Metrics