Abstract

We present a method to make phantoms of coronary arteries for intravascular optical coherence tomography (IV-OCT). The phantoms provide a calibrated OCT response similar to the layered structure of arteries. The optical properties of each layer are achieved with specific concentrations of alumina and carbon black in a silicone matrix. This composition insures high durability and also approximates the elastic properties of arteries. The phantoms are fabricated in a tubular shape by the successive deposition and curing of liquid silicone mixtures on a lathe setup.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The International Working Group For Intracoronary OCT Standardization and Validation (2009), http://www.octstandardization.org/site/ .
  2. R. J. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE 7567, 756702 (2010).
    [CrossRef]
  3. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [CrossRef] [PubMed]
  4. C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
    [CrossRef] [PubMed]
  5. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005).
    [CrossRef] [PubMed]
  6. A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol. 55(18), 5515–5528 (2010).
    [CrossRef] [PubMed]
  7. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).
    [CrossRef] [PubMed]
  8. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35(13), 2269–2271 (2010).
    [CrossRef] [PubMed]
  9. B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
    [CrossRef] [PubMed]
  10. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
    [CrossRef] [PubMed]
  11. G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C.-E. Bisaillon, J.-P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15(4), 046023 (2010).
    [CrossRef] [PubMed]
  12. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (1993).
    [CrossRef] [PubMed]
  13. S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 (2003).
    [CrossRef]
  14. G. Lamouche, M. Dufour, B. Gauthier, V. Bartulovic, M. Hewko, and J. P. Monchalin, “Optical delay line using rotating rhombic prisms,” Proc. SPIE 6429, 64292G (2007).
    [CrossRef]
  15. V. V. Tuchin, “Tissue phantoms,” in Tissue Optics: Light scattering Methods And Instruments for Medical Diagnosis (SPIE, Bellingham, WA, 2000), pp. 98–108.
  16. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
    [CrossRef] [PubMed]
  17. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
    [CrossRef] [PubMed]
  18. J. W. Goodman, Speckle phenomena in optics—Theory and applications (Roberts & Company, Englewood, 2007).

2010 (7)

R. J. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE 7567, 756702 (2010).
[CrossRef]

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol. 55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).
[CrossRef] [PubMed]

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35(13), 2269–2271 (2010).
[CrossRef] [PubMed]

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C.-E. Bisaillon, J.-P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15(4), 046023 (2010).
[CrossRef] [PubMed]

2008 (1)

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[CrossRef] [PubMed]

2007 (1)

G. Lamouche, M. Dufour, B. Gauthier, V. Bartulovic, M. Hewko, and J. P. Monchalin, “Optical delay line using rotating rhombic prisms,” Proc. SPIE 6429, 64292G (2007).
[CrossRef]

2006 (2)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 (2003).
[CrossRef]

2002 (1)

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

1993 (1)

Agrawal, A.

Bamber, J.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol. 55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Bartulovic, V.

G. Lamouche, M. Dufour, B. Gauthier, V. Bartulovic, M. Hewko, and J. P. Monchalin, “Optical delay line using rotating rhombic prisms,” Proc. SPIE 6429, 64292G (2007).
[CrossRef]

Bisaillon, C.-E.

G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C.-E. Bisaillon, J.-P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15(4), 046023 (2010).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[CrossRef] [PubMed]

Bonner, R. F.

Boppart, S. A.

Bremmer, R. H.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

de Bruin, D. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

de Kinkelder, R.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

Doyley, M. M.

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 (2003).
[CrossRef]

Drezek, R.

Dufour, M.

G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C.-E. Bisaillon, J.-P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15(4), 046023 (2010).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[CrossRef] [PubMed]

G. Lamouche, M. Dufour, B. Gauthier, V. Bartulovic, M. Hewko, and J. P. Monchalin, “Optical delay line using rotating rhombic prisms,” Proc. SPIE 6429, 64292G (2007).
[CrossRef]

Faber, D. J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

Ferguson, R. A.

Garcia, L.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol. 55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Gauthier, B.

G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C.-E. Bisaillon, J.-P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15(4), 046023 (2010).
[CrossRef] [PubMed]

G. Lamouche, M. Dufour, B. Gauthier, V. Bartulovic, M. Hewko, and J. P. Monchalin, “Optical delay line using rotating rhombic prisms,” Proc. SPIE 6429, 64292G (2007).
[CrossRef]

Gilani, N.

Grimwood, A.

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).
[CrossRef] [PubMed]

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol. 55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Hart, C.

Heng, X.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

Hewko, M.

G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C.-E. Bisaillon, J.-P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15(4), 046023 (2010).
[CrossRef] [PubMed]

G. Lamouche, M. Dufour, B. Gauthier, V. Bartulovic, M. Hewko, and J. P. Monchalin, “Optical delay line using rotating rhombic prisms,” Proc. SPIE 6429, 64292G (2007).
[CrossRef]

Holmes, J.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol. 55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Jiang, S.

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 (2003).
[CrossRef]

Kennedy, B. F.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

Knüttel, A.

Kodach, V. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

Lamouche, G.

G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C.-E. Bisaillon, J.-P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15(4), 046023 (2010).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[CrossRef] [PubMed]

G. Lamouche, M. Dufour, B. Gauthier, V. Bartulovic, M. Hewko, and J. P. Monchalin, “Optical delay line using rotating rhombic prisms,” Proc. SPIE 6429, 64292G (2007).
[CrossRef]

Loitsch, S.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

Maciejko, R.

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[CrossRef] [PubMed]

McBride, T. O.

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 (2003).
[CrossRef]

McDowell, E. J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

McLaughlin, R. A.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

Monchalin, J. P.

G. Lamouche, M. Dufour, B. Gauthier, V. Bartulovic, M. Hewko, and J. P. Monchalin, “Optical delay line using rotating rhombic prisms,” Proc. SPIE 6429, 64292G (2007).
[CrossRef]

Monchalin, J.-P.

G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C.-E. Bisaillon, J.-P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15(4), 046023 (2010).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[CrossRef] [PubMed]

Nordstrom, R. J.

R. J. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE 7567, 756702 (2010).
[CrossRef]

Oldenburg, A. L.

Pankhurst, Q. A.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol. 55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[CrossRef] [PubMed]

Paulsen, K. D.

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 (2003).
[CrossRef]

Pfefer, T. J.

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 (2003).
[CrossRef]

Poplack, S. P.

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 (2003).
[CrossRef]

Rigby, P.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

Sampson, D. D.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

Schmitt, J. M.

Scolaro, L.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

Sowa, M. G.

G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C.-E. Bisaillon, J.-P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15(4), 046023 (2010).
[CrossRef] [PubMed]

Suslick, K. S.

Tomlins, P.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol. 55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Tomlins, P. H.

Toublan, F. J.-J.

van Leeuwen, T. G.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

van Marle, J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

Vergnole, S.

G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C.-E. Bisaillon, J.-P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15(4), 046023 (2010).
[CrossRef] [PubMed]

Wang, R. K.

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

Wei, A.

Woolliams, P.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol. 55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Woolliams, P. D.

Wu, J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

Yang, C.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

Yaqoob, Z.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

Appl. Opt. (2)

J. Biomed. Opt. (5)

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C.-E. Bisaillon, J.-P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15(4), 046023 (2010).
[CrossRef] [PubMed]

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[CrossRef] [PubMed]

J. Electron. Imaging (1)

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (3)

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol. 55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008).
[CrossRef] [PubMed]

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

Proc. SPIE (2)

R. J. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE 7567, 756702 (2010).
[CrossRef]

G. Lamouche, M. Dufour, B. Gauthier, V. Bartulovic, M. Hewko, and J. P. Monchalin, “Optical delay line using rotating rhombic prisms,” Proc. SPIE 6429, 64292G (2007).
[CrossRef]

Other (3)

V. V. Tuchin, “Tissue phantoms,” in Tissue Optics: Light scattering Methods And Instruments for Medical Diagnosis (SPIE, Bellingham, WA, 2000), pp. 98–108.

J. W. Goodman, Speckle phenomena in optics—Theory and applications (Roberts & Company, Englewood, 2007).

The International Working Group For Intracoronary OCT Standardization and Validation (2009), http://www.octstandardization.org/site/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

OCT image of a healthy porcine coronary artery acquired in a beating heart model.

Fig. 2
Fig. 2

Results of tensile tests for different silicone formulations and for a porcine coronary artery. Curves are identified by the PDMS:resin:reactive ratio. ( L length, L0 length before stretch, F force, A0 cross section area before stretch).

Fig. 3
Fig. 3

Lathe setup for artery phantom fabrication. (RS rotating shaft, LM layer mixture, DS deposition syringe, (B) blade, RTS rotation and translation stage, HE heating element, t thickness)

Fig. 4
Fig. 4

Examples of averaged OCT profiles and their fits. Samples have 0.3 mg/ml of carbon black. Alumina concentrations are 12 and 36 mg/ml. Only data between the vertical lines is considered in the fit.

Fig. 5
Fig. 5

Plots of backscattered amplitude (A) and total attenuation coefficient (B) for a batch of 8 calibration samples having concentrations from 0 to 42 mg/ml of alumina and a fixed concentration of 0.3 mg/ml of carbon black. Each plot shows values obtained from OCT measurements performed on the top (blue circles) and the bottom (green squares) of calibration phantoms; and the fitted concentration dependencies (red lines) (C Alu: concentration of alumina; C CB: concentration of carbon black; A. U.: Arbitrary units)

Fig. 6
Fig. 6

Example of the fit of an averaged OCT profile measured on a porcine coronary artery.

Fig. 7
Fig. 7

Statistical distributions of optical properties of porcine coronary arteries measured by OCT. A. Backscattering amplitude of media, B. Attenuation of media. C. Backscattering amplitude of adventitia. D. Attenuation of adventitia. Average (Av) and standard deviation (STD) of each distribution are indicated on the graphs.

Fig. 8
Fig. 8

Averaged OCT profiles of two-layer phantoms plotted with corresponding artery profile. (A) Phantom based on calibration samples (B) Improved phantom fabricated with further refinement of the alumina concentration in the adventitia layer.

Fig. 9
Fig. 9

Backscattered amplitudes (A) and total attenuation (B) measured 13 months apart on a batch of calibration phantoms with increasing concentration of carbon black and fixed concentration of alumina (10 mg/ml). For the November 2009 series, measurements performed in a single region are shown (green dots), while for the December 2010 series, measurements performed in 9 different regions are shown (blue dots).

Fig. 10
Fig. 10

IV-OCT image of a coronary artery phantom.

Tables (2)

Tables Icon

Table 1 Fitted calibration relations for 7 batches of calibration samples

Tables Icon

Table 2 Optical properties measured on the artery and the two-layer phantoms presented in Fig. 8. The optical properties of single-layer phantoms made with the mixtures used for each layer are also presented.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

log [ S O C T ] log [ A ] μ t o t z z 0 n ,
A = i a i 2 C i ,
μ t o t = i b i C i ,
s O C T ( z ) n a n g ( z z n ) exp ( j θ n ) ,
S O C T ( z ) n a n 2 g ( z z n ) 2 ,
S O C T ( z ) C a .
S O C T ( z ) i C i a i 2 ,

Metrics