Abstract

Fluorescence lifetime imaging has emerged as an important microscopy technique, where high repetition rate lasers are the primary light sources. As fluorescence lifetime becomes comparable to intervals between consecutive excitation pulses, incomplete fluorescence decay from previous pulses can superimpose onto the subsequent decay measurements. Using a mathematical model, the incomplete decay effect has been shown to lead to overestimation of the amplitude average lifetime except in mono-exponential decays. An inverse model is then developed to correct the error from this effect and the theoretical simulations are tested by experimental results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005).
    [CrossRef] [PubMed]
  2. M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
    [CrossRef] [PubMed]
  3. I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
    [CrossRef] [PubMed]
  4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Kluwer Academic/Plenum, New York, 2006), Chap. 4.
  5. G. O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, and F. Festy, “Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells,” Opt. Express 18(11), 11148–11158 (2010).
    [CrossRef] [PubMed]
  6. T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
    [CrossRef] [PubMed]
  7. E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol. 10(5), 409–416 (2006).
    [CrossRef] [PubMed]
  8. Y. Chen and A. Periasamy, “Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization,” Microsc. Res. Tech. 63(1), 72–80 (2004).
    [CrossRef] [PubMed]
  9. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, W. J. Lederer, M. S. Kirby, and M. L. Johnson, “Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2,” Cell Calcium 15(1), 7–27 (1994).
    [CrossRef] [PubMed]
  10. A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “Fast fluorescence lifetime imaging of calcium in living cells,” J. Biomed. Opt. 9(6), 1230–1237 (2004).
    [CrossRef] [PubMed]
  11. G. Wagnières, J. Mizeret, A. Studzinski, and H. van den Bergh, “Frequency-domain fluorescence lifetime imaging for endoscopic clinical cancer photodetection: apparatus design and preliminary results,” J. Fluoresc. 7(1), 75–83 (1997).
    [CrossRef]
  12. Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
    [CrossRef] [PubMed]
  13. J. A. Russell, K. R. Diamond, T. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, “Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single and two-photon excitation,” IEEE J. Sel. Top. Quantum Electron. 14(1), 158–166 (2008).
    [CrossRef]
  14. A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: a new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
    [CrossRef] [PubMed]
  15. W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
    [CrossRef] [PubMed]
  16. H. C. Gerritsen, “High-speed fluorescence lifetime imaging,” Proc. SPIE 5323, 77–87 (2004).
    [CrossRef]
  17. W. Becker, The bh TCSPC Handbook, 3rd ed. (Becker & Hickl GmbH, 2008)
  18. P. R. Barber, S. M. Ameer-Beg, J. Gilbey, L. M. Carlin, M. Keppler, T. C. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6(0), S93–S105 (2009).
    [CrossRef]
  19. P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
    [CrossRef]
  20. J. Stewart, Calculus: Early Transcendentals, 5th ed. (Thomson/Brooks/Cole, Belmont, CA, 2003)
  21. J. R. Taylor, An Introduction to Error Analysis, 2nd ed. (University Science Books, Sausalito, 1997)
  22. D. J. Schroeder, Astronomical Optics (Academic Press, San Diego, 2000), Chap. 17.
  23. Y. Yuan, T. Papaioannou, and Q. Fang, “Single-shot acquisition of time-resolved fluorescence spectra using a multiple delay optical fiber bundle,” Opt. Lett. 33(8), 791–793 (2008).
    [CrossRef] [PubMed]

2010 (2)

G. O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, and F. Festy, “Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells,” Opt. Express 18(11), 11148–11158 (2010).
[CrossRef] [PubMed]

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[CrossRef] [PubMed]

2009 (2)

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, L. M. Carlin, M. Keppler, T. C. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6(0), S93–S105 (2009).
[CrossRef]

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

2008 (2)

Y. Yuan, T. Papaioannou, and Q. Fang, “Single-shot acquisition of time-resolved fluorescence spectra using a multiple delay optical fiber bundle,” Opt. Lett. 33(8), 791–793 (2008).
[CrossRef] [PubMed]

J. A. Russell, K. R. Diamond, T. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, “Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single and two-photon excitation,” IEEE J. Sel. Top. Quantum Electron. 14(1), 158–166 (2008).
[CrossRef]

2007 (2)

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: a new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[CrossRef] [PubMed]

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[CrossRef] [PubMed]

2006 (1)

E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol. 10(5), 409–416 (2006).
[CrossRef] [PubMed]

2005 (3)

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005).
[CrossRef] [PubMed]

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[CrossRef]

2004 (3)

H. C. Gerritsen, “High-speed fluorescence lifetime imaging,” Proc. SPIE 5323, 77–87 (2004).
[CrossRef]

Y. Chen and A. Periasamy, “Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization,” Microsc. Res. Tech. 63(1), 72–80 (2004).
[CrossRef] [PubMed]

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “Fast fluorescence lifetime imaging of calcium in living cells,” J. Biomed. Opt. 9(6), 1230–1237 (2004).
[CrossRef] [PubMed]

1999 (1)

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

1997 (1)

G. Wagnières, J. Mizeret, A. Studzinski, and H. van den Bergh, “Frequency-domain fluorescence lifetime imaging for endoscopic clinical cancer photodetection: apparatus design and preliminary results,” J. Fluoresc. 7(1), 75–83 (1997).
[CrossRef]

1994 (1)

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, W. J. Lederer, M. S. Kirby, and M. L. Johnson, “Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2,” Cell Calcium 15(1), 7–27 (1994).
[CrossRef] [PubMed]

Agronskaia, A. V.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “Fast fluorescence lifetime imaging of calcium in living cells,” J. Biomed. Opt. 9(6), 1230–1237 (2004).
[CrossRef] [PubMed]

Ameer-Beg, S.

Ameer-Beg, S. M.

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, L. M. Carlin, M. Keppler, T. C. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6(0), S93–S105 (2009).
[CrossRef]

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[CrossRef]

Barber, P. R.

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, L. M. Carlin, M. Keppler, T. C. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6(0), S93–S105 (2009).
[CrossRef]

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[CrossRef]

Barnes, D.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Bastiaens, P. I. H.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Becker, W.

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: a new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[CrossRef] [PubMed]

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[CrossRef] [PubMed]

Bergmann, A.

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[CrossRef] [PubMed]

Biskup, C.

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[CrossRef] [PubMed]

Bornancin, F.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Carlin, L. M.

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, L. M. Carlin, M. Keppler, T. C. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6(0), S93–S105 (2009).
[CrossRef]

Chen, Y.

Y. Chen and A. Periasamy, “Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization,” Microsc. Res. Tech. 63(1), 72–80 (2004).
[CrossRef] [PubMed]

Collins, T.

J. A. Russell, K. R. Diamond, T. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, “Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single and two-photon excitation,” IEEE J. Sel. Top. Quantum Electron. 14(1), 158–166 (2008).
[CrossRef]

Cook, R.

Coolen, A.

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

Diamond, K. R.

J. A. Russell, K. R. Diamond, T. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, “Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single and two-photon excitation,” IEEE J. Sel. Top. Quantum Electron. 14(1), 158–166 (2008).
[CrossRef]

Dunsby, C.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

Edens, R. J.

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[CrossRef]

Ellis, P. A.

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

Elson, D. S.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[CrossRef] [PubMed]

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

Ezike, I.

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[CrossRef]

Fang, Q.

J. A. Russell, K. R. Diamond, T. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, “Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single and two-photon excitation,” IEEE J. Sel. Top. Quantum Electron. 14(1), 158–166 (2008).
[CrossRef]

Y. Yuan, T. Papaioannou, and Q. Fang, “Single-shot acquisition of time-resolved fluorescence spectra using a multiple delay optical fiber bundle,” Opt. Lett. 33(8), 791–793 (2008).
[CrossRef] [PubMed]

Farrell, T. J.

J. A. Russell, K. R. Diamond, T. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, “Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single and two-photon excitation,” IEEE J. Sel. Top. Quantum Electron. 14(1), 158–166 (2008).
[CrossRef]

Festy, F.

G. O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, and F. Festy, “Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells,” Opt. Express 18(11), 11148–11158 (2010).
[CrossRef] [PubMed]

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

French, P. M.

K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005).
[CrossRef] [PubMed]

French, P. M. W.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

Fruhwirth, G.

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

Fruhwirth, G. O.

Galletly, N.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

Gerritsen, H. C.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “Fast fluorescence lifetime imaging of calcium in living cells,” J. Biomed. Opt. 9(6), 1230–1237 (2004).
[CrossRef] [PubMed]

H. C. Gerritsen, “High-speed fluorescence lifetime imaging,” Proc. SPIE 5323, 77–87 (2004).
[CrossRef]

Gilbey, J.

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, L. M. Carlin, M. Keppler, T. C. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6(0), S93–S105 (2009).
[CrossRef]

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[CrossRef]

Gillett, C.

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

Gorin, F.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[CrossRef] [PubMed]

Hanby, A.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Hansra, G.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Harris, W.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Hatami, N.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[CrossRef] [PubMed]

Hayward, J. E.

J. A. Russell, K. R. Diamond, T. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, “Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single and two-photon excitation,” IEEE J. Sel. Top. Quantum Electron. 14(1), 158–166 (2008).
[CrossRef]

Hülshoff, Ch.

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: a new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[CrossRef] [PubMed]

Jares-Erijman, E. A.

E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol. 10(5), 409–416 (2006).
[CrossRef] [PubMed]

Johnson, M. L.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, W. J. Lederer, M. S. Kirby, and M. L. Johnson, “Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2,” Cell Calcium 15(1), 7–27 (1994).
[CrossRef] [PubMed]

Jovin, T. M.

E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol. 10(5), 409–416 (2006).
[CrossRef] [PubMed]

Kelleher, M. T.

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

Keppler, M.

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, L. M. Carlin, M. Keppler, T. C. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6(0), S93–S105 (2009).
[CrossRef]

Kéri, G.

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

Kinzler, I.

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: a new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[CrossRef] [PubMed]

Kirby, M. S.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, W. J. Lederer, M. S. Kirby, and M. L. Johnson, “Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2,” Cell Calcium 15(1), 7–27 (1994).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, W. J. Lederer, M. S. Kirby, and M. L. Johnson, “Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2,” Cell Calcium 15(1), 7–27 (1994).
[CrossRef] [PubMed]

Lanigan, P. M. P.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

Lederer, W. J.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, W. J. Lederer, M. S. Kirby, and M. L. Johnson, “Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2,” Cell Calcium 15(1), 7–27 (1994).
[CrossRef] [PubMed]

Lever, M. J.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

Marcu, L.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[CrossRef] [PubMed]

McGinty, J.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

Mellor, H.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Mizeret, J.

G. Wagnières, J. Mizeret, A. Studzinski, and H. van den Bergh, “Frequency-domain fluorescence lifetime imaging for endoscopic clinical cancer photodetection: apparatus design and preliminary results,” J. Fluoresc. 7(1), 75–83 (1997).
[CrossRef]

Munro, I.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

Neil, M. A. A.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

Ng, T.

G. O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, and F. Festy, “Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells,” Opt. Express 18(11), 11148–11158 (2010).
[CrossRef] [PubMed]

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Ng, T. C.

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, L. M. Carlin, M. Keppler, T. C. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6(0), S93–S105 (2009).
[CrossRef]

Nowaczyk, K.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, W. J. Lederer, M. S. Kirby, and M. L. Johnson, “Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2,” Cell Calcium 15(1), 7–27 (1994).
[CrossRef] [PubMed]

Ofo, E.

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

Papaioannou, T.

Parker, P. J.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Patel, G.

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

Patterson, M. S.

J. A. Russell, K. R. Diamond, T. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, “Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single and two-photon excitation,” IEEE J. Sel. Top. Quantum Electron. 14(1), 158–166 (2008).
[CrossRef]

Periasamy, A.

Y. Chen and A. Periasamy, “Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization,” Microsc. Res. Tech. 63(1), 72–80 (2004).
[CrossRef] [PubMed]

Phillips, D.

K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005).
[CrossRef] [PubMed]

Phipps, J.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[CrossRef] [PubMed]

Prevostel, C.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Requejo-Isidro, J.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

Rück, A.

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: a new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[CrossRef] [PubMed]

Russell, J. A.

J. A. Russell, K. R. Diamond, T. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, “Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single and two-photon excitation,” IEEE J. Sel. Top. Quantum Electron. 14(1), 158–166 (2008).
[CrossRef]

Schmidt, S.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Schrot, R. J.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[CrossRef] [PubMed]

Squire, A.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Stamp, G. W. H.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

Steiner, R.

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: a new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[CrossRef] [PubMed]

Studzinski, A.

G. Wagnières, J. Mizeret, A. Studzinski, and H. van den Bergh, “Frequency-domain fluorescence lifetime imaging for endoscopic clinical cancer photodetection: apparatus design and preliminary results,” J. Fluoresc. 7(1), 75–83 (1997).
[CrossRef]

Suhling, K.

K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005).
[CrossRef] [PubMed]

Sun, Y.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[CrossRef] [PubMed]

Szmacinski, H.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, W. J. Lederer, M. S. Kirby, and M. L. Johnson, “Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2,” Cell Calcium 15(1), 7–27 (1994).
[CrossRef] [PubMed]

Tertoolen, L.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “Fast fluorescence lifetime imaging of calcium in living cells,” J. Biomed. Opt. 9(6), 1230–1237 (2004).
[CrossRef] [PubMed]

Tiedje, H. F.

J. A. Russell, K. R. Diamond, T. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, “Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single and two-photon excitation,” IEEE J. Sel. Top. Quantum Electron. 14(1), 158–166 (2008).
[CrossRef]

van den Bergh, H.

G. Wagnières, J. Mizeret, A. Studzinski, and H. van den Bergh, “Frequency-domain fluorescence lifetime imaging for endoscopic clinical cancer photodetection: apparatus design and preliminary results,” J. Fluoresc. 7(1), 75–83 (1997).
[CrossRef]

Vojnovic, B.

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, L. M. Carlin, M. Keppler, T. C. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6(0), S93–S105 (2009).
[CrossRef]

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[CrossRef]

Wagnières, G.

G. Wagnières, J. Mizeret, A. Studzinski, and H. van den Bergh, “Frequency-domain fluorescence lifetime imaging for endoscopic clinical cancer photodetection: apparatus design and preliminary results,” J. Fluoresc. 7(1), 75–83 (1997).
[CrossRef]

Watson, T.

Yee, M.

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[CrossRef] [PubMed]

Yuan, Y.

Cell Calcium (1)

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, W. J. Lederer, M. S. Kirby, and M. L. Johnson, “Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2,” Cell Calcium 15(1), 7–27 (1994).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol. (1)

E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol. 10(5), 409–416 (2006).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Russell, K. R. Diamond, T. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, and Q. Fang, “Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single and two-photon excitation,” IEEE J. Sel. Top. Quantum Electron. 14(1), 158–166 (2008).
[CrossRef]

J. Biomed. Opt. (3)

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10(5), 051403 (2005).
[CrossRef] [PubMed]

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “Fast fluorescence lifetime imaging of calcium in living cells,” J. Biomed. Opt. 9(6), 1230–1237 (2004).
[CrossRef] [PubMed]

Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010).
[CrossRef] [PubMed]

J. Fluoresc. (1)

G. Wagnières, J. Mizeret, A. Studzinski, and H. van den Bergh, “Frequency-domain fluorescence lifetime imaging for endoscopic clinical cancer photodetection: apparatus design and preliminary results,” J. Fluoresc. 7(1), 75–83 (1997).
[CrossRef]

J. R. Soc. Interface (1)

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, L. M. Carlin, M. Keppler, T. C. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6(0), S93–S105 (2009).
[CrossRef]

Microsc. Res. Tech. (3)

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: a new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[CrossRef] [PubMed]

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[CrossRef] [PubMed]

Y. Chen and A. Periasamy, “Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization,” Microsc. Res. Tech. 63(1), 72–80 (2004).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Photochem. Photobiol. Sci. (1)

K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005).
[CrossRef] [PubMed]

Proc. SPIE (2)

H. C. Gerritsen, “High-speed fluorescence lifetime imaging,” Proc. SPIE 5323, 77–87 (2004).
[CrossRef]

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[CrossRef]

Science (1)

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[CrossRef] [PubMed]

Target Oncol (1)

M. T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P. A. Ellis, and T. Ng, “The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients,” Target Oncol 4(3), 235–252 (2009).
[CrossRef] [PubMed]

Other (5)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Kluwer Academic/Plenum, New York, 2006), Chap. 4.

J. Stewart, Calculus: Early Transcendentals, 5th ed. (Thomson/Brooks/Cole, Belmont, CA, 2003)

J. R. Taylor, An Introduction to Error Analysis, 2nd ed. (University Science Books, Sausalito, 1997)

D. J. Schroeder, Astronomical Optics (Academic Press, San Diego, 2000), Chap. 17.

W. Becker, The bh TCSPC Handbook, 3rd ed. (Becker & Hickl GmbH, 2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulated effect of incomplete decay on the measured decay curve is illustrated, where the tails of multiple previous decay curves (short dashed lines) excited by a high repetition rate light source contribute significantly to the current original curve, I0(t)(solid line), which lead to the distorted measured decay curve, I(t) (long dashed line) that can cause inaccurate lifetime estimation. t0 is the time interval between two consecutive excitation pulses. Note that the incomplete decay caused by the laser excitation prior to the current one contributes the most to the current measured decay curve as illustrated in the last decay curve.

Fig. 2
Fig. 2

Simulation of the original (solid line) and measured (dashed line) decay curves for both mono-exponential (top) and bi-exponential (bottom) cases at repetition rate of 80 MHz (12.5 ns). For the mono-exponential case, τ01 = 12 ns, A01 = 0.5. For the bi-exponential case, τ 01 = 2 ns, τ02 = 20 ns, A01 = 0.8, A02 = 0.2. The corresponding log scale plots of each decay curve are also shown as the top two curves of each graph with the log plot axis on the right.

Fig. 3
Fig. 3

The predicted fractional errors defined by Eq. (12) are plotted as a result of incomplete decay at various original amplitude weighted lifetime values at various repetition rates for bi-exponential decays. For each curve, τ1 remains constant at 1 ns and τ2 is varied from 0 to 20 ns as shown on the x-axis. The coefficients are fixed at Ao1 = Ao2 = 0.5.

Fig. 4
Fig. 4

– Illustrating the dependence and trends of absolute fractional error (as defined in Eq. (16) on measured coefficient and lifetime component values using a contour plot. Y-axis corresponds to A 1 and is varied from 0 to 1 (A 2 = 1 – A 1). X-axis corresponds to the difference between measured lifetime components (τ 1 – τ 2) where τ 2 (10 ns) was chosen to be constant and τ 1 varies from τ 2 8(2 ns) to τ 2 + 8 (18 ns). The varying gray scale color of the contour map corresponds to the calculated absolute fractional errors where the larger the error, the darker the gray scale color as defined by the color bar.

Tables (5)

Tables Icon

Table 1 Definition of the abbreviations for lifetimes

Tables Icon

Table 2 Original and measured parameters for mono- and bi-exponential decay

Tables Icon

Table 3 Threshold amplitude averaged lifetime values (for bi-exponential decay) at various time windows (to) between consecutive excitation pulses

Tables Icon

Table 4 Simulation values a

Tables Icon

Table 5 Experimental values a

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

F ( t ) = a 1 e t / τ 1 + a 2 e t / τ 2 + a 3 e t / τ 3 +
I 0 ( t ) = A 01 e t / τ 01 +   A 02 e t / τ 02 + +   A 0 i e t / τ 0 i + + A 0 N e t / τ 0 N
τ 0 = A n 01 τ 01 + A n 02 τ 02 + + A n 0 N τ 0 N
I ( t ) = A n 1 e t / τ 1 +   A n 2 e t / τ 2 + +   A n N e t / τ N
τ = A n 1 τ 1 + A n 2 τ 2 + + A n N τ N
I ( t ) = lim n [ I 0 ( t ) +   I 0 ( t + t o ) + + I 0 ( t + n t o ) ]
I ( t ) = lim ( n i = 1 N A 0 i e t τ 0 i + i = 1 N A 0 i e t + t 0 τ 0 i + + i = 1 N A 0 i e t + n t 0 τ 0 i ) = i = 1 N ( A 0 i e t τ 0 i n = 0 e n t 0 τ 0 i )
I ( t ) = i = 1 N A 0 i 1 e t 0 / τ 0 i e t / τ 0 i
A i =   A 0 i 1 e t 0 / τ 0 i
τ i = τ 0 i
τ i d = i = 1 N A 0 i / ( 1 e t 0 / τ 0 i ) k = 1 N A 0 k / ( 1 e t 0 / τ 0 k ) τ 0 i
%   E =   τ i d       τ 0 τ 0   × 100 %
A 0 i =   A i (   1 e t o τ i )
τ 0 i =   τ i
τ 0 = i = 1 N A i ( 1 e t 0 / τ i ) k = 1 N A k ( 1 e t 0 / τ i ) τ i
%   E =   τ 0       τ i d τ i d   × 100 %
A 1 =   A 01 1 e t o τ 01
A 2 =   A 02 1 e t o τ 02
τ 1 =   τ 01
τ 2 =   τ 02
τ i d =   A n 1 τ 1 + A n 2 τ 2
τ i d =   A 01 1 e t o / τ 01 A 01 1 e t o / τ 01 + A 02 1 e t o / τ 02 τ 1 + A 02 1 e t o / τ 02 A 01 1 e t o / τ 01 + A 02 1 e t o / τ 02 τ 2
A 01 =   A 1 (   1 e t o τ 1 )
A 02 =   A 2 (   1 e t o τ 2 )
τ 01 =   τ 1
τ 02 =   τ 2
τ 0 =   A 01 τ 01 +   A 02 τ 02
τ 0 =   A 1 (   1 e t o / τ 1 ) A 1 (   1 e t o / τ 1 ) + A 2 (   1 e t o / τ 2 ) τ 01 +   A 2 (   1 e t o / τ 2 ) A 1 (   1 e t o / τ 1 ) + A 2 (   1 e t o / τ 2 ) τ 02
E i = 1 1 e t 0 / τ i 1
τ i ( t h l d ) = t o ln ( 0.05 / 1.05 )

Metrics