Abstract

We performed an in vivo three-dimensional analysis of anisotropic changes in the dermal birefringence of mechanically deformed human skin using polarization-sensitive optical coherence tomography (PS-OCT). The papillary-dermal birefringence of the forehead increased significantly when the skin was shrunk parallel to the body axis, and decreased significantly when the skin was shrunk perpendicular to the body axis. En-face images of the papillary-dermal birefringence revealed variations among individual subjects, and that both shrinking parallel to and stretching in perpendicular to the body axis promoted the formation of macro rope-like birefringent domains. We found that PS-OCT is useful for understanding anisotropic properties of collagen structure in the skin.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Langer, “On the anatomy and physiology of the skin. I. The cleavability of the cutis,” Br. J. Plast. Surg. 31(1), 3–8 (1978).
    [CrossRef] [PubMed]
  2. A. F. Borges, “Relaxed skin tension lines (RSTL) versus other skin lines,” Plast. Reconstr. Surg. 73(1), 144–150 (1984).
    [CrossRef] [PubMed]
  3. B. J. Wilhelmi, S. J. Blackwell, and L. G. Phillips, “Langer’s lines: to use or not to use,” Plast. Reconstr. Surg. 104(1), 208–214 (1999).
    [CrossRef] [PubMed]
  4. C. J. Kraissl, “The selection of appropriate lines for elective surgical incisions,” Plast Reconstr Surg (1946) 8(1), 1–28 (1951).
    [CrossRef] [PubMed]
  5. H. T. Cox, “The cleavage lines of the skin,” Br. J. Surg. 29(114), 234–240 (1941).
    [CrossRef]
  6. T. Franco and G. Cotta-Pereira, “Histological basis of abdominal skin tension lines,” An. Bras. Dermatol. 72, 421–426 (1997).
  7. J. Bush, M. W. Ferguson, T. Mason, and G. McGrouther, “The dynamic rotation of Langer’s lines on facial expression,” J. Plast. Reconstr. Aesthet. Surg. 60(4), 393–399 (2007).
    [CrossRef] [PubMed]
  8. G. E. Piérard and C. M. Lapière, “Microanatomy of the dermis in relation to relaxed skin tension lines and Langer’s lines,” Am. J. Dermatopathol. 9(3), 219–224 (1987).
    [CrossRef] [PubMed]
  9. T. Gibson, R. M. Kenedi, and J. E. Craik, “The mobile micro-architecture of dermal collagen: a bio-engineering study,” Br. J. Surg. 52(10), 764–770 (1965).
    [CrossRef] [PubMed]
  10. M. D. Ridge and V. Wright, “The directional effects of skin. A bio-engineering study of skin with particular reference to Langer’s lines,” J. Invest. Dermatol. 46(4), 341–346 (1966).
    [PubMed]
  11. P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7(2), 205–214 (2002).
    [CrossRef] [PubMed]
  12. T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9(2), 259–264 (2004).
    [CrossRef] [PubMed]
  13. T. Yasui, Y. Takahashi, S. Fukushima, Y. Ogura, T. Yamashita, T. Kuwahara, T. Hirao, and T. Araki, “Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy,” Opt. Express 17(2), 912–923 (2009).
    [CrossRef] [PubMed]
  14. T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, and T. Araki, “Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:forsterite and Ti:sapphire lasers,” Appl. Opt. 48(10), D88–D95 (2009).
    [CrossRef] [PubMed]
  15. S. Y. Chen, H. Y. Wu, and C. K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt. 14(6), 060505 (2009).
    [CrossRef] [PubMed]
  16. A. M. D. Lee, H. Wang, Y. Yu, S. Tang, J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “In vivo video rate multiphoton microscopy imaging of human skin,” Opt. Lett. 36(15), 2865–2867 (2011).
    [CrossRef] [PubMed]
  17. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
    [CrossRef] [PubMed]
  18. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
    [CrossRef] [PubMed]
  19. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49(6), 2661–2667 (2008).
    [CrossRef] [PubMed]
  20. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
    [CrossRef] [PubMed]
  21. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
    [CrossRef] [PubMed]
  22. S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
    [CrossRef] [PubMed]
  23. S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
    [CrossRef] [PubMed]
  24. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
    [CrossRef] [PubMed]
  25. Y. Lim, M. Yamanari, and Y. Yasuno, “Polarization sensitive corneal and anterior segment swept-source optical coherence tomography,” Proc. SPIE 7550, 75500O, 75500O-4 (2010).
    [CrossRef]
  26. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14(14), 6502–6515 (2006).
    [CrossRef] [PubMed]
  27. G. Chinga, P. O. Johnsen, R. Dougherty, E. L. Berli, and J. Walter, “Quantification of the 3D microstructure of SC surfaces,” J. Microsc. 227(3), 254–265 (2007).
    [CrossRef] [PubMed]
  28. I. A. Brown, “Scanning electron microscopy of human dermal fibrous tissue,” J. Anat. 113(Pt 2), 159–168 (1972).
    [PubMed]
  29. S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstädt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5(3), 195–207 (1999).
    [CrossRef]
  30. T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29(6), 423–436 (2007).
    [CrossRef] [PubMed]
  31. L. T. Smith, K. A. Holbrook, and P. H. Byers, “Structure of the dermal matrix during development and in the adult,” J. Invest. Dermatol. 79(s1Suppl 1), 93s–104s (1982).
    [CrossRef] [PubMed]
  32. S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J. Biomed. Opt. 9(2), 274–281 (2004).
    [CrossRef] [PubMed]
  33. A. F. Borges, “Relaxed skin tension lines,” Dermatol. Clin. 7(1), 169–177 (1989).
    [PubMed]
  34. P. Melis, M. L. Noorlander, C. M. van der Horst, and C. J. van Noorden, “Rapid alignment of collagen fibers in the dermis of undermined and not undermined skin stretched with a skin-stretching device,” Plast. Reconstr. Surg. 109(2), 674–680, discussion 681–682 (2002).
    [CrossRef] [PubMed]
  35. G. L. Grove, M. J. Grove, and J. J. Leyden, “Optical profilometry: an objective method for quantification of facial wrinkles,” J. Am. Acad. Dermatol. 21(3), 631–637 (1989).
    [CrossRef] [PubMed]

2011

2010

Y. Lim, M. Yamanari, and Y. Yasuno, “Polarization sensitive corneal and anterior segment swept-source optical coherence tomography,” Proc. SPIE 7550, 75500O, 75500O-4 (2010).
[CrossRef]

2009

2008

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49(6), 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

2007

G. Chinga, P. O. Johnsen, R. Dougherty, E. L. Berli, and J. Walter, “Quantification of the 3D microstructure of SC surfaces,” J. Microsc. 227(3), 254–265 (2007).
[CrossRef] [PubMed]

T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29(6), 423–436 (2007).
[CrossRef] [PubMed]

J. Bush, M. W. Ferguson, T. Mason, and G. McGrouther, “The dynamic rotation of Langer’s lines on facial expression,” J. Plast. Reconstr. Aesthet. Surg. 60(4), 393–399 (2007).
[CrossRef] [PubMed]

2006

2004

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[CrossRef] [PubMed]

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J. Biomed. Opt. 9(2), 274–281 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9(2), 259–264 (2004).
[CrossRef] [PubMed]

2002

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7(2), 205–214 (2002).
[CrossRef] [PubMed]

P. Melis, M. L. Noorlander, C. M. van der Horst, and C. J. van Noorden, “Rapid alignment of collagen fibers in the dermis of undermined and not undermined skin stretched with a skin-stretching device,” Plast. Reconstr. Surg. 109(2), 674–680, discussion 681–682 (2002).
[CrossRef] [PubMed]

2001

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

1999

B. J. Wilhelmi, S. J. Blackwell, and L. G. Phillips, “Langer’s lines: to use or not to use,” Plast. Reconstr. Surg. 104(1), 208–214 (1999).
[CrossRef] [PubMed]

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstädt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5(3), 195–207 (1999).
[CrossRef]

1997

T. Franco and G. Cotta-Pereira, “Histological basis of abdominal skin tension lines,” An. Bras. Dermatol. 72, 421–426 (1997).

1989

G. L. Grove, M. J. Grove, and J. J. Leyden, “Optical profilometry: an objective method for quantification of facial wrinkles,” J. Am. Acad. Dermatol. 21(3), 631–637 (1989).
[CrossRef] [PubMed]

A. F. Borges, “Relaxed skin tension lines,” Dermatol. Clin. 7(1), 169–177 (1989).
[PubMed]

1987

G. E. Piérard and C. M. Lapière, “Microanatomy of the dermis in relation to relaxed skin tension lines and Langer’s lines,” Am. J. Dermatopathol. 9(3), 219–224 (1987).
[CrossRef] [PubMed]

1984

A. F. Borges, “Relaxed skin tension lines (RSTL) versus other skin lines,” Plast. Reconstr. Surg. 73(1), 144–150 (1984).
[CrossRef] [PubMed]

1982

L. T. Smith, K. A. Holbrook, and P. H. Byers, “Structure of the dermal matrix during development and in the adult,” J. Invest. Dermatol. 79(s1Suppl 1), 93s–104s (1982).
[CrossRef] [PubMed]

1978

A. K. Langer, “On the anatomy and physiology of the skin. I. The cleavability of the cutis,” Br. J. Plast. Surg. 31(1), 3–8 (1978).
[CrossRef] [PubMed]

1972

I. A. Brown, “Scanning electron microscopy of human dermal fibrous tissue,” J. Anat. 113(Pt 2), 159–168 (1972).
[PubMed]

1966

M. D. Ridge and V. Wright, “The directional effects of skin. A bio-engineering study of skin with particular reference to Langer’s lines,” J. Invest. Dermatol. 46(4), 341–346 (1966).
[PubMed]

1965

T. Gibson, R. M. Kenedi, and J. E. Craik, “The mobile micro-architecture of dermal collagen: a bio-engineering study,” Br. J. Surg. 52(10), 764–770 (1965).
[CrossRef] [PubMed]

1951

C. J. Kraissl, “The selection of appropriate lines for elective surgical incisions,” Plast Reconstr Surg (1946) 8(1), 1–28 (1951).
[CrossRef] [PubMed]

1941

H. T. Cox, “The cleavage lines of the skin,” Br. J. Surg. 29(114), 234–240 (1941).
[CrossRef]

Araki, T.

Berli, E. L.

G. Chinga, P. O. Johnsen, R. Dougherty, E. L. Berli, and J. Walter, “Quantification of the 3D microstructure of SC surfaces,” J. Microsc. 227(3), 254–265 (2007).
[CrossRef] [PubMed]

Bisschop, M. A.

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J. Biomed. Opt. 9(2), 274–281 (2004).
[CrossRef] [PubMed]

Blackwell, S. J.

B. J. Wilhelmi, S. J. Blackwell, and L. G. Phillips, “Langer’s lines: to use or not to use,” Plast. Reconstr. Surg. 104(1), 208–214 (1999).
[CrossRef] [PubMed]

Borges, A. F.

A. F. Borges, “Relaxed skin tension lines,” Dermatol. Clin. 7(1), 169–177 (1989).
[PubMed]

A. F. Borges, “Relaxed skin tension lines (RSTL) versus other skin lines,” Plast. Reconstr. Surg. 73(1), 144–150 (1984).
[CrossRef] [PubMed]

Brown, I. A.

I. A. Brown, “Scanning electron microscopy of human dermal fibrous tissue,” J. Anat. 113(Pt 2), 159–168 (1972).
[PubMed]

Bush, J.

J. Bush, M. W. Ferguson, T. Mason, and G. McGrouther, “The dynamic rotation of Langer’s lines on facial expression,” J. Plast. Reconstr. Aesthet. Surg. 60(4), 393–399 (2007).
[CrossRef] [PubMed]

Byers, P. H.

L. T. Smith, K. A. Holbrook, and P. H. Byers, “Structure of the dermal matrix during development and in the adult,” J. Invest. Dermatol. 79(s1Suppl 1), 93s–104s (1982).
[CrossRef] [PubMed]

Cense, B.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

Chen, S. Y.

S. Y. Chen, H. Y. Wu, and C. K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt. 14(6), 060505 (2009).
[CrossRef] [PubMed]

Chen, T. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

Chinga, G.

G. Chinga, P. O. Johnsen, R. Dougherty, E. L. Berli, and J. Walter, “Quantification of the 3D microstructure of SC surfaces,” J. Microsc. 227(3), 254–265 (2007).
[CrossRef] [PubMed]

Cotta-Pereira, G.

T. Franco and G. Cotta-Pereira, “Histological basis of abdominal skin tension lines,” An. Bras. Dermatol. 72, 421–426 (1997).

Cox, H. T.

H. T. Cox, “The cleavage lines of the skin,” Br. J. Surg. 29(114), 234–240 (1941).
[CrossRef]

Craik, J. E.

T. Gibson, R. M. Kenedi, and J. E. Craik, “The mobile micro-architecture of dermal collagen: a bio-engineering study,” Br. J. Surg. 52(10), 764–770 (1965).
[CrossRef] [PubMed]

Da Silva, L. B.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7(2), 205–214 (2002).
[CrossRef] [PubMed]

de Boer, J. F.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

Dougherty, R.

G. Chinga, P. O. Johnsen, R. Dougherty, E. L. Berli, and J. Walter, “Quantification of the 3D microstructure of SC surfaces,” J. Microsc. 227(3), 254–265 (2007).
[CrossRef] [PubMed]

Elsner, A. E.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49(6), 2661–2667 (2008).
[CrossRef] [PubMed]

Ennen, J.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstädt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5(3), 195–207 (1999).
[CrossRef]

Ferguson, M. W.

J. Bush, M. W. Ferguson, T. Mason, and G. McGrouther, “The dynamic rotation of Langer’s lines on facial expression,” J. Plast. Reconstr. Aesthet. Surg. 60(4), 393–399 (2007).
[CrossRef] [PubMed]

Franco, T.

T. Franco and G. Cotta-Pereira, “Histological basis of abdominal skin tension lines,” An. Bras. Dermatol. 72, 421–426 (1997).

Fujimura, T.

T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29(6), 423–436 (2007).
[CrossRef] [PubMed]

Fukushima, S.

Gibson, T.

T. Gibson, R. M. Kenedi, and J. E. Craik, “The mobile micro-architecture of dermal collagen: a bio-engineering study,” Br. J. Surg. 52(10), 764–770 (1965).
[CrossRef] [PubMed]

Grove, G. L.

G. L. Grove, M. J. Grove, and J. J. Leyden, “Optical profilometry: an objective method for quantification of facial wrinkles,” J. Am. Acad. Dermatol. 21(3), 631–637 (1989).
[CrossRef] [PubMed]

Grove, M. J.

G. L. Grove, M. J. Grove, and J. J. Leyden, “Optical profilometry: an objective method for quantification of facial wrinkles,” J. Am. Acad. Dermatol. 21(3), 631–637 (1989).
[CrossRef] [PubMed]

Haketa, K.

T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29(6), 423–436 (2007).
[CrossRef] [PubMed]

Hirao, T.

Holbrook, K. A.

L. T. Smith, K. A. Holbrook, and P. H. Byers, “Structure of the dermal matrix during development and in the adult,” J. Invest. Dermatol. 79(s1Suppl 1), 93s–104s (1982).
[CrossRef] [PubMed]

Hopermann, H.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstädt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5(3), 195–207 (1999).
[CrossRef]

Hoppe, U.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstädt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5(3), 195–207 (1999).
[CrossRef]

Hotta, M.

T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29(6), 423–436 (2007).
[CrossRef] [PubMed]

Ito, M.

Iwasaki, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49(6), 2661–2667 (2008).
[CrossRef] [PubMed]

Jaspers, S.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstädt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5(3), 195–207 (1999).
[CrossRef]

Johnsen, P. O.

G. Chinga, P. O. Johnsen, R. Dougherty, E. L. Berli, and J. Walter, “Quantification of the 3D microstructure of SC surfaces,” J. Microsc. 227(3), 254–265 (2007).
[CrossRef] [PubMed]

Kawabata, K.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Kenedi, R. M.

T. Gibson, R. M. Kenedi, and J. E. Craik, “The mobile micro-architecture of dermal collagen: a bio-engineering study,” Br. J. Surg. 52(10), 764–770 (1965).
[CrossRef] [PubMed]

Kim, B. M.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7(2), 205–214 (2002).
[CrossRef] [PubMed]

Kitahara, T.

T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29(6), 423–436 (2007).
[CrossRef] [PubMed]

Kraissl, C. J.

C. J. Kraissl, “The selection of appropriate lines for elective surgical incisions,” Plast Reconstr Surg (1946) 8(1), 1–28 (1951).
[CrossRef] [PubMed]

Kuwahara, T.

Langer, A. K.

A. K. Langer, “On the anatomy and physiology of the skin. I. The cleavability of the cutis,” Br. J. Plast. Surg. 31(1), 3–8 (1978).
[CrossRef] [PubMed]

Lapière, C. M.

G. E. Piérard and C. M. Lapière, “Microanatomy of the dermis in relation to relaxed skin tension lines and Langer’s lines,” Am. J. Dermatopathol. 9(3), 219–224 (1987).
[CrossRef] [PubMed]

Lee, A. M. D.

Lenderink, E.

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J. Biomed. Opt. 9(2), 274–281 (2004).
[CrossRef] [PubMed]

Leyden, J. J.

G. L. Grove, M. J. Grove, and J. J. Leyden, “Optical profilometry: an objective method for quantification of facial wrinkles,” J. Am. Acad. Dermatol. 21(3), 631–637 (1989).
[CrossRef] [PubMed]

Lim, Y.

Y. Lim, M. Yamanari, and Y. Yasuno, “Polarization sensitive corneal and anterior segment swept-source optical coherence tomography,” Proc. SPIE 7550, 75500O, 75500O-4 (2010).
[CrossRef]

Lucassen, G. W.

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J. Biomed. Opt. 9(2), 274–281 (2004).
[CrossRef] [PubMed]

Lui, H.

Lunderstädt, R.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstädt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5(3), 195–207 (1999).
[CrossRef]

Madjarova, V. D.

Makita, S.

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49(6), 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14(14), 6502–6515 (2006).
[CrossRef] [PubMed]

Mason, T.

J. Bush, M. W. Ferguson, T. Mason, and G. McGrouther, “The dynamic rotation of Langer’s lines on facial expression,” J. Plast. Reconstr. Aesthet. Surg. 60(4), 393–399 (2007).
[CrossRef] [PubMed]

Matsumoto, M.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

McGrouther, G.

J. Bush, M. W. Ferguson, T. Mason, and G. McGrouther, “The dynamic rotation of Langer’s lines on facial expression,” J. Plast. Reconstr. Aesthet. Surg. 60(4), 393–399 (2007).
[CrossRef] [PubMed]

McLean, D. I.

Melis, P.

P. Melis, M. L. Noorlander, C. M. van der Horst, and C. J. van Noorden, “Rapid alignment of collagen fibers in the dermis of undermined and not undermined skin stretched with a skin-stretching device,” Plast. Reconstr. Surg. 109(2), 674–680, discussion 681–682 (2002).
[CrossRef] [PubMed]

Miura, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49(6), 2661–2667 (2008).
[CrossRef] [PubMed]

Miyazawa, A.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Nakagawa, N.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Neerken, S.

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J. Biomed. Opt. 9(2), 274–281 (2004).
[CrossRef] [PubMed]

Nelson, J. S.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

Noorlander, M. L.

P. Melis, M. L. Noorlander, C. M. van der Horst, and C. J. van Noorden, “Rapid alignment of collagen fibers in the dermis of undermined and not undermined skin stretched with a skin-stretching device,” Plast. Reconstr. Surg. 109(2), 674–680, discussion 681–682 (2002).
[CrossRef] [PubMed]

Nuijs, T. A.

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J. Biomed. Opt. 9(2), 274–281 (2004).
[CrossRef] [PubMed]

Ogura, Y.

Park, B. H.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

Phillips, L. G.

B. J. Wilhelmi, S. J. Blackwell, and L. G. Phillips, “Langer’s lines: to use or not to use,” Plast. Reconstr. Surg. 104(1), 208–214 (1999).
[CrossRef] [PubMed]

Piérard, G. E.

G. E. Piérard and C. M. Lapière, “Microanatomy of the dermis in relation to relaxed skin tension lines and Langer’s lines,” Am. J. Dermatopathol. 9(3), 219–224 (1987).
[CrossRef] [PubMed]

Pierce, M. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[CrossRef] [PubMed]

Reiser, K. M.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7(2), 205–214 (2002).
[CrossRef] [PubMed]

Ridge, M. D.

M. D. Ridge and V. Wright, “The directional effects of skin. A bio-engineering study of skin with particular reference to Langer’s lines,” J. Invest. Dermatol. 46(4), 341–346 (1966).
[PubMed]

Rubenchik, A. M.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7(2), 205–214 (2002).
[CrossRef] [PubMed]

Sakai, S.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Sauermann, G.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstädt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5(3), 195–207 (1999).
[CrossRef]

Saxer, C.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

Smith, L. T.

L. T. Smith, K. A. Holbrook, and P. H. Byers, “Structure of the dermal matrix during development and in the adult,” J. Invest. Dermatol. 79(s1Suppl 1), 93s–104s (1982).
[CrossRef] [PubMed]

Srinivas, S. M.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

Stoller, P.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7(2), 205–214 (2002).
[CrossRef] [PubMed]

Strasswimmer, J.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[CrossRef] [PubMed]

Sugawara, T.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Sun, C. K.

S. Y. Chen, H. Y. Wu, and C. K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt. 14(6), 060505 (2009).
[CrossRef] [PubMed]

Takahashi, Y.

Tang, S.

Tohno, Y.

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9(2), 259–264 (2004).
[CrossRef] [PubMed]

van der Horst, C. M.

P. Melis, M. L. Noorlander, C. M. van der Horst, and C. J. van Noorden, “Rapid alignment of collagen fibers in the dermis of undermined and not undermined skin stretched with a skin-stretching device,” Plast. Reconstr. Surg. 109(2), 674–680, discussion 681–682 (2002).
[CrossRef] [PubMed]

van Noorden, C. J.

P. Melis, M. L. Noorlander, C. M. van der Horst, and C. J. van Noorden, “Rapid alignment of collagen fibers in the dermis of undermined and not undermined skin stretched with a skin-stretching device,” Plast. Reconstr. Surg. 109(2), 674–680, discussion 681–682 (2002).
[CrossRef] [PubMed]

Walter, J.

G. Chinga, P. O. Johnsen, R. Dougherty, E. L. Berli, and J. Walter, “Quantification of the 3D microstructure of SC surfaces,” J. Microsc. 227(3), 254–265 (2007).
[CrossRef] [PubMed]

Wang, H.

Wilhelmi, B. J.

B. J. Wilhelmi, S. J. Blackwell, and L. G. Phillips, “Langer’s lines: to use or not to use,” Plast. Reconstr. Surg. 104(1), 208–214 (1999).
[CrossRef] [PubMed]

Wright, V.

M. D. Ridge and V. Wright, “The directional effects of skin. A bio-engineering study of skin with particular reference to Langer’s lines,” J. Invest. Dermatol. 46(4), 341–346 (1966).
[PubMed]

Wu, H. Y.

S. Y. Chen, H. Y. Wu, and C. K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt. 14(6), 060505 (2009).
[CrossRef] [PubMed]

Yamanari, M.

Y. Lim, M. Yamanari, and Y. Yasuno, “Polarization sensitive corneal and anterior segment swept-source optical coherence tomography,” Proc. SPIE 7550, 75500O, 75500O-4 (2010).
[CrossRef]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49(6), 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14(14), 6502–6515 (2006).
[CrossRef] [PubMed]

Yamashita, T.

Yasui, T.

Yasuno, Y.

Y. Lim, M. Yamanari, and Y. Yasuno, “Polarization sensitive corneal and anterior segment swept-source optical coherence tomography,” Proc. SPIE 7550, 75500O, 75500O-4 (2010).
[CrossRef]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49(6), 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14(14), 6502–6515 (2006).
[CrossRef] [PubMed]

Yatagai, T.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49(6), 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14(14), 6502–6515 (2006).
[CrossRef] [PubMed]

Yu, Y.

Zeng, H.

Zhao, J.

Am. J. Dermatopathol.

G. E. Piérard and C. M. Lapière, “Microanatomy of the dermis in relation to relaxed skin tension lines and Langer’s lines,” Am. J. Dermatopathol. 9(3), 219–224 (1987).
[CrossRef] [PubMed]

An. Bras. Dermatol.

T. Franco and G. Cotta-Pereira, “Histological basis of abdominal skin tension lines,” An. Bras. Dermatol. 72, 421–426 (1997).

Appl. Opt.

Br. J. Plast. Surg.

A. K. Langer, “On the anatomy and physiology of the skin. I. The cleavability of the cutis,” Br. J. Plast. Surg. 31(1), 3–8 (1978).
[CrossRef] [PubMed]

Br. J. Surg.

H. T. Cox, “The cleavage lines of the skin,” Br. J. Surg. 29(114), 234–240 (1941).
[CrossRef]

T. Gibson, R. M. Kenedi, and J. E. Craik, “The mobile micro-architecture of dermal collagen: a bio-engineering study,” Br. J. Surg. 52(10), 764–770 (1965).
[CrossRef] [PubMed]

Dermatol. Clin.

A. F. Borges, “Relaxed skin tension lines,” Dermatol. Clin. 7(1), 169–177 (1989).
[PubMed]

Int. J. Cosmet. Sci.

T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29(6), 423–436 (2007).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49(6), 2661–2667 (2008).
[CrossRef] [PubMed]

J. Am. Acad. Dermatol.

G. L. Grove, M. J. Grove, and J. J. Leyden, “Optical profilometry: an objective method for quantification of facial wrinkles,” J. Am. Acad. Dermatol. 21(3), 631–637 (1989).
[CrossRef] [PubMed]

J. Anat.

I. A. Brown, “Scanning electron microscopy of human dermal fibrous tissue,” J. Anat. 113(Pt 2), 159–168 (1972).
[PubMed]

J. Biomed. Opt.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[CrossRef] [PubMed]

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J. Biomed. Opt. 9(2), 274–281 (2004).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

S. Y. Chen, H. Y. Wu, and C. K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt. 14(6), 060505 (2009).
[CrossRef] [PubMed]

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7(2), 205–214 (2002).
[CrossRef] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9(2), 259–264 (2004).
[CrossRef] [PubMed]

J. Invest. Dermatol.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

M. D. Ridge and V. Wright, “The directional effects of skin. A bio-engineering study of skin with particular reference to Langer’s lines,” J. Invest. Dermatol. 46(4), 341–346 (1966).
[PubMed]

L. T. Smith, K. A. Holbrook, and P. H. Byers, “Structure of the dermal matrix during development and in the adult,” J. Invest. Dermatol. 79(s1Suppl 1), 93s–104s (1982).
[CrossRef] [PubMed]

J. Microsc.

G. Chinga, P. O. Johnsen, R. Dougherty, E. L. Berli, and J. Walter, “Quantification of the 3D microstructure of SC surfaces,” J. Microsc. 227(3), 254–265 (2007).
[CrossRef] [PubMed]

J. Plast. Reconstr. Aesthet. Surg.

J. Bush, M. W. Ferguson, T. Mason, and G. McGrouther, “The dynamic rotation of Langer’s lines on facial expression,” J. Plast. Reconstr. Aesthet. Surg. 60(4), 393–399 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Plast Reconstr Surg (1946)

C. J. Kraissl, “The selection of appropriate lines for elective surgical incisions,” Plast Reconstr Surg (1946) 8(1), 1–28 (1951).
[CrossRef] [PubMed]

Plast. Reconstr. Surg.

A. F. Borges, “Relaxed skin tension lines (RSTL) versus other skin lines,” Plast. Reconstr. Surg. 73(1), 144–150 (1984).
[CrossRef] [PubMed]

B. J. Wilhelmi, S. J. Blackwell, and L. G. Phillips, “Langer’s lines: to use or not to use,” Plast. Reconstr. Surg. 104(1), 208–214 (1999).
[CrossRef] [PubMed]

P. Melis, M. L. Noorlander, C. M. van der Horst, and C. J. van Noorden, “Rapid alignment of collagen fibers in the dermis of undermined and not undermined skin stretched with a skin-stretching device,” Plast. Reconstr. Surg. 109(2), 674–680, discussion 681–682 (2002).
[CrossRef] [PubMed]

Proc. SPIE

Y. Lim, M. Yamanari, and Y. Yasuno, “Polarization sensitive corneal and anterior segment swept-source optical coherence tomography,” Proc. SPIE 7550, 75500O, 75500O-4 (2010).
[CrossRef]

Skin Res. Technol.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstädt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5(3), 195–207 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Mechanical deformation of the forehead skin by the instrument

Fig. 2
Fig. 2

En-face images of dermal birefringence distribution under normal conditions Examples from three subjects (a, g, d, j; b, h, e, k; c, I, f, l) are shown. The corresponding polar plot (g, h, i; j, k, l) was determined using the PDB (a, b, c) and RDB (d, e, f) maps, respectively. Arrows shows the body axis. Asterisks and arrow heads show papillary dermal birefringence from the peripheral region of the infundibula and between them, respectively.

Fig. 3
Fig. 3

Papillary-dermal-birefringence changes under deformation perpendicular to the body axis (a) A PDB map (b, c, d) was demonstrated under each condition. A macro rope-like structure was observed under stretching conditions (asterisks in b). *, p<0.05; **, p<0.01.

Fig. 4
Fig. 4

Papillary-dermal-birefringence change under deformation parallel to the body axis (a) A PDB map (b, c, d) was demonstrated under each condition. A macro rope-like structure was observed under shrinking conditions (asterisks in b). *, p<0.05; **, p<0.01 .

Fig. 5
Fig. 5

Reticular-dermal-birefringence change under the deformation parallel (a) or perpendicular (b) to the body axis. *, p<0.05; **, p<0.01; N.S, non-significant

Fig. 6
Fig. 6

Relationship between the change in papillary-dermal birefringence and Ra parameter under shrinking conditions parallel to the body axis. The change in papillary-dermal birefringence was the ratio of birefringence under shrinking conditions to birefringence under non-deforming conditions. *, p<0.05

Metrics