Abstract

The metabolic function of inner retinal cells relies on the availability of nutrients and oxygen that are supplied by the retinal circulation. Assessment of retinal tissue vitality and function requires knowledge of both the rate of oxygen delivery and consumption. The purpose of the current study is to report a novel technique for assessment of the inner retinal metabolic rate of oxygen (MO2) by combined measurements of retinal blood flow and vascular oxygen tension (PO2) in rat. The application of this technology has the potential to broaden knowledge of retinal oxygen dynamics and advance understanding of disease pathophysiology.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yoneya, T. Saito, Y. Nishiyama, T. Deguchi, M. Takasu, T. Gil, and E. Horn, “Retinal oxygen saturation levels in patients with central retinal vein occlusion,” Ophthalmology 109(8), 1521–1526 (2002).
    [CrossRef] [PubMed]
  2. W. Zhang, Y. Ito, E. Berlin, R. Roberts, and B. A. Berkowitz, “Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(7), 3119–3123 (2003).
    [CrossRef] [PubMed]
  3. M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008).
    [PubMed]
  4. E. Stefansson, “Oxygen and diabetic eye disease,” Graefes Arch. Clin. Exp. Ophthalmol. 228(2), 120–123 (1990).
    [CrossRef] [PubMed]
  5. S. J. Cringle, D. Y. Yu, P. K. Yu, and E. N. Su, “Intraretinal oxygen consumption in the rat in vivo,” Invest. Ophthalmol. Vis. Sci. 43(6), 1922–1927 (2002).
    [PubMed]
  6. V. A. Alder, J. Ben-Nun, and S. J. Cringle, “PO2 profiles and oxygen consumption in cat retina with an occluded retinal circulation,” Invest. Ophthalmol. Vis. Sci. 31(6), 1029–1034 (1990).
    [PubMed]
  7. R. D. Braun, R. A. Linsenmeier, and T. K. Goldstick, “Oxygen consumption in the inner and outer retina of the cat,” Invest. Ophthalmol. Vis. Sci. 36(3), 542–554 (1995).
    [PubMed]
  8. D. Y. Yu, S. J. Cringle, P. K. Yu, and E. N. Su, “Intraretinal oxygen distribution and consumption during retinal artery occlusion and graded hyperoxic ventilation in the rat,” Invest. Ophthalmol. Vis. Sci. 48(5), 2290–2296 (2007).
    [CrossRef] [PubMed]
  9. Y. Ito and B. A. Berkowitz, “MR studies of retinal oxygenation,” Vision Res. 41(10-11), 1307–1311 (2001).
    [CrossRef] [PubMed]
  10. Y. Zhang, Q. Peng, J. W. Kiel, C. A. Rosende, and T. Q. Duong, “Magnetic resonance imaging of vascular oxygenation changes during hyperoxia and carbogen challenges in the human retina,” Invest. Ophthalmol. Vis. Sci. 52(1), 286–291 (2011).
    [CrossRef] [PubMed]
  11. S. D. Wajer, M. Taomoto, D. S. McLeod, R. L. McCally, H. Nishiwaki, M. E. Fabry, R. L. Nagel, and G. A. Lutty, “Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures,” Microvasc. Res. 60(3), 281–293 (2000).
    [CrossRef] [PubMed]
  12. R. Tadayoni, M. Paques, A. Gaudric, and E. Vicaut, “Erythrocyte and leukocyte dynamics in the retinal capillaries of diabetic mice,” Exp. Eye Res. 77(4), 497–504 (2003).
    [CrossRef] [PubMed]
  13. W. S. Wright, J. E. Messina, and N. R. Harris, “Attenuation of diabetes-induced retinal vasoconstriction by a thromboxane receptor antagonist,” Exp. Eye Res. 88(1), 106–112 (2009).
    [CrossRef] [PubMed]
  14. L. Wang, C. Grant, B. Fortune, and G. A. Cioffi, “Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique,” Exp. Eye Res. 86(6), 908–913 (2008).
    [CrossRef] [PubMed]
  15. J. E. Grunwald, C. E. Riva, S. H. Sinclair, A. J. Brucker, and B. L. Petrig, “Laser Doppler velocimetry study of retinal circulation in diabetes mellitus,” Arch. Ophthalmol. 104(7), 991–996 (1986).
    [PubMed]
  16. M. H. Cuypers, J. S. Kasanardjo, and B. C. Polak, “Retinal blood flow changes in diabetic retinopathy measured with the Heidelberg scanning laser Doppler flowmeter,” Graefes Arch. Clin. Exp. Ophthalmol. 238(12), 935–941 (2000).
    [CrossRef] [PubMed]
  17. Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
    [CrossRef] [PubMed]
  18. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express 17(16), 14281–14297 (2009).
    [CrossRef] [PubMed]
  19. J. Sebag, F. C. Delori, G. T. Feke, and J. J. Weiter, “Effects of optic atrophy on retinal blood flow and oxygen saturation in humans,” Arch. Ophthalmol. 107(2), 222–226 (1989).
    [PubMed]
  20. T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011).
    [CrossRef] [PubMed]
  21. V. Jain, M. C. Langham, and F. W. Wehrli, “MRI estimation of global brain oxygen consumption rate,” J. Cereb. Blood Flow Metab. 30(9), 1598–1607 (2010).
    [CrossRef] [PubMed]
  22. R. M. Berne and M. N. Levy, Physiology, 2nd ed. (Mosby, St. Louis, MO, 1988).
  23. M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
    [CrossRef] [PubMed]
  24. M. Shahidi, A. Shakoor, N. P. Blair, M. Mori, and R. Shonat, “A method for chorioretinal oxygen tension measurement,” Curr. Eye Res. 31(4), 357–366 (2006).
    [CrossRef] [PubMed]
  25. B. A. Shapiro, W. T. Perruzi, and R. Kozelowski-Templin, in Clinical Application of Blood Gases (Mosby-Year Book, Inc, St. Louis, 1994), pp. 33–53.
  26. J. B. West, Pulmonary Physiology and Pathophysiology: an Integrated, Case-Based Approach, 2nd ed. (Lippincott Williams & Wilkins, Philadelphia, PA, 2007).
  27. C. F. Cartheuser, “Standard and pH-affected hemoglobin-O2 binding curves of Sprague-Dawley rats under normal and shifted P50 conditions,” Comp. Biochem. Physiol. Comp. Physiol. 106(4), 775–782 (1993).
    [CrossRef] [PubMed]
  28. K. Lorentz, A. Zayas-Santiago, S. Tummala, and J. J. Kang Derwent, “Scanning laser ophthalmoscope-particle tracking method to assess blood velocity during hypoxia and hyperoxia,” Adv. Exp. Med. Biol. 614, 253–261 (2008).
    [CrossRef] [PubMed]
  29. M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. Res. 79(2), 109–113 (2010).
    [CrossRef] [PubMed]
  30. S. L. Meyer, in Data Analysis for Scientists and Engineers (Wiley, New York, 1975), pp. 39–48.
  31. H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, K. Miyamoto, and N. Matsuda, “Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats,” Invest. Ophthalmol. Vis. Sci. 37(7), 1341–1347 (1996).
    [PubMed]
  32. K. Yamakawa, I. A. Bhutto, Z. Lu, Y. Watanabe, and T. Amemiya, “Retinal vascular changes in rats with inherited hypercholesterolemia—corrosion cast demonstration,” Curr. Eye Res. 22(4), 258–265 (2001).
    [CrossRef] [PubMed]
  33. D. Y. Yu, S. J. Cringle, V. A. Alder, and E. N. Su, “Intraretinal oxygen distribution in rats as a function of systemic blood pressure,” Am. J. Physiol. 267(6 Pt 2), H2498–H2507 (1994).
    [PubMed]
  34. J. Brotherton, “Studies on the metabolism of the rat retina with special reference to retinitis pigmentosa. I. Anaerobic glycolysis,” Exp. Eye Res. 1(3), 234–245 (1962).
    [CrossRef] [PubMed]
  35. P. Törnquist and A. Alm, “Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs,” Acta Physiol. Scand. 106(3), 351–357 (1979).
    [CrossRef] [PubMed]
  36. L. Wang, P. Törnquist, and A. Bill, “Glucose metabolism of the inner retina in pigs in darkness and light,” Acta Physiol. Scand. 160(1), 71–74 (1997).
    [PubMed]

2011 (2)

Y. Zhang, Q. Peng, J. W. Kiel, C. A. Rosende, and T. Q. Duong, “Magnetic resonance imaging of vascular oxygenation changes during hyperoxia and carbogen challenges in the human retina,” Invest. Ophthalmol. Vis. Sci. 52(1), 286–291 (2011).
[CrossRef] [PubMed]

T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011).
[CrossRef] [PubMed]

2010 (2)

V. Jain, M. C. Langham, and F. W. Wehrli, “MRI estimation of global brain oxygen consumption rate,” J. Cereb. Blood Flow Metab. 30(9), 1598–1607 (2010).
[CrossRef] [PubMed]

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. Res. 79(2), 109–113 (2010).
[CrossRef] [PubMed]

2009 (4)

M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
[CrossRef] [PubMed]

W. S. Wright, J. E. Messina, and N. R. Harris, “Attenuation of diabetes-induced retinal vasoconstriction by a thromboxane receptor antagonist,” Exp. Eye Res. 88(1), 106–112 (2009).
[CrossRef] [PubMed]

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[CrossRef] [PubMed]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express 17(16), 14281–14297 (2009).
[CrossRef] [PubMed]

2008 (3)

L. Wang, C. Grant, B. Fortune, and G. A. Cioffi, “Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique,” Exp. Eye Res. 86(6), 908–913 (2008).
[CrossRef] [PubMed]

M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008).
[PubMed]

K. Lorentz, A. Zayas-Santiago, S. Tummala, and J. J. Kang Derwent, “Scanning laser ophthalmoscope-particle tracking method to assess blood velocity during hypoxia and hyperoxia,” Adv. Exp. Med. Biol. 614, 253–261 (2008).
[CrossRef] [PubMed]

2007 (1)

D. Y. Yu, S. J. Cringle, P. K. Yu, and E. N. Su, “Intraretinal oxygen distribution and consumption during retinal artery occlusion and graded hyperoxic ventilation in the rat,” Invest. Ophthalmol. Vis. Sci. 48(5), 2290–2296 (2007).
[CrossRef] [PubMed]

2006 (1)

M. Shahidi, A. Shakoor, N. P. Blair, M. Mori, and R. Shonat, “A method for chorioretinal oxygen tension measurement,” Curr. Eye Res. 31(4), 357–366 (2006).
[CrossRef] [PubMed]

2003 (2)

W. Zhang, Y. Ito, E. Berlin, R. Roberts, and B. A. Berkowitz, “Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(7), 3119–3123 (2003).
[CrossRef] [PubMed]

R. Tadayoni, M. Paques, A. Gaudric, and E. Vicaut, “Erythrocyte and leukocyte dynamics in the retinal capillaries of diabetic mice,” Exp. Eye Res. 77(4), 497–504 (2003).
[CrossRef] [PubMed]

2002 (2)

S. Yoneya, T. Saito, Y. Nishiyama, T. Deguchi, M. Takasu, T. Gil, and E. Horn, “Retinal oxygen saturation levels in patients with central retinal vein occlusion,” Ophthalmology 109(8), 1521–1526 (2002).
[CrossRef] [PubMed]

S. J. Cringle, D. Y. Yu, P. K. Yu, and E. N. Su, “Intraretinal oxygen consumption in the rat in vivo,” Invest. Ophthalmol. Vis. Sci. 43(6), 1922–1927 (2002).
[PubMed]

2001 (2)

Y. Ito and B. A. Berkowitz, “MR studies of retinal oxygenation,” Vision Res. 41(10-11), 1307–1311 (2001).
[CrossRef] [PubMed]

K. Yamakawa, I. A. Bhutto, Z. Lu, Y. Watanabe, and T. Amemiya, “Retinal vascular changes in rats with inherited hypercholesterolemia—corrosion cast demonstration,” Curr. Eye Res. 22(4), 258–265 (2001).
[CrossRef] [PubMed]

2000 (2)

M. H. Cuypers, J. S. Kasanardjo, and B. C. Polak, “Retinal blood flow changes in diabetic retinopathy measured with the Heidelberg scanning laser Doppler flowmeter,” Graefes Arch. Clin. Exp. Ophthalmol. 238(12), 935–941 (2000).
[CrossRef] [PubMed]

S. D. Wajer, M. Taomoto, D. S. McLeod, R. L. McCally, H. Nishiwaki, M. E. Fabry, R. L. Nagel, and G. A. Lutty, “Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures,” Microvasc. Res. 60(3), 281–293 (2000).
[CrossRef] [PubMed]

1997 (1)

L. Wang, P. Törnquist, and A. Bill, “Glucose metabolism of the inner retina in pigs in darkness and light,” Acta Physiol. Scand. 160(1), 71–74 (1997).
[PubMed]

1996 (1)

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, K. Miyamoto, and N. Matsuda, “Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats,” Invest. Ophthalmol. Vis. Sci. 37(7), 1341–1347 (1996).
[PubMed]

1995 (1)

R. D. Braun, R. A. Linsenmeier, and T. K. Goldstick, “Oxygen consumption in the inner and outer retina of the cat,” Invest. Ophthalmol. Vis. Sci. 36(3), 542–554 (1995).
[PubMed]

1994 (1)

D. Y. Yu, S. J. Cringle, V. A. Alder, and E. N. Su, “Intraretinal oxygen distribution in rats as a function of systemic blood pressure,” Am. J. Physiol. 267(6 Pt 2), H2498–H2507 (1994).
[PubMed]

1993 (1)

C. F. Cartheuser, “Standard and pH-affected hemoglobin-O2 binding curves of Sprague-Dawley rats under normal and shifted P50 conditions,” Comp. Biochem. Physiol. Comp. Physiol. 106(4), 775–782 (1993).
[CrossRef] [PubMed]

1990 (2)

V. A. Alder, J. Ben-Nun, and S. J. Cringle, “PO2 profiles and oxygen consumption in cat retina with an occluded retinal circulation,” Invest. Ophthalmol. Vis. Sci. 31(6), 1029–1034 (1990).
[PubMed]

E. Stefansson, “Oxygen and diabetic eye disease,” Graefes Arch. Clin. Exp. Ophthalmol. 228(2), 120–123 (1990).
[CrossRef] [PubMed]

1989 (1)

J. Sebag, F. C. Delori, G. T. Feke, and J. J. Weiter, “Effects of optic atrophy on retinal blood flow and oxygen saturation in humans,” Arch. Ophthalmol. 107(2), 222–226 (1989).
[PubMed]

1986 (1)

J. E. Grunwald, C. E. Riva, S. H. Sinclair, A. J. Brucker, and B. L. Petrig, “Laser Doppler velocimetry study of retinal circulation in diabetes mellitus,” Arch. Ophthalmol. 104(7), 991–996 (1986).
[PubMed]

1979 (1)

P. Törnquist and A. Alm, “Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs,” Acta Physiol. Scand. 106(3), 351–357 (1979).
[CrossRef] [PubMed]

1962 (1)

J. Brotherton, “Studies on the metabolism of the rat retina with special reference to retinitis pigmentosa. I. Anaerobic glycolysis,” Exp. Eye Res. 1(3), 234–245 (1962).
[CrossRef] [PubMed]

Alder, V. A.

D. Y. Yu, S. J. Cringle, V. A. Alder, and E. N. Su, “Intraretinal oxygen distribution in rats as a function of systemic blood pressure,” Am. J. Physiol. 267(6 Pt 2), H2498–H2507 (1994).
[PubMed]

V. A. Alder, J. Ben-Nun, and S. J. Cringle, “PO2 profiles and oxygen consumption in cat retina with an occluded retinal circulation,” Invest. Ophthalmol. Vis. Sci. 31(6), 1029–1034 (1990).
[PubMed]

Alm, A.

P. Törnquist and A. Alm, “Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs,” Acta Physiol. Scand. 106(3), 351–357 (1979).
[CrossRef] [PubMed]

Amemiya, T.

K. Yamakawa, I. A. Bhutto, Z. Lu, Y. Watanabe, and T. Amemiya, “Retinal vascular changes in rats with inherited hypercholesterolemia—corrosion cast demonstration,” Curr. Eye Res. 22(4), 258–265 (2001).
[CrossRef] [PubMed]

Ben-Nun, J.

V. A. Alder, J. Ben-Nun, and S. J. Cringle, “PO2 profiles and oxygen consumption in cat retina with an occluded retinal circulation,” Invest. Ophthalmol. Vis. Sci. 31(6), 1029–1034 (1990).
[PubMed]

Berkowitz, B. A.

W. Zhang, Y. Ito, E. Berlin, R. Roberts, and B. A. Berkowitz, “Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(7), 3119–3123 (2003).
[CrossRef] [PubMed]

Y. Ito and B. A. Berkowitz, “MR studies of retinal oxygenation,” Vision Res. 41(10-11), 1307–1311 (2001).
[CrossRef] [PubMed]

Berlin, E.

W. Zhang, Y. Ito, E. Berlin, R. Roberts, and B. A. Berkowitz, “Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(7), 3119–3123 (2003).
[CrossRef] [PubMed]

Bhutto, I. A.

K. Yamakawa, I. A. Bhutto, Z. Lu, Y. Watanabe, and T. Amemiya, “Retinal vascular changes in rats with inherited hypercholesterolemia—corrosion cast demonstration,” Curr. Eye Res. 22(4), 258–265 (2001).
[CrossRef] [PubMed]

Bill, A.

L. Wang, P. Törnquist, and A. Bill, “Glucose metabolism of the inner retina in pigs in darkness and light,” Acta Physiol. Scand. 160(1), 71–74 (1997).
[PubMed]

Blair, N. P.

M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
[CrossRef] [PubMed]

M. Shahidi, A. Shakoor, N. P. Blair, M. Mori, and R. Shonat, “A method for chorioretinal oxygen tension measurement,” Curr. Eye Res. 31(4), 357–366 (2006).
[CrossRef] [PubMed]

Braun, R. D.

R. D. Braun, R. A. Linsenmeier, and T. K. Goldstick, “Oxygen consumption in the inner and outer retina of the cat,” Invest. Ophthalmol. Vis. Sci. 36(3), 542–554 (1995).
[PubMed]

Brotherton, J.

J. Brotherton, “Studies on the metabolism of the rat retina with special reference to retinitis pigmentosa. I. Anaerobic glycolysis,” Exp. Eye Res. 1(3), 234–245 (1962).
[CrossRef] [PubMed]

Brucker, A. J.

J. E. Grunwald, C. E. Riva, S. H. Sinclair, A. J. Brucker, and B. L. Petrig, “Laser Doppler velocimetry study of retinal circulation in diabetes mellitus,” Arch. Ophthalmol. 104(7), 991–996 (1986).
[PubMed]

Cartheuser, C. F.

C. F. Cartheuser, “Standard and pH-affected hemoglobin-O2 binding curves of Sprague-Dawley rats under normal and shifted P50 conditions,” Comp. Biochem. Physiol. Comp. Physiol. 106(4), 775–782 (1993).
[CrossRef] [PubMed]

Cioffi, G. A.

L. Wang, C. Grant, B. Fortune, and G. A. Cioffi, “Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique,” Exp. Eye Res. 86(6), 908–913 (2008).
[CrossRef] [PubMed]

Cringle, S. J.

D. Y. Yu, S. J. Cringle, P. K. Yu, and E. N. Su, “Intraretinal oxygen distribution and consumption during retinal artery occlusion and graded hyperoxic ventilation in the rat,” Invest. Ophthalmol. Vis. Sci. 48(5), 2290–2296 (2007).
[CrossRef] [PubMed]

S. J. Cringle, D. Y. Yu, P. K. Yu, and E. N. Su, “Intraretinal oxygen consumption in the rat in vivo,” Invest. Ophthalmol. Vis. Sci. 43(6), 1922–1927 (2002).
[PubMed]

D. Y. Yu, S. J. Cringle, V. A. Alder, and E. N. Su, “Intraretinal oxygen distribution in rats as a function of systemic blood pressure,” Am. J. Physiol. 267(6 Pt 2), H2498–H2507 (1994).
[PubMed]

V. A. Alder, J. Ben-Nun, and S. J. Cringle, “PO2 profiles and oxygen consumption in cat retina with an occluded retinal circulation,” Invest. Ophthalmol. Vis. Sci. 31(6), 1029–1034 (1990).
[PubMed]

Cuypers, M. H.

M. H. Cuypers, J. S. Kasanardjo, and B. C. Polak, “Retinal blood flow changes in diabetic retinopathy measured with the Heidelberg scanning laser Doppler flowmeter,” Graefes Arch. Clin. Exp. Ophthalmol. 238(12), 935–941 (2000).
[CrossRef] [PubMed]

Deguchi, T.

S. Yoneya, T. Saito, Y. Nishiyama, T. Deguchi, M. Takasu, T. Gil, and E. Horn, “Retinal oxygen saturation levels in patients with central retinal vein occlusion,” Ophthalmology 109(8), 1521–1526 (2002).
[CrossRef] [PubMed]

Delori, F. C.

J. Sebag, F. C. Delori, G. T. Feke, and J. J. Weiter, “Effects of optic atrophy on retinal blood flow and oxygen saturation in humans,” Arch. Ophthalmol. 107(2), 222–226 (1989).
[PubMed]

Duong, T. Q.

Y. Zhang, Q. Peng, J. W. Kiel, C. A. Rosende, and T. Q. Duong, “Magnetic resonance imaging of vascular oxygenation changes during hyperoxia and carbogen challenges in the human retina,” Invest. Ophthalmol. Vis. Sci. 52(1), 286–291 (2011).
[CrossRef] [PubMed]

Fabry, M. E.

S. D. Wajer, M. Taomoto, D. S. McLeod, R. L. McCally, H. Nishiwaki, M. E. Fabry, R. L. Nagel, and G. A. Lutty, “Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures,” Microvasc. Res. 60(3), 281–293 (2000).
[CrossRef] [PubMed]

Feke, G. T.

J. Sebag, F. C. Delori, G. T. Feke, and J. J. Weiter, “Effects of optic atrophy on retinal blood flow and oxygen saturation in humans,” Arch. Ophthalmol. 107(2), 222–226 (1989).
[PubMed]

Flammer, J.

M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008).
[PubMed]

Fortune, B.

L. Wang, C. Grant, B. Fortune, and G. A. Cioffi, “Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique,” Exp. Eye Res. 86(6), 908–913 (2008).
[CrossRef] [PubMed]

Gaudric, A.

R. Tadayoni, M. Paques, A. Gaudric, and E. Vicaut, “Erythrocyte and leukocyte dynamics in the retinal capillaries of diabetic mice,” Exp. Eye Res. 77(4), 497–504 (2003).
[CrossRef] [PubMed]

Gaynes, B.

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. Res. 79(2), 109–113 (2010).
[CrossRef] [PubMed]

Gil, T.

S. Yoneya, T. Saito, Y. Nishiyama, T. Deguchi, M. Takasu, T. Gil, and E. Horn, “Retinal oxygen saturation levels in patients with central retinal vein occlusion,” Ophthalmology 109(8), 1521–1526 (2002).
[CrossRef] [PubMed]

Gil-Flamer, J.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[CrossRef] [PubMed]

Goldstick, T. K.

R. D. Braun, R. A. Linsenmeier, and T. K. Goldstick, “Oxygen consumption in the inner and outer retina of the cat,” Invest. Ophthalmol. Vis. Sci. 36(3), 542–554 (1995).
[PubMed]

Grant, C.

L. Wang, C. Grant, B. Fortune, and G. A. Cioffi, “Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique,” Exp. Eye Res. 86(6), 908–913 (2008).
[CrossRef] [PubMed]

Grieshaber, M. C.

M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008).
[PubMed]

Grulkowski, I.

Grunwald, J. E.

J. E. Grunwald, C. E. Riva, S. H. Sinclair, A. J. Brucker, and B. L. Petrig, “Laser Doppler velocimetry study of retinal circulation in diabetes mellitus,” Arch. Ophthalmol. 104(7), 991–996 (1986).
[PubMed]

Harris, N. R.

W. S. Wright, J. E. Messina, and N. R. Harris, “Attenuation of diabetes-induced retinal vasoconstriction by a thromboxane receptor antagonist,” Exp. Eye Res. 88(1), 106–112 (2009).
[CrossRef] [PubMed]

Horn, E.

S. Yoneya, T. Saito, Y. Nishiyama, T. Deguchi, M. Takasu, T. Gil, and E. Horn, “Retinal oxygen saturation levels in patients with central retinal vein occlusion,” Ophthalmology 109(8), 1521–1526 (2002).
[CrossRef] [PubMed]

Huang, D.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[CrossRef] [PubMed]

Ito, Y.

W. Zhang, Y. Ito, E. Berlin, R. Roberts, and B. A. Berkowitz, “Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(7), 3119–3123 (2003).
[CrossRef] [PubMed]

Y. Ito and B. A. Berkowitz, “MR studies of retinal oxygenation,” Vision Res. 41(10-11), 1307–1311 (2001).
[CrossRef] [PubMed]

Izatt, J. A.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[CrossRef] [PubMed]

Jain, V.

V. Jain, M. C. Langham, and F. W. Wehrli, “MRI estimation of global brain oxygen consumption rate,” J. Cereb. Blood Flow Metab. 30(9), 1598–1607 (2010).
[CrossRef] [PubMed]

Jiao, S.

Kang Derwent, J. J.

K. Lorentz, A. Zayas-Santiago, S. Tummala, and J. J. Kang Derwent, “Scanning laser ophthalmoscope-particle tracking method to assess blood velocity during hypoxia and hyperoxia,” Adv. Exp. Med. Biol. 614, 253–261 (2008).
[CrossRef] [PubMed]

Kasanardjo, J. S.

M. H. Cuypers, J. S. Kasanardjo, and B. C. Polak, “Retinal blood flow changes in diabetic retinopathy measured with the Heidelberg scanning laser Doppler flowmeter,” Graefes Arch. Clin. Exp. Ophthalmol. 238(12), 935–941 (2000).
[CrossRef] [PubMed]

Kiel, J. W.

Y. Zhang, Q. Peng, J. W. Kiel, C. A. Rosende, and T. Q. Duong, “Magnetic resonance imaging of vascular oxygenation changes during hyperoxia and carbogen challenges in the human retina,” Invest. Ophthalmol. Vis. Sci. 52(1), 286–291 (2011).
[CrossRef] [PubMed]

Kimura, H.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, K. Miyamoto, and N. Matsuda, “Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats,” Invest. Ophthalmol. Vis. Sci. 37(7), 1341–1347 (1996).
[PubMed]

Kiryu, J.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, K. Miyamoto, and N. Matsuda, “Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats,” Invest. Ophthalmol. Vis. Sci. 37(7), 1341–1347 (1996).
[PubMed]

Kowalczyk, A.

Langham, M. C.

V. Jain, M. C. Langham, and F. W. Wehrli, “MRI estimation of global brain oxygen consumption rate,” J. Cereb. Blood Flow Metab. 30(9), 1598–1607 (2010).
[CrossRef] [PubMed]

Linsenmeier, R. A.

R. D. Braun, R. A. Linsenmeier, and T. K. Goldstick, “Oxygen consumption in the inner and outer retina of the cat,” Invest. Ophthalmol. Vis. Sci. 36(3), 542–554 (1995).
[PubMed]

Liu, T.

Lorentz, K.

K. Lorentz, A. Zayas-Santiago, S. Tummala, and J. J. Kang Derwent, “Scanning laser ophthalmoscope-particle tracking method to assess blood velocity during hypoxia and hyperoxia,” Adv. Exp. Med. Biol. 614, 253–261 (2008).
[CrossRef] [PubMed]

Lu, A.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[CrossRef] [PubMed]

Lu, Z.

K. Yamakawa, I. A. Bhutto, Z. Lu, Y. Watanabe, and T. Amemiya, “Retinal vascular changes in rats with inherited hypercholesterolemia—corrosion cast demonstration,” Curr. Eye Res. 22(4), 258–265 (2001).
[CrossRef] [PubMed]

Lutty, G. A.

S. D. Wajer, M. Taomoto, D. S. McLeod, R. L. McCally, H. Nishiwaki, M. E. Fabry, R. L. Nagel, and G. A. Lutty, “Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures,” Microvasc. Res. 60(3), 281–293 (2000).
[CrossRef] [PubMed]

Matsuda, N.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, K. Miyamoto, and N. Matsuda, “Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats,” Invest. Ophthalmol. Vis. Sci. 37(7), 1341–1347 (1996).
[PubMed]

McCally, R. L.

S. D. Wajer, M. Taomoto, D. S. McLeod, R. L. McCally, H. Nishiwaki, M. E. Fabry, R. L. Nagel, and G. A. Lutty, “Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures,” Microvasc. Res. 60(3), 281–293 (2000).
[CrossRef] [PubMed]

McLeod, D. S.

S. D. Wajer, M. Taomoto, D. S. McLeod, R. L. McCally, H. Nishiwaki, M. E. Fabry, R. L. Nagel, and G. A. Lutty, “Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures,” Microvasc. Res. 60(3), 281–293 (2000).
[CrossRef] [PubMed]

Messina, J. E.

W. S. Wright, J. E. Messina, and N. R. Harris, “Attenuation of diabetes-induced retinal vasoconstriction by a thromboxane receptor antagonist,” Exp. Eye Res. 88(1), 106–112 (2009).
[CrossRef] [PubMed]

Miyamoto, K.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, K. Miyamoto, and N. Matsuda, “Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats,” Invest. Ophthalmol. Vis. Sci. 37(7), 1341–1347 (1996).
[PubMed]

Mori, M.

M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
[CrossRef] [PubMed]

M. Shahidi, A. Shakoor, N. P. Blair, M. Mori, and R. Shonat, “A method for chorioretinal oxygen tension measurement,” Curr. Eye Res. 31(4), 357–366 (2006).
[CrossRef] [PubMed]

Mozaffarieh, M.

M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008).
[PubMed]

Nagel, R. L.

S. D. Wajer, M. Taomoto, D. S. McLeod, R. L. McCally, H. Nishiwaki, M. E. Fabry, R. L. Nagel, and G. A. Lutty, “Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures,” Microvasc. Res. 60(3), 281–293 (2000).
[CrossRef] [PubMed]

Nishiwaki, H.

S. D. Wajer, M. Taomoto, D. S. McLeod, R. L. McCally, H. Nishiwaki, M. E. Fabry, R. L. Nagel, and G. A. Lutty, “Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures,” Microvasc. Res. 60(3), 281–293 (2000).
[CrossRef] [PubMed]

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, K. Miyamoto, and N. Matsuda, “Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats,” Invest. Ophthalmol. Vis. Sci. 37(7), 1341–1347 (1996).
[PubMed]

Nishiyama, Y.

S. Yoneya, T. Saito, Y. Nishiyama, T. Deguchi, M. Takasu, T. Gil, and E. Horn, “Retinal oxygen saturation levels in patients with central retinal vein occlusion,” Ophthalmology 109(8), 1521–1526 (2002).
[CrossRef] [PubMed]

Ogura, Y.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, K. Miyamoto, and N. Matsuda, “Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats,” Invest. Ophthalmol. Vis. Sci. 37(7), 1341–1347 (1996).
[PubMed]

Paques, M.

R. Tadayoni, M. Paques, A. Gaudric, and E. Vicaut, “Erythrocyte and leukocyte dynamics in the retinal capillaries of diabetic mice,” Exp. Eye Res. 77(4), 497–504 (2003).
[CrossRef] [PubMed]

Peng, Q.

Y. Zhang, Q. Peng, J. W. Kiel, C. A. Rosende, and T. Q. Duong, “Magnetic resonance imaging of vascular oxygenation changes during hyperoxia and carbogen challenges in the human retina,” Invest. Ophthalmol. Vis. Sci. 52(1), 286–291 (2011).
[CrossRef] [PubMed]

Petrig, B. L.

J. E. Grunwald, C. E. Riva, S. H. Sinclair, A. J. Brucker, and B. L. Petrig, “Laser Doppler velocimetry study of retinal circulation in diabetes mellitus,” Arch. Ophthalmol. 104(7), 991–996 (1986).
[PubMed]

Polak, B. C.

M. H. Cuypers, J. S. Kasanardjo, and B. C. Polak, “Retinal blood flow changes in diabetic retinopathy measured with the Heidelberg scanning laser Doppler flowmeter,” Graefes Arch. Clin. Exp. Ophthalmol. 238(12), 935–941 (2000).
[CrossRef] [PubMed]

Riva, C. E.

J. E. Grunwald, C. E. Riva, S. H. Sinclair, A. J. Brucker, and B. L. Petrig, “Laser Doppler velocimetry study of retinal circulation in diabetes mellitus,” Arch. Ophthalmol. 104(7), 991–996 (1986).
[PubMed]

Roberts, R.

W. Zhang, Y. Ito, E. Berlin, R. Roberts, and B. A. Berkowitz, “Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(7), 3119–3123 (2003).
[CrossRef] [PubMed]

Rosende, C. A.

Y. Zhang, Q. Peng, J. W. Kiel, C. A. Rosende, and T. Q. Duong, “Magnetic resonance imaging of vascular oxygenation changes during hyperoxia and carbogen challenges in the human retina,” Invest. Ophthalmol. Vis. Sci. 52(1), 286–291 (2011).
[CrossRef] [PubMed]

Saito, T.

S. Yoneya, T. Saito, Y. Nishiyama, T. Deguchi, M. Takasu, T. Gil, and E. Horn, “Retinal oxygen saturation levels in patients with central retinal vein occlusion,” Ophthalmology 109(8), 1521–1526 (2002).
[CrossRef] [PubMed]

Sebag, J.

J. Sebag, F. C. Delori, G. T. Feke, and J. J. Weiter, “Effects of optic atrophy on retinal blood flow and oxygen saturation in humans,” Arch. Ophthalmol. 107(2), 222–226 (1989).
[PubMed]

Shahidi, M.

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. Res. 79(2), 109–113 (2010).
[CrossRef] [PubMed]

M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
[CrossRef] [PubMed]

M. Shahidi, A. Shakoor, N. P. Blair, M. Mori, and R. Shonat, “A method for chorioretinal oxygen tension measurement,” Curr. Eye Res. 31(4), 357–366 (2006).
[CrossRef] [PubMed]

Shakoor, A.

M. Shahidi, A. Shakoor, N. P. Blair, M. Mori, and R. Shonat, “A method for chorioretinal oxygen tension measurement,” Curr. Eye Res. 31(4), 357–366 (2006).
[CrossRef] [PubMed]

Shonat, R.

M. Shahidi, A. Shakoor, N. P. Blair, M. Mori, and R. Shonat, “A method for chorioretinal oxygen tension measurement,” Curr. Eye Res. 31(4), 357–366 (2006).
[CrossRef] [PubMed]

Sinclair, S. H.

J. E. Grunwald, C. E. Riva, S. H. Sinclair, A. J. Brucker, and B. L. Petrig, “Laser Doppler velocimetry study of retinal circulation in diabetes mellitus,” Arch. Ophthalmol. 104(7), 991–996 (1986).
[PubMed]

Stefansson, E.

E. Stefansson, “Oxygen and diabetic eye disease,” Graefes Arch. Clin. Exp. Ophthalmol. 228(2), 120–123 (1990).
[CrossRef] [PubMed]

Su, E. N.

D. Y. Yu, S. J. Cringle, P. K. Yu, and E. N. Su, “Intraretinal oxygen distribution and consumption during retinal artery occlusion and graded hyperoxic ventilation in the rat,” Invest. Ophthalmol. Vis. Sci. 48(5), 2290–2296 (2007).
[CrossRef] [PubMed]

S. J. Cringle, D. Y. Yu, P. K. Yu, and E. N. Su, “Intraretinal oxygen consumption in the rat in vivo,” Invest. Ophthalmol. Vis. Sci. 43(6), 1922–1927 (2002).
[PubMed]

D. Y. Yu, S. J. Cringle, V. A. Alder, and E. N. Su, “Intraretinal oxygen distribution in rats as a function of systemic blood pressure,” Am. J. Physiol. 267(6 Pt 2), H2498–H2507 (1994).
[PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tadayoni, R.

R. Tadayoni, M. Paques, A. Gaudric, and E. Vicaut, “Erythrocyte and leukocyte dynamics in the retinal capillaries of diabetic mice,” Exp. Eye Res. 77(4), 497–504 (2003).
[CrossRef] [PubMed]

Takasu, M.

S. Yoneya, T. Saito, Y. Nishiyama, T. Deguchi, M. Takasu, T. Gil, and E. Horn, “Retinal oxygen saturation levels in patients with central retinal vein occlusion,” Ophthalmology 109(8), 1521–1526 (2002).
[CrossRef] [PubMed]

Tan, O.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[CrossRef] [PubMed]

Taomoto, M.

S. D. Wajer, M. Taomoto, D. S. McLeod, R. L. McCally, H. Nishiwaki, M. E. Fabry, R. L. Nagel, and G. A. Lutty, “Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures,” Microvasc. Res. 60(3), 281–293 (2000).
[CrossRef] [PubMed]

Törnquist, P.

L. Wang, P. Törnquist, and A. Bill, “Glucose metabolism of the inner retina in pigs in darkness and light,” Acta Physiol. Scand. 160(1), 71–74 (1997).
[PubMed]

P. Törnquist and A. Alm, “Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs,” Acta Physiol. Scand. 106(3), 351–357 (1979).
[CrossRef] [PubMed]

Tummala, S.

K. Lorentz, A. Zayas-Santiago, S. Tummala, and J. J. Kang Derwent, “Scanning laser ophthalmoscope-particle tracking method to assess blood velocity during hypoxia and hyperoxia,” Adv. Exp. Med. Biol. 614, 253–261 (2008).
[CrossRef] [PubMed]

Vicaut, E.

R. Tadayoni, M. Paques, A. Gaudric, and E. Vicaut, “Erythrocyte and leukocyte dynamics in the retinal capillaries of diabetic mice,” Exp. Eye Res. 77(4), 497–504 (2003).
[CrossRef] [PubMed]

Wajer, S. D.

S. D. Wajer, M. Taomoto, D. S. McLeod, R. L. McCally, H. Nishiwaki, M. E. Fabry, R. L. Nagel, and G. A. Lutty, “Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures,” Microvasc. Res. 60(3), 281–293 (2000).
[CrossRef] [PubMed]

Wanek, J.

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. Res. 79(2), 109–113 (2010).
[CrossRef] [PubMed]

M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
[CrossRef] [PubMed]

Wang, J.

Wang, L.

L. Wang, C. Grant, B. Fortune, and G. A. Cioffi, “Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique,” Exp. Eye Res. 86(6), 908–913 (2008).
[CrossRef] [PubMed]

L. Wang, P. Törnquist, and A. Bill, “Glucose metabolism of the inner retina in pigs in darkness and light,” Acta Physiol. Scand. 160(1), 71–74 (1997).
[PubMed]

Wang, Y.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[CrossRef] [PubMed]

Watanabe, Y.

K. Yamakawa, I. A. Bhutto, Z. Lu, Y. Watanabe, and T. Amemiya, “Retinal vascular changes in rats with inherited hypercholesterolemia—corrosion cast demonstration,” Curr. Eye Res. 22(4), 258–265 (2001).
[CrossRef] [PubMed]

Wehrli, F. W.

V. Jain, M. C. Langham, and F. W. Wehrli, “MRI estimation of global brain oxygen consumption rate,” J. Cereb. Blood Flow Metab. 30(9), 1598–1607 (2010).
[CrossRef] [PubMed]

Wei, Q.

Weiter, J. J.

J. Sebag, F. C. Delori, G. T. Feke, and J. J. Weiter, “Effects of optic atrophy on retinal blood flow and oxygen saturation in humans,” Arch. Ophthalmol. 107(2), 222–226 (1989).
[PubMed]

Wojtkowski, M.

Wright, W. S.

W. S. Wright, J. E. Messina, and N. R. Harris, “Attenuation of diabetes-induced retinal vasoconstriction by a thromboxane receptor antagonist,” Exp. Eye Res. 88(1), 106–112 (2009).
[CrossRef] [PubMed]

Wu, T.

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. Res. 79(2), 109–113 (2010).
[CrossRef] [PubMed]

Yamakawa, K.

K. Yamakawa, I. A. Bhutto, Z. Lu, Y. Watanabe, and T. Amemiya, “Retinal vascular changes in rats with inherited hypercholesterolemia—corrosion cast demonstration,” Curr. Eye Res. 22(4), 258–265 (2001).
[CrossRef] [PubMed]

Yoneya, S.

S. Yoneya, T. Saito, Y. Nishiyama, T. Deguchi, M. Takasu, T. Gil, and E. Horn, “Retinal oxygen saturation levels in patients with central retinal vein occlusion,” Ophthalmology 109(8), 1521–1526 (2002).
[CrossRef] [PubMed]

Yu, D. Y.

D. Y. Yu, S. J. Cringle, P. K. Yu, and E. N. Su, “Intraretinal oxygen distribution and consumption during retinal artery occlusion and graded hyperoxic ventilation in the rat,” Invest. Ophthalmol. Vis. Sci. 48(5), 2290–2296 (2007).
[CrossRef] [PubMed]

S. J. Cringle, D. Y. Yu, P. K. Yu, and E. N. Su, “Intraretinal oxygen consumption in the rat in vivo,” Invest. Ophthalmol. Vis. Sci. 43(6), 1922–1927 (2002).
[PubMed]

D. Y. Yu, S. J. Cringle, V. A. Alder, and E. N. Su, “Intraretinal oxygen distribution in rats as a function of systemic blood pressure,” Am. J. Physiol. 267(6 Pt 2), H2498–H2507 (1994).
[PubMed]

Yu, P. K.

D. Y. Yu, S. J. Cringle, P. K. Yu, and E. N. Su, “Intraretinal oxygen distribution and consumption during retinal artery occlusion and graded hyperoxic ventilation in the rat,” Invest. Ophthalmol. Vis. Sci. 48(5), 2290–2296 (2007).
[CrossRef] [PubMed]

S. J. Cringle, D. Y. Yu, P. K. Yu, and E. N. Su, “Intraretinal oxygen consumption in the rat in vivo,” Invest. Ophthalmol. Vis. Sci. 43(6), 1922–1927 (2002).
[PubMed]

Zayas-Santiago, A.

K. Lorentz, A. Zayas-Santiago, S. Tummala, and J. J. Kang Derwent, “Scanning laser ophthalmoscope-particle tracking method to assess blood velocity during hypoxia and hyperoxia,” Adv. Exp. Med. Biol. 614, 253–261 (2008).
[CrossRef] [PubMed]

Zhang, H. F.

Zhang, W.

W. Zhang, Y. Ito, E. Berlin, R. Roberts, and B. A. Berkowitz, “Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(7), 3119–3123 (2003).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, Q. Peng, J. W. Kiel, C. A. Rosende, and T. Q. Duong, “Magnetic resonance imaging of vascular oxygenation changes during hyperoxia and carbogen challenges in the human retina,” Invest. Ophthalmol. Vis. Sci. 52(1), 286–291 (2011).
[CrossRef] [PubMed]

Acta Physiol. Scand. (2)

P. Törnquist and A. Alm, “Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs,” Acta Physiol. Scand. 106(3), 351–357 (1979).
[CrossRef] [PubMed]

L. Wang, P. Törnquist, and A. Bill, “Glucose metabolism of the inner retina in pigs in darkness and light,” Acta Physiol. Scand. 160(1), 71–74 (1997).
[PubMed]

Adv. Exp. Med. Biol. (1)

K. Lorentz, A. Zayas-Santiago, S. Tummala, and J. J. Kang Derwent, “Scanning laser ophthalmoscope-particle tracking method to assess blood velocity during hypoxia and hyperoxia,” Adv. Exp. Med. Biol. 614, 253–261 (2008).
[CrossRef] [PubMed]

Am. J. Physiol. (1)

D. Y. Yu, S. J. Cringle, V. A. Alder, and E. N. Su, “Intraretinal oxygen distribution in rats as a function of systemic blood pressure,” Am. J. Physiol. 267(6 Pt 2), H2498–H2507 (1994).
[PubMed]

Arch. Ophthalmol. (2)

J. E. Grunwald, C. E. Riva, S. H. Sinclair, A. J. Brucker, and B. L. Petrig, “Laser Doppler velocimetry study of retinal circulation in diabetes mellitus,” Arch. Ophthalmol. 104(7), 991–996 (1986).
[PubMed]

J. Sebag, F. C. Delori, G. T. Feke, and J. J. Weiter, “Effects of optic atrophy on retinal blood flow and oxygen saturation in humans,” Arch. Ophthalmol. 107(2), 222–226 (1989).
[PubMed]

Biomed. Opt. Express (1)

Br. J. Ophthalmol. (1)

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009).
[CrossRef] [PubMed]

Comp. Biochem. Physiol. Comp. Physiol. (1)

C. F. Cartheuser, “Standard and pH-affected hemoglobin-O2 binding curves of Sprague-Dawley rats under normal and shifted P50 conditions,” Comp. Biochem. Physiol. Comp. Physiol. 106(4), 775–782 (1993).
[CrossRef] [PubMed]

Curr. Eye Res. (2)

K. Yamakawa, I. A. Bhutto, Z. Lu, Y. Watanabe, and T. Amemiya, “Retinal vascular changes in rats with inherited hypercholesterolemia—corrosion cast demonstration,” Curr. Eye Res. 22(4), 258–265 (2001).
[CrossRef] [PubMed]

M. Shahidi, A. Shakoor, N. P. Blair, M. Mori, and R. Shonat, “A method for chorioretinal oxygen tension measurement,” Curr. Eye Res. 31(4), 357–366 (2006).
[CrossRef] [PubMed]

Exp. Eye Res. (4)

J. Brotherton, “Studies on the metabolism of the rat retina with special reference to retinitis pigmentosa. I. Anaerobic glycolysis,” Exp. Eye Res. 1(3), 234–245 (1962).
[CrossRef] [PubMed]

R. Tadayoni, M. Paques, A. Gaudric, and E. Vicaut, “Erythrocyte and leukocyte dynamics in the retinal capillaries of diabetic mice,” Exp. Eye Res. 77(4), 497–504 (2003).
[CrossRef] [PubMed]

W. S. Wright, J. E. Messina, and N. R. Harris, “Attenuation of diabetes-induced retinal vasoconstriction by a thromboxane receptor antagonist,” Exp. Eye Res. 88(1), 106–112 (2009).
[CrossRef] [PubMed]

L. Wang, C. Grant, B. Fortune, and G. A. Cioffi, “Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique,” Exp. Eye Res. 86(6), 908–913 (2008).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (2)

M. H. Cuypers, J. S. Kasanardjo, and B. C. Polak, “Retinal blood flow changes in diabetic retinopathy measured with the Heidelberg scanning laser Doppler flowmeter,” Graefes Arch. Clin. Exp. Ophthalmol. 238(12), 935–941 (2000).
[CrossRef] [PubMed]

E. Stefansson, “Oxygen and diabetic eye disease,” Graefes Arch. Clin. Exp. Ophthalmol. 228(2), 120–123 (1990).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (8)

S. J. Cringle, D. Y. Yu, P. K. Yu, and E. N. Su, “Intraretinal oxygen consumption in the rat in vivo,” Invest. Ophthalmol. Vis. Sci. 43(6), 1922–1927 (2002).
[PubMed]

V. A. Alder, J. Ben-Nun, and S. J. Cringle, “PO2 profiles and oxygen consumption in cat retina with an occluded retinal circulation,” Invest. Ophthalmol. Vis. Sci. 31(6), 1029–1034 (1990).
[PubMed]

R. D. Braun, R. A. Linsenmeier, and T. K. Goldstick, “Oxygen consumption in the inner and outer retina of the cat,” Invest. Ophthalmol. Vis. Sci. 36(3), 542–554 (1995).
[PubMed]

D. Y. Yu, S. J. Cringle, P. K. Yu, and E. N. Su, “Intraretinal oxygen distribution and consumption during retinal artery occlusion and graded hyperoxic ventilation in the rat,” Invest. Ophthalmol. Vis. Sci. 48(5), 2290–2296 (2007).
[CrossRef] [PubMed]

W. Zhang, Y. Ito, E. Berlin, R. Roberts, and B. A. Berkowitz, “Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(7), 3119–3123 (2003).
[CrossRef] [PubMed]

Y. Zhang, Q. Peng, J. W. Kiel, C. A. Rosende, and T. Q. Duong, “Magnetic resonance imaging of vascular oxygenation changes during hyperoxia and carbogen challenges in the human retina,” Invest. Ophthalmol. Vis. Sci. 52(1), 286–291 (2011).
[CrossRef] [PubMed]

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, K. Miyamoto, and N. Matsuda, “Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats,” Invest. Ophthalmol. Vis. Sci. 37(7), 1341–1347 (1996).
[PubMed]

M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

V. Jain, M. C. Langham, and F. W. Wehrli, “MRI estimation of global brain oxygen consumption rate,” J. Cereb. Blood Flow Metab. 30(9), 1598–1607 (2010).
[CrossRef] [PubMed]

Microvasc. Res. (2)

S. D. Wajer, M. Taomoto, D. S. McLeod, R. L. McCally, H. Nishiwaki, M. E. Fabry, R. L. Nagel, and G. A. Lutty, “Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures,” Microvasc. Res. 60(3), 281–293 (2000).
[CrossRef] [PubMed]

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. Res. 79(2), 109–113 (2010).
[CrossRef] [PubMed]

Mol. Vis. (1)

M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008).
[PubMed]

Ophthalmology (1)

S. Yoneya, T. Saito, Y. Nishiyama, T. Deguchi, M. Takasu, T. Gil, and E. Horn, “Retinal oxygen saturation levels in patients with central retinal vein occlusion,” Ophthalmology 109(8), 1521–1526 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Vision Res. (1)

Y. Ito and B. A. Berkowitz, “MR studies of retinal oxygenation,” Vision Res. 41(10-11), 1307–1311 (2001).
[CrossRef] [PubMed]

Other (4)

R. M. Berne and M. N. Levy, Physiology, 2nd ed. (Mosby, St. Louis, MO, 1988).

S. L. Meyer, in Data Analysis for Scientists and Engineers (Wiley, New York, 1975), pp. 39–48.

B. A. Shapiro, W. T. Perruzi, and R. Kozelowski-Templin, in Clinical Application of Blood Gases (Mosby-Year Book, Inc, St. Louis, 1994), pp. 33–53.

J. B. West, Pulmonary Physiology and Pathophysiology: an Integrated, Case-Based Approach, 2nd ed. (Lippincott Williams & Wilkins, Philadelphia, PA, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Retinal image with major arteries and veins labeled (a and v); the outlined edges of a vein (v3) were identified by multiple diameter measurements; (b) Red crosses overlaid on the retinal image indicate the positions of a microsphere traversing a vein (v3), visualized over 8 consecutive images; (c) A cross-sectional vascular PO2 map (rectangle) overlaid on the retinal image, depicting values in veins (v1, v2, v3) and arteries (a2, a3). Color bar displays PO2 in mmHg.

Fig. 2
Fig. 2

(a) Fluorescein angiogram with draining retinal venules labeled; edges of a venule (v1) are outlined; (b) Red crosses overlaid on the retinal image indicate the positions of a microsphere traversing a venule (v1) and major vein, visualized over 8 consecutive images; (c) An enface PO2 map depicting values in a segmented major retinal artery, vein, and venules. Color bar displays PO2 in mmHg.

Tables (2)

Tables Icon

Table 1 Vessel diameter, blood velocity, and blood flow in major retinal veins; PO2 and O2 content in major retinal veins and averaged over major retinal arteries (mean ± SD) in one rat

Tables Icon

Table 2 Vessel diameter, blood velocity, and flow in retinal venules; PO2 and O2 content in retinal venules and a major retinal artery in one rat

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M O 2 = i = 1 n F v i ( O 2 a O 2 v i )

Metrics