Abstract

A piezoelectric detection system consisting of an annular array is investigated for large depth of field photoacoustic imaging. In comparison to a single ring detection system, X-shaped imaging artifacts are suppressed. Sensitivity and image resolution studies are performed in simulations and in experiments and compared to a simulated spherical detector. In experiment an eight ring detection systems offers an extended depth of field over a range of 16 mm with almost constant lateral resolution.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Kruger, K. Stantz, and W. L. Kiser, “Thermoacoustic CT of the breast,” Proc. SPIE4682, 521–525 (2002).
    [CrossRef]
  2. V. A. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleynikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Opto-acoustic tomography of breast cancer with arc-array-transducer,” Proc. SPIE3916, 36–47 (2000).
    [CrossRef]
  3. M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
    [CrossRef]
  4. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  5. G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE7177, 77170S (2009).
  6. G. Paltauf, K. P. Koestli, D. Frauchiger, and M. Frenz, “Spectral optoacoustic imaging using a scanning transducer,” Proc. SPIE4434, 81–88 (2001).
    [CrossRef]
  7. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. Van Leeuwen, and F. F. M. De Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt.9(6), 1327–1335 (2004).
    [CrossRef] [PubMed]
  8. J. A. Ketterling, O. Aristizábal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(4), 672–681 (2005).
    [CrossRef] [PubMed]
  9. C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett.29(21), 2506–2508 (2004).
    [CrossRef] [PubMed]
  10. R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt.12(1), 010501 (2007).
    [CrossRef] [PubMed]
  11. B. T. Cox and P. C. Beard, “The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(2), 394–404 (2007).
    [CrossRef] [PubMed]
  12. C. G. A. Hoelen and F. F. de Mul, “Image reconstruction for photoacoustic scanning of tissue structures,” Appl. Opt.39(31), 5872–5883 (2000).
    [CrossRef] [PubMed]
  13. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic generation of x-waves and their application in a dual mode scanning acoustic microscope,” Proc. SPIE7371, 73710R, 73710R-8 (2009).
    [CrossRef]
  14. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic x-waves using axicon transducers,” Appl. Phys. Lett.94(6), 064108 (2009).
    [CrossRef]
  15. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, T. Berer, and G. Paltauf, “Scanning acoustic-photoacoustic microscopy using axicon transducers,” Biomed. Opt. Express1(1), 318–323 (2010).
    [CrossRef] [PubMed]

2010

2009

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic generation of x-waves and their application in a dual mode scanning acoustic microscope,” Proc. SPIE7371, 73710R, 73710R-8 (2009).
[CrossRef]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic x-waves using axicon transducers,” Appl. Phys. Lett.94(6), 064108 (2009).
[CrossRef]

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE7177, 77170S (2009).

2007

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt.12(1), 010501 (2007).
[CrossRef] [PubMed]

B. T. Cox and P. C. Beard, “The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(2), 394–404 (2007).
[CrossRef] [PubMed]

2006

M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

2005

J. A. Ketterling, O. Aristizábal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(4), 672–681 (2005).
[CrossRef] [PubMed]

2004

C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett.29(21), 2506–2508 (2004).
[CrossRef] [PubMed]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. Van Leeuwen, and F. F. M. De Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt.9(6), 1327–1335 (2004).
[CrossRef] [PubMed]

2002

R. A. Kruger, K. Stantz, and W. L. Kiser, “Thermoacoustic CT of the breast,” Proc. SPIE4682, 521–525 (2002).
[CrossRef]

2001

G. Paltauf, K. P. Koestli, D. Frauchiger, and M. Frenz, “Spectral optoacoustic imaging using a scanning transducer,” Proc. SPIE4434, 81–88 (2001).
[CrossRef]

2000

V. A. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleynikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Opto-acoustic tomography of breast cancer with arc-array-transducer,” Proc. SPIE3916, 36–47 (2000).
[CrossRef]

C. G. A. Hoelen and F. F. de Mul, “Image reconstruction for photoacoustic scanning of tissue structures,” Appl. Opt.39(31), 5872–5883 (2000).
[CrossRef] [PubMed]

Aleynikov, V.

V. A. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleynikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Opto-acoustic tomography of breast cancer with arc-array-transducer,” Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Andreev, V. A.

V. A. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleynikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Opto-acoustic tomography of breast cancer with arc-array-transducer,” Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Aristizábal, O.

J. A. Ketterling, O. Aristizábal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(4), 672–681 (2005).
[CrossRef] [PubMed]

Beard, P. C.

B. T. Cox and P. C. Beard, “The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(2), 394–404 (2007).
[CrossRef] [PubMed]

Berer, T.

Bitton, R.

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt.12(1), 010501 (2007).
[CrossRef] [PubMed]

Burgholzer, P.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, T. Berer, and G. Paltauf, “Scanning acoustic-photoacoustic microscopy using axicon transducers,” Biomed. Opt. Express1(1), 318–323 (2010).
[CrossRef] [PubMed]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic x-waves using axicon transducers,” Appl. Phys. Lett.94(6), 064108 (2009).
[CrossRef]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic generation of x-waves and their application in a dual mode scanning acoustic microscope,” Proc. SPIE7371, 73710R, 73710R-8 (2009).
[CrossRef]

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE7177, 77170S (2009).

Cox, B. T.

B. T. Cox and P. C. Beard, “The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(2), 394–404 (2007).
[CrossRef] [PubMed]

de Mul, F. F.

De Mul, F. F. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. Van Leeuwen, and F. F. M. De Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt.9(6), 1327–1335 (2004).
[CrossRef] [PubMed]

Fleming, R. D.

V. A. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleynikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Opto-acoustic tomography of breast cancer with arc-array-transducer,” Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Frauchiger, D.

G. Paltauf, K. P. Koestli, D. Frauchiger, and M. Frenz, “Spectral optoacoustic imaging using a scanning transducer,” Proc. SPIE4434, 81–88 (2001).
[CrossRef]

Frenz, M.

G. Paltauf, K. P. Koestli, D. Frauchiger, and M. Frenz, “Spectral optoacoustic imaging using a scanning transducer,” Proc. SPIE4434, 81–88 (2001).
[CrossRef]

Gratt, S.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, T. Berer, and G. Paltauf, “Scanning acoustic-photoacoustic microscopy using axicon transducers,” Biomed. Opt. Express1(1), 318–323 (2010).
[CrossRef] [PubMed]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic generation of x-waves and their application in a dual mode scanning acoustic microscope,” Proc. SPIE7371, 73710R, 73710R-8 (2009).
[CrossRef]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic x-waves using axicon transducers,” Appl. Phys. Lett.94(6), 064108 (2009).
[CrossRef]

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE7177, 77170S (2009).

Hoelen, C. G. A.

Hondebrink, E.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. Van Leeuwen, and F. F. M. De Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt.9(6), 1327–1335 (2004).
[CrossRef] [PubMed]

Karabutov, A. A.

V. A. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleynikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Opto-acoustic tomography of breast cancer with arc-array-transducer,” Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Ketterling, J. A.

J. A. Ketterling, O. Aristizábal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(4), 672–681 (2005).
[CrossRef] [PubMed]

Kiser, W. L.

R. A. Kruger, K. Stantz, and W. L. Kiser, “Thermoacoustic CT of the breast,” Proc. SPIE4682, 521–525 (2002).
[CrossRef]

Koestli, K. P.

G. Paltauf, K. P. Koestli, D. Frauchiger, and M. Frenz, “Spectral optoacoustic imaging using a scanning transducer,” Proc. SPIE4434, 81–88 (2001).
[CrossRef]

Kolkman, R. G. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. Van Leeuwen, and F. F. M. De Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt.9(6), 1327–1335 (2004).
[CrossRef] [PubMed]

Kruger, R. A.

R. A. Kruger, K. Stantz, and W. L. Kiser, “Thermoacoustic CT of the breast,” Proc. SPIE4682, 521–525 (2002).
[CrossRef]

Li, M.-L.

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt.12(1), 010501 (2007).
[CrossRef] [PubMed]

C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett.29(21), 2506–2508 (2004).
[CrossRef] [PubMed]

Li, P.-C.

Liao, C.-K.

Lizzi, F. L.

J. A. Ketterling, O. Aristizábal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(4), 672–681 (2005).
[CrossRef] [PubMed]

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nuster, R.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, T. Berer, and G. Paltauf, “Scanning acoustic-photoacoustic microscopy using axicon transducers,” Biomed. Opt. Express1(1), 318–323 (2010).
[CrossRef] [PubMed]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic x-waves using axicon transducers,” Appl. Phys. Lett.94(6), 064108 (2009).
[CrossRef]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic generation of x-waves and their application in a dual mode scanning acoustic microscope,” Proc. SPIE7371, 73710R, 73710R-8 (2009).
[CrossRef]

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE7177, 77170S (2009).

Oraevsky, A. A.

V. A. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleynikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Opto-acoustic tomography of breast cancer with arc-array-transducer,” Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Paltauf, G.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, T. Berer, and G. Paltauf, “Scanning acoustic-photoacoustic microscopy using axicon transducers,” Biomed. Opt. Express1(1), 318–323 (2010).
[CrossRef] [PubMed]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic x-waves using axicon transducers,” Appl. Phys. Lett.94(6), 064108 (2009).
[CrossRef]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic generation of x-waves and their application in a dual mode scanning acoustic microscope,” Proc. SPIE7371, 73710R, 73710R-8 (2009).
[CrossRef]

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE7177, 77170S (2009).

G. Paltauf, K. P. Koestli, D. Frauchiger, and M. Frenz, “Spectral optoacoustic imaging using a scanning transducer,” Proc. SPIE4434, 81–88 (2001).
[CrossRef]

Passler, K.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, T. Berer, and G. Paltauf, “Scanning acoustic-photoacoustic microscopy using axicon transducers,” Biomed. Opt. Express1(1), 318–323 (2010).
[CrossRef] [PubMed]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic x-waves using axicon transducers,” Appl. Phys. Lett.94(6), 064108 (2009).
[CrossRef]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic generation of x-waves and their application in a dual mode scanning acoustic microscope,” Proc. SPIE7371, 73710R, 73710R-8 (2009).
[CrossRef]

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE7177, 77170S (2009).

Savateeva, E. V.

V. A. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleynikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Opto-acoustic tomography of breast cancer with arc-array-transducer,” Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Shung, K. K.

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt.12(1), 010501 (2007).
[CrossRef] [PubMed]

Solomatin, S. V.

V. A. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleynikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Opto-acoustic tomography of breast cancer with arc-array-transducer,” Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Stantz, K.

R. A. Kruger, K. Stantz, and W. L. Kiser, “Thermoacoustic CT of the breast,” Proc. SPIE4682, 521–525 (2002).
[CrossRef]

Steenbergen, W.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. Van Leeuwen, and F. F. M. De Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt.9(6), 1327–1335 (2004).
[CrossRef] [PubMed]

Stoica, G.

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt.12(1), 010501 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Turnbull, D. H.

J. A. Ketterling, O. Aristizábal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(4), 672–681 (2005).
[CrossRef] [PubMed]

Van Leeuwen, T. G.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. Van Leeuwen, and F. F. M. De Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt.9(6), 1327–1335 (2004).
[CrossRef] [PubMed]

Wang, L. V.

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt.12(1), 010501 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Xu, M. H.

M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Zemp, R. J.

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt.12(1), 010501 (2007).
[CrossRef] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Zhulina, Y. V.

V. A. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleynikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Opto-acoustic tomography of breast cancer with arc-array-transducer,” Proc. SPIE3916, 36–47 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic x-waves using axicon transducers,” Appl. Phys. Lett.94(6), 064108 (2009).
[CrossRef]

Biomed. Opt. Express

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

B. T. Cox and P. C. Beard, “The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(2), 394–404 (2007).
[CrossRef] [PubMed]

J. A. Ketterling, O. Aristizábal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(4), 672–681 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. Van Leeuwen, and F. F. M. De Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt.9(6), 1327–1335 (2004).
[CrossRef] [PubMed]

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt.12(1), 010501 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE7177, 77170S (2009).

G. Paltauf, K. P. Koestli, D. Frauchiger, and M. Frenz, “Spectral optoacoustic imaging using a scanning transducer,” Proc. SPIE4434, 81–88 (2001).
[CrossRef]

R. A. Kruger, K. Stantz, and W. L. Kiser, “Thermoacoustic CT of the breast,” Proc. SPIE4682, 521–525 (2002).
[CrossRef]

V. A. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleynikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Opto-acoustic tomography of breast cancer with arc-array-transducer,” Proc. SPIE3916, 36–47 (2000).
[CrossRef]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Photoacoustic generation of x-waves and their application in a dual mode scanning acoustic microscope,” Proc. SPIE7371, 73710R, 73710R-8 (2009).
[CrossRef]

Rev. Sci. Instrum.

M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Principle setup for an annular array of detectors (b) top view of the transducer (c) bottom view.

Fig. 2
Fig. 2

Transformation of a signal generated by a homogenously heated sphere when measured with a ring detector with increasing outer ring radius (ra) – ring widths w: blue: 100 µm, red: 300 µm, green: 500 µm, purple: 700 µm.

Fig. 3
Fig. 3

Simulated images with (a) an eight ring array using the optimum ring widths given by Eq. (4), (b) an eight ring array with reduced ring widths, (c) an eight ring array with enhanced ring widths, and (d) a two ring array, using again the optimum ring widths.

Fig. 4
Fig. 4

Comparison of measured and simulated photoacoustic images for different depths of a small (100 µm) source. (a) measurement with the annular array, (b) simulated array, (c) spherical detector with NA = 0.72.

Fig. 5
Fig. 5

(a): depth of field – measurement and simulation, (b) x-profiles at z position of 25.22 mm for an annular detector array and a spherical detector with a numerical aperture of 0.72 and 1.

Fig. 6
Fig. 6

Lateral width as a function of depth. The red line shows the measurement, the blue line the simulation.

Fig. 7
Fig. 7

(a) cross section image of three hairs without signals processing (b) cross section image with coherence factor weighting.

Fig. 8
Fig. 8

(a) maximum amplitude projection in z-direction for z = 17.5…32.5 mm (b) maximum amplitude projection for z = 17.5…22.5 mm (c) z = 27…27.5 mm (d) z = 23.75…23.97 mm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

SH(z)= i=1 N [H(S (z) i )] ,z= (c t i )² r i 2 .
CFH(z)= | i=1 N [H(S (z) i )] | 2 N i=1 N | H( S i (z)) | 2 .
SWH(z)=SH(z)CFH(z).
w i =a/sin φ i ,
S sphere P 0 A sphere a f sphere  and  S ring P 0 i=1 N A i cos ϕ i a c t i .

Metrics