Abstract

Photoacoustic tomography (PAT) is an emerging non-invasive imaging technique with great potential for a wide range of biomedical imaging applications. However, the conventional PAT reconstruction algorithms often provide distorted images with strong artifacts in cases when the signals are collected from few measurements or over an aperture that does not enclose the object. In this work, we present a total-variation-minimization (TVM) enhanced iterative reconstruction algorithm that can provide excellent photoacoustic image reconstruction from few-detector and limited-angle data. The enhancement is confirmed and evaluated using several phantom experiments.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am.112(4), 1536–1544 (2002).
    [CrossRef] [PubMed]
  2. S. J. Norton and T. Vo-Dinh, “Optoacoustic diffraction tomography: analysis of algorithms,” J. Opt. Soc. Am. A20(10), 1859–1866 (2003).
    [CrossRef] [PubMed]
  3. A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001).
    [CrossRef]
  4. L. A. Kunyansky, “Explicit inversion formulae for the spherical mean radon transform,” Inverse Probl.23(1), 373–383 (2007).
    [CrossRef]
  5. D. Finch, S. Patch, and Rakesh, “Determining a Function from Its Mean Values Over a Family of Spheres,” SIAM J. Math. Anal.35(5), 1213–1240 (2004).
    [CrossRef]
  6. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 016706 (2005).
    [CrossRef] [PubMed]
  7. Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogenous media,” Appl. Phys. Lett.88(23), 231101 (2006).
    [CrossRef]
  8. L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett.32(17), 2556–2558 (2007).
    [CrossRef] [PubMed]
  9. K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys.22(6), 691–701 (1995).
    [CrossRef] [PubMed]
  10. S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. R. Alfano, S. B. Arridge, J. Beuthen, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zee, eds. (SPIE Press, 1993), pp. 35–64.
  11. S. J. LaRoque, E. Y. Sidky, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in diffraction tomography,” J. Opt. Soc. Am. A25(7), 1772–1782 (2008).
    [CrossRef]
  12. J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,” Phys. Med. Biol.55(22), 6575–6599 (2010).
    [CrossRef] [PubMed]
  13. H. Ammari, E. Bretin, V. Jugnon, and A. Wahab, “Photo-acoustic imaging for attenuating acoustic media,” in Mathematical Modeling in Biomedical Imaging II, H. Ammari, ed., Vol. 2035 of Lecture Notes in Mathematics (Springer, 2011), pp. 53–80.
  14. H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Mathematical models in photoacoustic imaging of small absorbers,” SIAM Rev.52(4), 677–695 (2010).
    [CrossRef]
  15. H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Reconstruction of the optical absorption coefficient of a small absorber from the absorbed energy density,” SIAM J. Appl. Math.71, 676–693 (2011).
    [CrossRef]
  16. K. Wang, E. Y. Sidky, M. A. Anastasio, A. A. Oraevsky, and X. Pan, “Limited data image reconstruction in optoacoustic tomography by constrained total variation minimization,” Proc. SPIE7899, 78993U, 78993U-6 (2011).
    [CrossRef]
  17. L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time-domain,” J. Opt. A, Pure Appl. Opt.11(8), 085301 (2009).
    [CrossRef]
  18. K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt.35(19), 3447–3458 (1996).
    [CrossRef] [PubMed]
  19. H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A23(4), 878–888 (2006).
    [CrossRef] [PubMed]
  20. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002).
    [CrossRef]

2011

H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Reconstruction of the optical absorption coefficient of a small absorber from the absorbed energy density,” SIAM J. Appl. Math.71, 676–693 (2011).
[CrossRef]

K. Wang, E. Y. Sidky, M. A. Anastasio, A. A. Oraevsky, and X. Pan, “Limited data image reconstruction in optoacoustic tomography by constrained total variation minimization,” Proc. SPIE7899, 78993U, 78993U-6 (2011).
[CrossRef]

2010

J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,” Phys. Med. Biol.55(22), 6575–6599 (2010).
[CrossRef] [PubMed]

H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Mathematical models in photoacoustic imaging of small absorbers,” SIAM Rev.52(4), 677–695 (2010).
[CrossRef]

2009

L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time-domain,” J. Opt. A, Pure Appl. Opt.11(8), 085301 (2009).
[CrossRef]

2008

2007

2006

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogenous media,” Appl. Phys. Lett.88(23), 231101 (2006).
[CrossRef]

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A23(4), 878–888 (2006).
[CrossRef] [PubMed]

2005

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 016706 (2005).
[CrossRef] [PubMed]

2004

D. Finch, S. Patch, and Rakesh, “Determining a Function from Its Mean Values Over a Family of Spheres,” SIAM J. Math. Anal.35(5), 1213–1240 (2004).
[CrossRef]

2003

2002

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002).
[CrossRef]

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am.112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

2001

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001).
[CrossRef]

1996

1995

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys.22(6), 691–701 (1995).
[CrossRef] [PubMed]

Ammari, H.

H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Reconstruction of the optical absorption coefficient of a small absorber from the absorbed energy density,” SIAM J. Appl. Math.71, 676–693 (2011).
[CrossRef]

H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Mathematical models in photoacoustic imaging of small absorbers,” SIAM Rev.52(4), 677–695 (2010).
[CrossRef]

Anastasio, M. A.

K. Wang, E. Y. Sidky, M. A. Anastasio, A. A. Oraevsky, and X. Pan, “Limited data image reconstruction in optoacoustic tomography by constrained total variation minimization,” Proc. SPIE7899, 78993U, 78993U-6 (2011).
[CrossRef]

Andreev, V. A.

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001).
[CrossRef]

Bian, J.

J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,” Phys. Med. Biol.55(22), 6575–6599 (2010).
[CrossRef] [PubMed]

Bossy, E.

H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Reconstruction of the optical absorption coefficient of a small absorber from the absorbed energy density,” SIAM J. Appl. Math.71, 676–693 (2011).
[CrossRef]

H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Mathematical models in photoacoustic imaging of small absorbers,” SIAM Rev.52(4), 677–695 (2010).
[CrossRef]

Bovik, A. C.

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002).
[CrossRef]

Finch, D.

D. Finch, S. Patch, and Rakesh, “Determining a Function from Its Mean Values Over a Family of Spheres,” SIAM J. Math. Anal.35(5), 1213–1240 (2004).
[CrossRef]

Fleming, R. D.

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001).
[CrossRef]

Gatalica, Z.

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001).
[CrossRef]

Gu, X.

Han, X.

J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,” Phys. Med. Biol.55(22), 6575–6599 (2010).
[CrossRef] [PubMed]

Jacques, S. L.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am.112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

Jiang, H.

L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time-domain,” J. Opt. A, Pure Appl. Opt.11(8), 085301 (2009).
[CrossRef]

L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett.32(17), 2556–2558 (2007).
[CrossRef] [PubMed]

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A23(4), 878–888 (2006).
[CrossRef] [PubMed]

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogenous media,” Appl. Phys. Lett.88(23), 231101 (2006).
[CrossRef]

K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt.35(19), 3447–3458 (1996).
[CrossRef] [PubMed]

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys.22(6), 691–701 (1995).
[CrossRef] [PubMed]

Jugnon, V.

H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Reconstruction of the optical absorption coefficient of a small absorber from the absorbed energy density,” SIAM J. Appl. Math.71, 676–693 (2011).
[CrossRef]

H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Mathematical models in photoacoustic imaging of small absorbers,” SIAM Rev.52(4), 677–695 (2010).
[CrossRef]

Kang, H.

H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Reconstruction of the optical absorption coefficient of a small absorber from the absorbed energy density,” SIAM J. Appl. Math.71, 676–693 (2011).
[CrossRef]

H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Mathematical models in photoacoustic imaging of small absorbers,” SIAM Rev.52(4), 677–695 (2010).
[CrossRef]

Karabutov, A. A.

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001).
[CrossRef]

Kunyansky, L. A.

L. A. Kunyansky, “Explicit inversion formulae for the spherical mean radon transform,” Inverse Probl.23(1), 373–383 (2007).
[CrossRef]

LaRoque, S. J.

Norton, S. J.

Oraevsky, A. A.

K. Wang, E. Y. Sidky, M. A. Anastasio, A. A. Oraevsky, and X. Pan, “Limited data image reconstruction in optoacoustic tomography by constrained total variation minimization,” Proc. SPIE7899, 78993U, 78993U-6 (2011).
[CrossRef]

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001).
[CrossRef]

Paltauf, G.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am.112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

Pan, X.

K. Wang, E. Y. Sidky, M. A. Anastasio, A. A. Oraevsky, and X. Pan, “Limited data image reconstruction in optoacoustic tomography by constrained total variation minimization,” Proc. SPIE7899, 78993U, 78993U-6 (2011).
[CrossRef]

J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,” Phys. Med. Biol.55(22), 6575–6599 (2010).
[CrossRef] [PubMed]

S. J. LaRoque, E. Y. Sidky, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in diffraction tomography,” J. Opt. Soc. Am. A25(7), 1772–1782 (2008).
[CrossRef]

Patch, S.

D. Finch, S. Patch, and Rakesh, “Determining a Function from Its Mean Values Over a Family of Spheres,” SIAM J. Math. Anal.35(5), 1213–1240 (2004).
[CrossRef]

Paulsen, K. D.

K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt.35(19), 3447–3458 (1996).
[CrossRef] [PubMed]

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys.22(6), 691–701 (1995).
[CrossRef] [PubMed]

Pelizzari, C. A.

J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,” Phys. Med. Biol.55(22), 6575–6599 (2010).
[CrossRef] [PubMed]

Prahl, S. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am.112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

Prince, J. L.

J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,” Phys. Med. Biol.55(22), 6575–6599 (2010).
[CrossRef] [PubMed]

Rakesh,

D. Finch, S. Patch, and Rakesh, “Determining a Function from Its Mean Values Over a Family of Spheres,” SIAM J. Math. Anal.35(5), 1213–1240 (2004).
[CrossRef]

Savateeva, E. V.

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001).
[CrossRef]

Sidky, E. Y.

K. Wang, E. Y. Sidky, M. A. Anastasio, A. A. Oraevsky, and X. Pan, “Limited data image reconstruction in optoacoustic tomography by constrained total variation minimization,” Proc. SPIE7899, 78993U, 78993U-6 (2011).
[CrossRef]

J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,” Phys. Med. Biol.55(22), 6575–6599 (2010).
[CrossRef] [PubMed]

S. J. LaRoque, E. Y. Sidky, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in diffraction tomography,” J. Opt. Soc. Am. A25(7), 1772–1782 (2008).
[CrossRef]

Siewerdsen, J. H.

J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,” Phys. Med. Biol.55(22), 6575–6599 (2010).
[CrossRef] [PubMed]

Singh, H.

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001).
[CrossRef]

Solomatin, S. V.

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001).
[CrossRef]

Viator, J. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am.112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

Vo-Dinh, T.

Wang, K.

K. Wang, E. Y. Sidky, M. A. Anastasio, A. A. Oraevsky, and X. Pan, “Limited data image reconstruction in optoacoustic tomography by constrained total variation minimization,” Proc. SPIE7899, 78993U, 78993U-6 (2011).
[CrossRef]

Wang, L. V.

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 016706 (2005).
[CrossRef] [PubMed]

Wang, Q.

Wang, Z.

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002).
[CrossRef]

Xu, M.

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 016706 (2005).
[CrossRef] [PubMed]

Yao, L.

L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time-domain,” J. Opt. A, Pure Appl. Opt.11(8), 085301 (2009).
[CrossRef]

Yin, L.

Yuan, Z.

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A23(4), 878–888 (2006).
[CrossRef] [PubMed]

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogenous media,” Appl. Phys. Lett.88(23), 231101 (2006).
[CrossRef]

Zhang, Q.

Appl. Opt.

Appl. Phys. Lett.

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogenous media,” Appl. Phys. Lett.88(23), 231101 (2006).
[CrossRef]

IEEE Signal Process. Lett.

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002).
[CrossRef]

Inverse Probl.

L. A. Kunyansky, “Explicit inversion formulae for the spherical mean radon transform,” Inverse Probl.23(1), 373–383 (2007).
[CrossRef]

J. Acoust. Soc. Am.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am.112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt.

L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time-domain,” J. Opt. A, Pure Appl. Opt.11(8), 085301 (2009).
[CrossRef]

J. Opt. Soc. Am. A

Med. Phys.

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys.22(6), 691–701 (1995).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT,” Phys. Med. Biol.55(22), 6575–6599 (2010).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 016706 (2005).
[CrossRef] [PubMed]

Proc. SPIE

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001).
[CrossRef]

K. Wang, E. Y. Sidky, M. A. Anastasio, A. A. Oraevsky, and X. Pan, “Limited data image reconstruction in optoacoustic tomography by constrained total variation minimization,” Proc. SPIE7899, 78993U, 78993U-6 (2011).
[CrossRef]

SIAM J. Appl. Math.

H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Reconstruction of the optical absorption coefficient of a small absorber from the absorbed energy density,” SIAM J. Appl. Math.71, 676–693 (2011).
[CrossRef]

SIAM J. Math. Anal.

D. Finch, S. Patch, and Rakesh, “Determining a Function from Its Mean Values Over a Family of Spheres,” SIAM J. Math. Anal.35(5), 1213–1240 (2004).
[CrossRef]

SIAM Rev.

H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Mathematical models in photoacoustic imaging of small absorbers,” SIAM Rev.52(4), 677–695 (2010).
[CrossRef]

Other

H. Ammari, E. Bretin, V. Jugnon, and A. Wahab, “Photo-acoustic imaging for attenuating acoustic media,” in Mathematical Modeling in Biomedical Imaging II, H. Ammari, ed., Vol. 2035 of Lecture Notes in Mathematics (Springer, 2011), pp. 53–80.

S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. R. Alfano, S. B. Arridge, J. Beuthen, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zee, eds. (SPIE Press, 1993), pp. 35–64.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Reconstructed photoacoustic images based on few-detector data for case 1. (a), 120 detectors, without TVM. (b), 60 detectors, without TVM. (c), 30 detectors, without TVM. (d), 15 detectors, without TVM. (e), 120 detectors, with TVM. (f), 60 detectors, with TVM. (g), 30 detectors, with TVM. (h), 15 detectors, with TVM.

Fig. 2
Fig. 2

Reconstructed photoacoustic images based on few-detector data for case 2. (a), 120 detectors, without TVM. (b), 60 detectors, without TVM. (c), 30 detectors, without TVM. (d), 15 detectors, without TVM. (e), 120 detectors, with TVM. (f), 60 detectors, with TVM. (g), 30 detectors, with TVM. (h), 15 detectors, with TVM.

Fig. 3
Fig. 3

Reconstructed photoacoustic images based on few-detector data for case 3. (a), 120 detectors, without TVM. (b), 60 detectors, without TVM. (c), 30 detectors, without TVM. (d), 15 detectors, without TVM. (e), 120 detectors, with TVM. (f), 60 detectors, with TVM. (g), 30 detectors, with TVM. (h), 15 detectors, with TVM.

Fig. 4
Fig. 4

Reconstructed photoacoustic images based on limited-angle data for case 1. (a), 120 detectors over 360°, without TVM. (b), 60 detectors over 180°, without TVM. (c), 30 detectors over 90°, without TVM. (d), 120 detectors over 360°, with TVM. (e), 60 detectors over 180°, with TVM. (f), 30 detectors over 90°, with TVM.

Fig. 5
Fig. 5

UQIs calculated from the recovered images for the three cases based on few-detector data without TVM (a) and with TVM (b), and for case 1 based on limited angle data with and without TVM.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2 p( r,t ) 1 v 0 2 2 p( r,t ) t 2 = Φ( r )β C p J( t ) t ,
F( p,Φ )= j=1 M ( p j 0 p j c ) 2 ,
( T +λI )Δχ= T ( p o p c ),
F ˜ ( p,Φ )=F( p,Φ )+L( Φ ).
F ˜ Φ i = j=1 M ( p j o p j c ) p j c Φ i + V i =0( i=1,2N ) ,
( T +R+λI )Δχ= T ( p 0 p c )V,
UQI{ f 1 , f 0 }= 2Cov{ f 1 , f 0 } ( σ 1 ) 2 + ( σ 0 ) 2 2 f ¯ 1 f ¯ 0 ( f ¯ 1 ) 2 + ( f ¯ 0 ) 2 .

Metrics