Abstract

The amplified plasmonic response from various distributions of gold nanoparticles (AuNPs) coated on top of gold thin film was studied via ellipsometry under total internal reflection mode. The surface plasmon resonance dip can be tuned from the visible to near infrared by simply varying the AuNP concentration. Theoretical modeling based on effective medium theory with a multi-slice model has been employed to fit the experimental results. Additionally, this experimental tool has been further extended to study bio-molecular interactions with metal surfaces as well as in studying protein-protein interaction without any labeling. Hence, this technique could provide a non-destructive way of designing tunable label-free optical biosensors with very high sensitivity.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
    [CrossRef] [PubMed]
  2. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  3. H. Arwin, “Ellipsometry on thin organic layers of biological interest: characterization and applications,” Thin Solid Films 377–378(1-2), 48–56 (2000).
    [CrossRef]
  4. M. Poksinski and H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–721 (2004).
    [CrossRef]
  5. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  6. S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonace sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996).
    [CrossRef]
  7. I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys. 96(5), 3004–3011 (2004).
    [CrossRef]
  8. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
    [CrossRef]
  9. L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
    [CrossRef] [PubMed]
  10. K. Tamada, F. Nakamura, M. Ito, M. X. Li, and A. Baba, “SPR-based DNA detection with metal nanoparticles,” Plasmonics 2(4), 185–191 (2007).
    [CrossRef]
  11. W. C. Law, K. T. Yong, A. Baev, R. Hu, and P. N. Prasad, “Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods,” Opt. Express 17(21), 19041–19046 (2009).
    [CrossRef] [PubMed]
  12. J. Jung, K. Na, J. Lee, K. W. Kim, and J. Hyun, “Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface,” Anal. Chim. Acta 651(1), 91–97 (2009).
    [CrossRef] [PubMed]
  13. R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron. 25(12), 2633–2638 (2010).
    [CrossRef] [PubMed]
  14. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
    [CrossRef]
  15. S. H. Hsu, Y. C. Chang, Y. C. Chen, P. K. Wei, and Y. D. Kim, “Optical metrology of randomly-distributed Au colloids on a multilayer film,” Opt. Express 18(2), 1310–1315 (2010).
    [CrossRef] [PubMed]
  16. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.) 241, 20–22 (1973).
  17. J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
    [CrossRef] [PubMed]
  18. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  19. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
    [CrossRef] [PubMed]
  20. P. Westphal and A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B Chem. 84(2–3), 278–282 (2002).
    [CrossRef]
  21. J. Y. Lee, T. K. Chou, and H. C. Shih, “Polarization-interferometric surface-plasmon-resonance imaging system,” Opt. Lett. 33(5), 434–436 (2008).
    [CrossRef] [PubMed]
  22. W. Y. Yong, J. Y. Jae, D. K. Young, and W. Deokha, “Study of the interaction between biomolecule monolayers using total internal reflection ellipsometry,” J. Kor. Phys. Soc. 58(42), 1031–1034 (2011).
    [CrossRef]
  23. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of the synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978).
    [CrossRef]
  24. P. A. Cuypers, W. T. H. Hermens, and H. C. Hemker, “Ellipsometry as a tool to study protein films at liquid-solid interfaces,” Anal. Biochem. 84(1), 56–67 (1978).
    [CrossRef] [PubMed]
  25. H. Arwin, “Optical properties of thin layers of bovine serum albumin, v-globulin, and hemoglobin,” Appl. Spectrosc. 40(3), 313–318 (1986).
    [CrossRef]
  26. N. Watanabe, T. Shirakawa, M. Iwahashi, K. Ohbu, and T. Seimiya, “Effect of surface charge on adsorption of bovine serum albumin as studied by ellipsometry 1. Adsorption on cationic monolayer,” Colloid Polym. Sci. 264(10), 903–908 (1986).
    [CrossRef]

2011 (1)

W. Y. Yong, J. Y. Jae, D. K. Young, and W. Deokha, “Study of the interaction between biomolecule monolayers using total internal reflection ellipsometry,” J. Kor. Phys. Soc. 58(42), 1031–1034 (2011).
[CrossRef]

2010 (2)

R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron. 25(12), 2633–2638 (2010).
[CrossRef] [PubMed]

S. H. Hsu, Y. C. Chang, Y. C. Chen, P. K. Wei, and Y. D. Kim, “Optical metrology of randomly-distributed Au colloids on a multilayer film,” Opt. Express 18(2), 1310–1315 (2010).
[CrossRef] [PubMed]

2009 (2)

W. C. Law, K. T. Yong, A. Baev, R. Hu, and P. N. Prasad, “Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods,” Opt. Express 17(21), 19041–19046 (2009).
[CrossRef] [PubMed]

J. Jung, K. Na, J. Lee, K. W. Kim, and J. Hyun, “Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface,” Anal. Chim. Acta 651(1), 91–97 (2009).
[CrossRef] [PubMed]

2008 (2)

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

J. Y. Lee, T. K. Chou, and H. C. Shih, “Polarization-interferometric surface-plasmon-resonance imaging system,” Opt. Lett. 33(5), 434–436 (2008).
[CrossRef] [PubMed]

2007 (1)

K. Tamada, F. Nakamura, M. Ito, M. X. Li, and A. Baba, “SPR-based DNA detection with metal nanoparticles,” Plasmonics 2(4), 185–191 (2007).
[CrossRef]

2006 (1)

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

2004 (3)

I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys. 96(5), 3004–3011 (2004).
[CrossRef]

M. Poksinski and H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–721 (2004).
[CrossRef]

H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
[CrossRef] [PubMed]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

2002 (1)

P. Westphal and A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B Chem. 84(2–3), 278–282 (2002).
[CrossRef]

2000 (2)

H. Arwin, “Ellipsometry on thin organic layers of biological interest: characterization and applications,” Thin Solid Films 377–378(1-2), 48–56 (2000).
[CrossRef]

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1998 (1)

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

1996 (1)

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonace sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996).
[CrossRef]

1986 (2)

N. Watanabe, T. Shirakawa, M. Iwahashi, K. Ohbu, and T. Seimiya, “Effect of surface charge on adsorption of bovine serum albumin as studied by ellipsometry 1. Adsorption on cationic monolayer,” Colloid Polym. Sci. 264(10), 903–908 (1986).
[CrossRef]

H. Arwin, “Optical properties of thin layers of bovine serum albumin, v-globulin, and hemoglobin,” Appl. Spectrosc. 40(3), 313–318 (1986).
[CrossRef]

1978 (2)

A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of the synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978).
[CrossRef]

P. A. Cuypers, W. T. H. Hermens, and H. C. Hemker, “Ellipsometry as a tool to study protein films at liquid-solid interfaces,” Anal. Biochem. 84(1), 56–67 (1978).
[CrossRef] [PubMed]

1973 (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.) 241, 20–22 (1973).

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[CrossRef]

Arwin, H.

H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
[CrossRef] [PubMed]

M. Poksinski and H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–721 (2004).
[CrossRef]

H. Arwin, “Ellipsometry on thin organic layers of biological interest: characterization and applications,” Thin Solid Films 377–378(1-2), 48–56 (2000).
[CrossRef]

H. Arwin, “Optical properties of thin layers of bovine serum albumin, v-globulin, and hemoglobin,” Appl. Spectrosc. 40(3), 313–318 (1986).
[CrossRef]

Baba, A.

K. Tamada, F. Nakamura, M. Ito, M. X. Li, and A. Baba, “SPR-based DNA detection with metal nanoparticles,” Plasmonics 2(4), 185–191 (2007).
[CrossRef]

Baev, A.

Benjamins, J.

A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of the synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978).
[CrossRef]

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Bornmann, A.

P. Westphal and A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B Chem. 84(2–3), 278–282 (2002).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[CrossRef]

Chang, Y. C.

R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron. 25(12), 2633–2638 (2010).
[CrossRef] [PubMed]

S. H. Hsu, Y. C. Chang, Y. C. Chen, P. K. Wei, and Y. D. Kim, “Optical metrology of randomly-distributed Au colloids on a multilayer film,” Opt. Express 18(2), 1310–1315 (2010).
[CrossRef] [PubMed]

Chen, Y. C.

Chou, T. K.

Cuypers, P. A.

P. A. Cuypers, W. T. H. Hermens, and H. C. Hemker, “Ellipsometry as a tool to study protein films at liquid-solid interfaces,” Anal. Biochem. 84(1), 56–67 (1978).
[CrossRef] [PubMed]

De Feijter, A.

A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of the synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978).
[CrossRef]

Deokha, W.

W. Y. Yong, J. Y. Jae, D. K. Young, and W. Deokha, “Study of the interaction between biomolecule monolayers using total internal reflection ellipsometry,” J. Kor. Phys. Soc. 58(42), 1031–1034 (2011).
[CrossRef]

Dostálek, J.

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

Driskell, J. D.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

Frens, G.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.) 241, 20–22 (1973).

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Hemker, H. C.

P. A. Cuypers, W. T. H. Hermens, and H. C. Hemker, “Ellipsometry as a tool to study protein films at liquid-solid interfaces,” Anal. Biochem. 84(1), 56–67 (1978).
[CrossRef] [PubMed]

Hermens, W. T. H.

P. A. Cuypers, W. T. H. Hermens, and H. C. Hemker, “Ellipsometry as a tool to study protein films at liquid-solid interfaces,” Anal. Biochem. 84(1), 56–67 (1978).
[CrossRef] [PubMed]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Hooper, I. R.

I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys. 96(5), 3004–3011 (2004).
[CrossRef]

Hsu, S. H.

R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron. 25(12), 2633–2638 (2010).
[CrossRef] [PubMed]

S. H. Hsu, Y. C. Chang, Y. C. Chen, P. K. Wei, and Y. D. Kim, “Optical metrology of randomly-distributed Au colloids on a multilayer film,” Opt. Express 18(2), 1310–1315 (2010).
[CrossRef] [PubMed]

Hu, R.

Hyun, J.

J. Jung, K. Na, J. Lee, K. W. Kim, and J. Hyun, “Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface,” Anal. Chim. Acta 651(1), 91–97 (2009).
[CrossRef] [PubMed]

Ito, M.

K. Tamada, F. Nakamura, M. Ito, M. X. Li, and A. Baba, “SPR-based DNA detection with metal nanoparticles,” Plasmonics 2(4), 185–191 (2007).
[CrossRef]

Iwahashi, M.

N. Watanabe, T. Shirakawa, M. Iwahashi, K. Ohbu, and T. Seimiya, “Effect of surface charge on adsorption of bovine serum albumin as studied by ellipsometry 1. Adsorption on cationic monolayer,” Colloid Polym. Sci. 264(10), 903–908 (1986).
[CrossRef]

Jae, J. Y.

W. Y. Yong, J. Y. Jae, D. K. Young, and W. Deokha, “Study of the interaction between biomolecule monolayers using total internal reflection ellipsometry,” J. Kor. Phys. Soc. 58(42), 1031–1034 (2011).
[CrossRef]

Johansen, K.

Johnston, K. S.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonace sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996).
[CrossRef]

Jung, J.

J. Jung, K. Na, J. Lee, K. W. Kim, and J. Hyun, “Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface,” Anal. Chim. Acta 651(1), 91–97 (2009).
[CrossRef] [PubMed]

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Kim, K. W.

J. Jung, K. Na, J. Lee, K. W. Kim, and J. Hyun, “Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface,” Anal. Chim. Acta 651(1), 91–97 (2009).
[CrossRef] [PubMed]

Kim, Y. D.

Knoll, W.

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

Law, W. C.

Lee, J.

J. Jung, K. Na, J. Lee, K. W. Kim, and J. Hyun, “Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface,” Anal. Chim. Acta 651(1), 91–97 (2009).
[CrossRef] [PubMed]

Lee, J. Y.

Li, M. X.

K. Tamada, F. Nakamura, M. Ito, M. X. Li, and A. Baba, “SPR-based DNA detection with metal nanoparticles,” Plasmonics 2(4), 185–191 (2007).
[CrossRef]

Lipert, R. J.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

Lyon, L. A.

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

Moirangthem, R. S.

R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron. 25(12), 2633–2638 (2010).
[CrossRef] [PubMed]

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

Na, K.

J. Jung, K. Na, J. Lee, K. W. Kim, and J. Hyun, “Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface,” Anal. Chim. Acta 651(1), 91–97 (2009).
[CrossRef] [PubMed]

Nakamura, F.

K. Tamada, F. Nakamura, M. Ito, M. X. Li, and A. Baba, “SPR-based DNA detection with metal nanoparticles,” Plasmonics 2(4), 185–191 (2007).
[CrossRef]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

Nelson, S. G.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonace sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996).
[CrossRef]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Ohbu, K.

N. Watanabe, T. Shirakawa, M. Iwahashi, K. Ohbu, and T. Seimiya, “Effect of surface charge on adsorption of bovine serum albumin as studied by ellipsometry 1. Adsorption on cationic monolayer,” Colloid Polym. Sci. 264(10), 903–908 (1986).
[CrossRef]

Poksinski, M.

M. Poksinski and H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–721 (2004).
[CrossRef]

H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
[CrossRef] [PubMed]

Porter, M. D.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

Prasad, P. N.

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys. 96(5), 3004–3011 (2004).
[CrossRef]

Seimiya, T.

N. Watanabe, T. Shirakawa, M. Iwahashi, K. Ohbu, and T. Seimiya, “Effect of surface charge on adsorption of bovine serum albumin as studied by ellipsometry 1. Adsorption on cationic monolayer,” Colloid Polym. Sci. 264(10), 903–908 (1986).
[CrossRef]

Shih, H. C.

Shirakawa, T.

N. Watanabe, T. Shirakawa, M. Iwahashi, K. Ohbu, and T. Seimiya, “Effect of surface charge on adsorption of bovine serum albumin as studied by ellipsometry 1. Adsorption on cationic monolayer,” Colloid Polym. Sci. 264(10), 903–908 (1986).
[CrossRef]

Tamada, K.

K. Tamada, F. Nakamura, M. Ito, M. X. Li, and A. Baba, “SPR-based DNA detection with metal nanoparticles,” Plasmonics 2(4), 185–191 (2007).
[CrossRef]

Veer, F. A.

A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of the synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978).
[CrossRef]

Watanabe, N.

N. Watanabe, T. Shirakawa, M. Iwahashi, K. Ohbu, and T. Seimiya, “Effect of surface charge on adsorption of bovine serum albumin as studied by ellipsometry 1. Adsorption on cationic monolayer,” Colloid Polym. Sci. 264(10), 903–908 (1986).
[CrossRef]

Wei, P. K.

R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron. 25(12), 2633–2638 (2010).
[CrossRef] [PubMed]

S. H. Hsu, Y. C. Chang, Y. C. Chen, P. K. Wei, and Y. D. Kim, “Optical metrology of randomly-distributed Au colloids on a multilayer film,” Opt. Express 18(2), 1310–1315 (2010).
[CrossRef] [PubMed]

Westphal, P.

P. Westphal and A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B Chem. 84(2–3), 278–282 (2002).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonace sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996).
[CrossRef]

Yong, K. T.

Yong, W. Y.

W. Y. Yong, J. Y. Jae, D. K. Young, and W. Deokha, “Study of the interaction between biomolecule monolayers using total internal reflection ellipsometry,” J. Kor. Phys. Soc. 58(42), 1031–1034 (2011).
[CrossRef]

Young, D. K.

W. Y. Yong, J. Y. Jae, D. K. Young, and W. Deokha, “Study of the interaction between biomolecule monolayers using total internal reflection ellipsometry,” J. Kor. Phys. Soc. 58(42), 1031–1034 (2011).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Anal. Biochem. (1)

P. A. Cuypers, W. T. H. Hermens, and H. C. Hemker, “Ellipsometry as a tool to study protein films at liquid-solid interfaces,” Anal. Biochem. 84(1), 56–67 (1978).
[CrossRef] [PubMed]

Anal. Chem. (1)

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

J. Jung, K. Na, J. Lee, K. W. Kim, and J. Hyun, “Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface,” Anal. Chim. Acta 651(1), 91–97 (2009).
[CrossRef] [PubMed]

Ann. Phys. (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Biointerphases (1)

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

Biopolymers (1)

A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of the synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978).
[CrossRef]

Biosens. Bioelectron. (1)

R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron. 25(12), 2633–2638 (2010).
[CrossRef] [PubMed]

Colloid Polym. Sci. (1)

N. Watanabe, T. Shirakawa, M. Iwahashi, K. Ohbu, and T. Seimiya, “Effect of surface charge on adsorption of bovine serum albumin as studied by ellipsometry 1. Adsorption on cationic monolayer,” Colloid Polym. Sci. 264(10), 903–908 (1986).
[CrossRef]

J. Am. Chem. Soc. (1)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

J. Appl. Phys. (1)

I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys. 96(5), 3004–3011 (2004).
[CrossRef]

J. Kor. Phys. Soc. (1)

W. Y. Yong, J. Y. Jae, D. K. Young, and W. Deokha, “Study of the interaction between biomolecule monolayers using total internal reflection ellipsometry,” J. Kor. Phys. Soc. 58(42), 1031–1034 (2011).
[CrossRef]

J. Phys. Chem. B (1)

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

Nat. Phys. Sci (Lond.) (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.) 241, 20–22 (1973).

Opt. Express (2)

Opt. Lett. (1)

Plasmonics (1)

K. Tamada, F. Nakamura, M. Ito, M. X. Li, and A. Baba, “SPR-based DNA detection with metal nanoparticles,” Plasmonics 2(4), 185–191 (2007).
[CrossRef]

Sens. Actuators B Chem. (3)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonace sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996).
[CrossRef]

P. Westphal and A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B Chem. 84(2–3), 278–282 (2002).
[CrossRef]

Thin Solid Films (2)

H. Arwin, “Ellipsometry on thin organic layers of biological interest: characterization and applications,” Thin Solid Films 377–378(1-2), 48–56 (2000).
[CrossRef]

M. Poksinski and H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–721 (2004).
[CrossRef]

Other (1)

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Distribution of the 13nm AuNPs on the gold surface after 1 minute treatment of amine-functionalized gold substrate (b) Experimental setup with optical components illustrating the polarization of incident and reflected light within the prism for a sample attached perpendicular to the sample stage.

Fig. 2
Fig. 2

Spectral response of the ellipsometry parameters Ψ and Δ (a, b) for gold nanoparticle with different concentration of gold nanoparticles immobilized on top of 40nm thick gold thin film in water medium, (c) Shifting in the SPR dip obtained from Ψ spectra as a function of different concentration of AuNPs showing in terms of treatment time.

Fig. 3
Fig. 3

(a-b) Show spectral response of the ellipsometric parameters Ψ, Δ for glycerol-water mixtures having different refractive indices introduced on 30 minute treated AuNPs-coated gold substrate, (c) Shows changes of SPR dip vs. refractive index from Ψ spectra.

Fig. 4
Fig. 4

(a) Optical constants of the PBS buffer solution, BSA and anti-BSA bio-molecules as calibrated on the gold thin film under TIR configuration. Spectral response of the ellipsometry parameters (b) Ψ and (c) Δ for various configurations with respect to the addition of BSA and anti-BSA on 13nm diameter gold nanoparticles coated onto 40nm gold thin film. (d) Shows the model describing the EMA layers representing the AuNPs in buffer medium with BSA and an additional layer of anti-BSA. An AFM image of the bare AuNPs sitting on gold film is shown in (e) and after attachment of the BSA + anti-BSA in (f).

Tables (2)

Tables Icon

Table 1 Best-fit results of EMA parameters of samples with different treatment time exposed to water medium

Tables Icon

Table 2 Best-fit results of EMA parameters with different configurations with respect to the addition of BSA and its subsequent interaction with anti-BSA

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

tan Ψ = | R p R s |  and  Δ = δ p δ s ,

Metrics