Abstract

The 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate and correct the distinct axial artifacts in SD-OCT images. The method was quantitatively validated using nine pairs of OCT scans obtained with orthogonal fast-scanning axes, where a segmented surface was compared after both datasets had been corrected. The mean unsigned difference computed between the locations of this artifact-corrected surface after the single-spline and dual-spline correction was 23.36 ± 4.04 μm and 5.94 ± 1.09 μm, respectively, and showed a significant difference (p < 0.001 from two-tailed paired t-test). The method was also validated using depth maps constructed from stereo fundus photographs of the optic nerve head, which were compared to the flattened top surface from the OCT datasets. Significant differences (p < 0.001) were noted between the artifact-corrected datasets and the original datasets, where the mean unsigned differences computed over 30 optic-nerve-head-centered scans (in normalized units) were 0.134 ± 0.035 and 0.302 ± 0.134, respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
    [CrossRef] [PubMed]
  3. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28, 1436–1447 (2009).
    [CrossRef] [PubMed]
  4. V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. Rosin, P., and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 20, 4730–14744 (2010).
  5. M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591I (2009).
    [CrossRef]
  6. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 2012–2017 (2005).
    [CrossRef] [PubMed]
  7. P. Thevenaz, U. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27–41 (1998).
    [CrossRef]
  8. M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).
  9. R. J. Zawadzki, A. R. Fullerb, S. S. Choia, D. F. Wileyb, B. Hamannb, and J. S. Wernera, “Correction of motion artifacts and scanning beam distortions in 3-D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
    [CrossRef]
  10. A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13, 1719–1726 (2007).
    [CrossRef] [PubMed]
  11. R. Zawadzki, S. Choi, S. Jones, S. Oliver, and J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. 24, 1373–1383 (2009).
    [CrossRef]
  12. A. Khanifar, A. Koreishi, J. Izatt, and C. Toth, “Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration,” Ophthalmology 115, 1883–1890 (2008).
    [CrossRef] [PubMed]
  13. S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI) LNCS 5761, pp. 100–107 (2009).
  14. M. Kraus, M. A. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimot, “Motion artifact correction in OCT volume scans using image registration,” Invest. Ophthalmol. Vis. Sci. 51, ARVO E-Abstract 4405 (2010).
  15. X. Song, R. Estrada, S. J. Chiu, A. Dhalla, C.A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 1309 (2011).
    [PubMed]
  16. J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev spaces,” in Constructive Theory of Functions of Several Variables (Springer-Verlag, 1977), pp. 85–100.
    [CrossRef]
  17. F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Machine Intell. 11, 567–585 (1989).
    [CrossRef]
  18. M. J. D. Powell, “The uniform convergence of thin plate spline interpolation in two dimensions,” Numerische Math. 68, 107–128 (1994).
    [CrossRef]
  19. Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 51, 5708–5717 (2010).
    [CrossRef] [PubMed]
  20. R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000).
    [PubMed]
  21. A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
    [CrossRef] [PubMed]
  22. M. A. Czudowska, W. D. Ramdas, R. C. Wolfs, A. Hofman, P. T. De Jong, J. R. Vingerling, and N. M. Jansonius, “Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study,” Ophthalmology 117, 1705–1712 (2010).
    [CrossRef] [PubMed]
  23. M. Niemeijer, M. K. Garvin, B. van Ginneken, M. Sonka, and M. D. Abràmoff, “Vessel segmentation in 3-D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
    [CrossRef]
  24. L. Tang, M. K. Garvin, K. Lee, W. L. M. Alward, Y. H. Kwon, and M. D. Abràmoff, “Robust multi-scale stereo matching from funuds images with radiometric differences,” IEEE Trans. Pattern Anal. Machine Intell . in press.

2011

X. Song, R. Estrada, S. J. Chiu, A. Dhalla, C.A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 1309 (2011).
[PubMed]

2010

M. Kraus, M. A. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimot, “Motion artifact correction in OCT volume scans using image registration,” Invest. Ophthalmol. Vis. Sci. 51, ARVO E-Abstract 4405 (2010).

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. Rosin, P., and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 20, 4730–14744 (2010).

Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 51, 5708–5717 (2010).
[CrossRef] [PubMed]

M. A. Czudowska, W. D. Ramdas, R. C. Wolfs, A. Hofman, P. T. De Jong, J. R. Vingerling, and N. M. Jansonius, “Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study,” Ophthalmology 117, 1705–1712 (2010).
[CrossRef] [PubMed]

2009

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591I (2009).
[CrossRef]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28, 1436–1447 (2009).
[CrossRef] [PubMed]

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI) LNCS 5761, pp. 100–107 (2009).

R. Zawadzki, S. Choi, S. Jones, S. Oliver, and J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. 24, 1373–1383 (2009).
[CrossRef]

2008

A. Khanifar, A. Koreishi, J. Izatt, and C. Toth, “Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration,” Ophthalmology 115, 1883–1890 (2008).
[CrossRef] [PubMed]

M. Niemeijer, M. K. Garvin, B. van Ginneken, M. Sonka, and M. D. Abràmoff, “Vessel segmentation in 3-D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
[CrossRef]

2007

R. J. Zawadzki, A. R. Fullerb, S. S. Choia, D. F. Wileyb, B. Hamannb, and J. S. Wernera, “Correction of motion artifacts and scanning beam distortions in 3-D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[CrossRef]

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13, 1719–1726 (2007).
[CrossRef] [PubMed]

2005

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 2012–2017 (2005).
[CrossRef] [PubMed]

2004

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).

2000

R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000).
[PubMed]

1998

P. Thevenaz, U. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27–41 (1998).
[CrossRef]

1994

M. J. D. Powell, “The uniform convergence of thin plate spline interpolation in two dimensions,” Numerische Math. 68, 107–128 (1994).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1989

F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Machine Intell. 11, 567–585 (1989).
[CrossRef]

1977

J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev spaces,” in Constructive Theory of Functions of Several Variables (Springer-Verlag, 1977), pp. 85–100.
[CrossRef]

Abramoff, M. D.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).

Abràmoff, M. D.

Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 51, 5708–5717 (2010).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28, 1436–1447 (2009).
[CrossRef] [PubMed]

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591I (2009).
[CrossRef]

M. Niemeijer, M. K. Garvin, B. van Ginneken, M. Sonka, and M. D. Abràmoff, “Vessel segmentation in 3-D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
[CrossRef]

Beaton, S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 2012–2017 (2005).
[CrossRef] [PubMed]

Bock, R.

M. Kraus, M. A. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimot, “Motion artifact correction in OCT volume scans using image registration,” Invest. Ophthalmol. Vis. Sci. 51, ARVO E-Abstract 4405 (2010).

Bookstein, F. L.

F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Machine Intell. 11, 567–585 (1989).
[CrossRef]

Borger, P. H.

R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000).
[PubMed]

Breteler, M. M. B.

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

Burns, T. L.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28, 1436–1447 (2009).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, M.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI) LNCS 5761, pp. 100–107 (2009).

Chiu, S. J.

X. Song, R. Estrada, S. J. Chiu, A. Dhalla, C.A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 1309 (2011).
[PubMed]

Choi, S.

R. Zawadzki, S. Choi, S. Jones, S. Oliver, and J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. 24, 1373–1383 (2009).
[CrossRef]

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13, 1719–1726 (2007).
[CrossRef] [PubMed]

Choia, S. S.

R. J. Zawadzki, A. R. Fullerb, S. S. Choia, D. F. Wileyb, B. Hamannb, and J. S. Wernera, “Correction of motion artifacts and scanning beam distortions in 3-D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[CrossRef]

Czudowska, M. A.

M. A. Czudowska, W. D. Ramdas, R. C. Wolfs, A. Hofman, P. T. De Jong, J. R. Vingerling, and N. M. Jansonius, “Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study,” Ophthalmology 117, 1705–1712 (2010).
[CrossRef] [PubMed]

De Jong, P. T.

M. A. Czudowska, W. D. Ramdas, R. C. Wolfs, A. Hofman, P. T. De Jong, J. R. Vingerling, and N. M. Jansonius, “Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study,” Ophthalmology 117, 1705–1712 (2010).
[CrossRef] [PubMed]

R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000).
[PubMed]

Dhalla, A.

X. Song, R. Estrada, S. J. Chiu, A. Dhalla, C.A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 1309 (2011).
[PubMed]

Drexler, W.

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. Rosin, P., and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 20, 4730–14744 (2010).

Duchon, J.

J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev spaces,” in Constructive Theory of Functions of Several Variables (Springer-Verlag, 1977), pp. 85–100.
[CrossRef]

Duker, J. S.

M. Kraus, M. A. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimot, “Motion artifact correction in OCT volume scans using image registration,” Invest. Ophthalmol. Vis. Sci. 51, ARVO E-Abstract 4405 (2010).

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Estrada, R.

X. Song, R. Estrada, S. J. Chiu, A. Dhalla, C.A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 1309 (2011).
[PubMed]

Farsiu, S.

X. Song, R. Estrada, S. J. Chiu, A. Dhalla, C.A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 1309 (2011).
[PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimot, J. G.

M. Kraus, M. A. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimot, “Motion artifact correction in OCT volume scans using image registration,” Invest. Ophthalmol. Vis. Sci. 51, ARVO E-Abstract 4405 (2010).

Fujimoto, J. G.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 2012–2017 (2005).
[CrossRef] [PubMed]

Fuller, A. R.

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13, 1719–1726 (2007).
[CrossRef] [PubMed]

Fullerb, A. R.

R. J. Zawadzki, A. R. Fullerb, S. S. Choia, D. F. Wileyb, B. Hamannb, and J. S. Wernera, “Correction of motion artifacts and scanning beam distortions in 3-D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[CrossRef]

Garvin, M. K.

Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 51, 5708–5717 (2010).
[CrossRef] [PubMed]

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591I (2009).
[CrossRef]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28, 1436–1447 (2009).
[CrossRef] [PubMed]

M. Niemeijer, M. K. Garvin, B. van Ginneken, M. Sonka, and M. D. Abràmoff, “Vessel segmentation in 3-D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hamann, B.

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13, 1719–1726 (2007).
[CrossRef] [PubMed]

Hamannb, B.

R. J. Zawadzki, A. R. Fullerb, S. S. Choia, D. F. Wileyb, B. Hamannb, and J. S. Wernera, “Correction of motion artifacts and scanning beam distortions in 3-D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. Rosin, P., and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 20, 4730–14744 (2010).

Hitchings, R. A.

R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000).
[PubMed]

Hofer, B.

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. Rosin, P., and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 20, 4730–14744 (2010).

Hofman, A.

M. A. Czudowska, W. D. Ramdas, R. C. Wolfs, A. Hofman, P. T. De Jong, J. R. Vingerling, and N. M. Jansonius, “Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study,” Ophthalmology 117, 1705–1712 (2010).
[CrossRef] [PubMed]

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000).
[PubMed]

Hornegger, J.

M. Kraus, M. A. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimot, “Motion artifact correction in OCT volume scans using image registration,” Invest. Ophthalmol. Vis. Sci. 51, ARVO E-Abstract 4405 (2010).

Hu, Z.

Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 51, 5708–5717 (2010).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hulsman, C. A.

R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000).
[PubMed]

Ishikawa, H.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI) LNCS 5761, pp. 100–107 (2009).

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 2012–2017 (2005).
[CrossRef] [PubMed]

Izatt, J.

A. Khanifar, A. Koreishi, J. Izatt, and C. Toth, “Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration,” Ophthalmology 115, 1883–1890 (2008).
[CrossRef] [PubMed]

Izatt, J. A.

X. Song, R. Estrada, S. J. Chiu, A. Dhalla, C.A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 1309 (2011).
[PubMed]

Jansonius, N. M.

M. A. Czudowska, W. D. Ramdas, R. C. Wolfs, A. Hofman, P. T. De Jong, J. R. Vingerling, and N. M. Jansonius, “Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study,” Ophthalmology 117, 1705–1712 (2010).
[CrossRef] [PubMed]

Janssen, H. L. A

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

Jones, S.

R. Zawadzki, S. Choi, S. Jones, S. Oliver, and J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. 24, 1373–1383 (2009).
[CrossRef]

Kajic, V.

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. Rosin, P., and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 20, 4730–14744 (2010).

Khanifar, A.

A. Khanifar, A. Koreishi, J. Izatt, and C. Toth, “Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration,” Ophthalmology 115, 1883–1890 (2008).
[CrossRef] [PubMed]

Klaver, C. C.

R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000).
[PubMed]

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Koreishi, A.

A. Khanifar, A. Koreishi, J. Izatt, and C. Toth, “Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration,” Ophthalmology 115, 1883–1890 (2008).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Kraus, M.

M. Kraus, M. A. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimot, “Motion artifact correction in OCT volume scans using image registration,” Invest. Ophthalmol. Vis. Sci. 51, ARVO E-Abstract 4405 (2010).

Krestin, G. P.

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

Kuipers, E. J.

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

Kwon, Y. H.

Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 51, 5708–5717 (2010).
[CrossRef] [PubMed]

Lee, K.

Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 51, 5708–5717 (2010).
[CrossRef] [PubMed]

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591I (2009).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Magelhaes, P. J.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).

Manjunath, V.

M. Kraus, M. A. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimot, “Motion artifact correction in OCT volume scans using image registration,” Invest. Ophthalmol. Vis. Sci. 51, ARVO E-Abstract 4405 (2010).

Marshall, D.

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. Rosin, P., and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 20, 4730–14744 (2010).

Mayer, M. A.

M. Kraus, M. A. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimot, “Motion artifact correction in OCT volume scans using image registration,” Invest. Ophthalmol. Vis. Sci. 51, ARVO E-Abstract 4405 (2010).

Niemeijer, M.

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591I (2009).
[CrossRef]

M. Niemeijer, M. K. Garvin, B. van Ginneken, M. Sonka, and M. D. Abràmoff, “Vessel segmentation in 3-D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
[CrossRef]

Oliver, S.

R. Zawadzki, S. Choi, S. Jones, S. Oliver, and J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. 24, 1373–1383 (2009).
[CrossRef]

P.,

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. Rosin, P., and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 20, 4730–14744 (2010).

Potsaid, B.

M. Kraus, M. A. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimot, “Motion artifact correction in OCT volume scans using image registration,” Invest. Ophthalmol. Vis. Sci. 51, ARVO E-Abstract 4405 (2010).

Považay, B.

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. Rosin, P., and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 20, 4730–14744 (2010).

Powell, M. J. D.

M. J. D. Powell, “The uniform convergence of thin plate spline interpolation in two dimensions,” Numerische Math. 68, 107–128 (1994).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ram, S. J.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).

Ramdas, W. D.

M. A. Czudowska, W. D. Ramdas, R. C. Wolfs, A. Hofman, P. T. De Jong, J. R. Vingerling, and N. M. Jansonius, “Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study,” Ophthalmology 117, 1705–1712 (2010).
[CrossRef] [PubMed]

Ramrattan, R. S.

R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000).
[PubMed]

Ricco, S.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI) LNCS 5761, pp. 100–107 (2009).

Rosin, P.

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. Rosin, P., and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 20, 4730–14744 (2010).

Russell, S. R.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28, 1436–1447 (2009).
[CrossRef] [PubMed]

Ruttimann, U.

P. Thevenaz, U. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27–41 (1998).
[CrossRef]

Schuman, J.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI) LNCS 5761, pp. 100–107 (2009).

Schuman, J. S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 2012–2017 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Song, X.

X. Song, R. Estrada, S. J. Chiu, A. Dhalla, C.A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 1309 (2011).
[PubMed]

Sonka, M.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28, 1436–1447 (2009).
[CrossRef] [PubMed]

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591I (2009).
[CrossRef]

M. Niemeijer, M. K. Garvin, B. van Ginneken, M. Sonka, and M. D. Abràmoff, “Vessel segmentation in 3-D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
[CrossRef]

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Stein, D. M.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 2012–2017 (2005).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stricker, B. C. H.

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Thevenaz, P.

P. Thevenaz, U. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27–41 (1998).
[CrossRef]

Tiemeier, H.

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

Toth, C.

A. Khanifar, A. Koreishi, J. Izatt, and C. Toth, “Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration,” Ophthalmology 115, 1883–1890 (2008).
[CrossRef] [PubMed]

Toth, C.A.

X. Song, R. Estrada, S. J. Chiu, A. Dhalla, C.A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 1309 (2011).
[PubMed]

Uitterlinden, A. G.

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

Unser, M.

P. Thevenaz, U. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27–41 (1998).
[CrossRef]

Van Duijn, C. M.

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

van Ginneken, B.

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591I (2009).
[CrossRef]

M. Niemeijer, M. K. Garvin, B. van Ginneken, M. Sonka, and M. D. Abràmoff, “Vessel segmentation in 3-D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
[CrossRef]

Vingerling, J. R.

M. A. Czudowska, W. D. Ramdas, R. C. Wolfs, A. Hofman, P. T. De Jong, J. R. Vingerling, and N. M. Jansonius, “Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study,” Ophthalmology 117, 1705–1712 (2010).
[CrossRef] [PubMed]

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000).
[PubMed]

Werner, J.

R. Zawadzki, S. Choi, S. Jones, S. Oliver, and J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. 24, 1373–1383 (2009).
[CrossRef]

Werner, J. S.

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13, 1719–1726 (2007).
[CrossRef] [PubMed]

Wernera, J. S.

R. J. Zawadzki, A. R. Fullerb, S. S. Choia, D. F. Wileyb, B. Hamannb, and J. S. Wernera, “Correction of motion artifacts and scanning beam distortions in 3-D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[CrossRef]

Wiley, D. F.

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13, 1719–1726 (2007).
[CrossRef] [PubMed]

Wileyb, D. F.

R. J. Zawadzki, A. R. Fullerb, S. S. Choia, D. F. Wileyb, B. Hamannb, and J. S. Wernera, “Correction of motion artifacts and scanning beam distortions in 3-D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[CrossRef]

Witteman, J. C. M.

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Wolfs, R. C.

M. A. Czudowska, W. D. Ramdas, R. C. Wolfs, A. Hofman, P. T. De Jong, J. R. Vingerling, and N. M. Jansonius, “Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study,” Ophthalmology 117, 1705–1712 (2010).
[CrossRef] [PubMed]

R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000).
[PubMed]

Wollstein, G.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI) LNCS 5761, pp. 100–107 (2009).

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 2012–2017 (2005).
[CrossRef] [PubMed]

Wu, X.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28, 1436–1447 (2009).
[CrossRef] [PubMed]

Zawadzki, R.

R. Zawadzki, S. Choi, S. Jones, S. Oliver, and J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. 24, 1373–1383 (2009).
[CrossRef]

Zawadzki, R. J.

R. J. Zawadzki, A. R. Fullerb, S. S. Choia, D. F. Wileyb, B. Hamannb, and J. S. Wernera, “Correction of motion artifacts and scanning beam distortions in 3-D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[CrossRef]

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13, 1719–1726 (2007).
[CrossRef] [PubMed]

Biophoton. Int.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).

Eur. J. Epidemiol.

A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009).
[CrossRef] [PubMed]

IEEE Trans. Image Process.

P. Thevenaz, U. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27–41 (1998).
[CrossRef]

IEEE Trans. Med. Imaging

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28, 1436–1447 (2009).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Machine Intell.

F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Machine Intell. 11, 567–585 (1989).
[CrossRef]

IEEE Trans. Vis. Comput. Graph.

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13, 1719–1726 (2007).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

M. Kraus, M. A. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimot, “Motion artifact correction in OCT volume scans using image registration,” Invest. Ophthalmol. Vis. Sci. 51, ARVO E-Abstract 4405 (2010).

X. Song, R. Estrada, S. J. Chiu, A. Dhalla, C.A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 1309 (2011).
[PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 2012–2017 (2005).
[CrossRef] [PubMed]

Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 51, 5708–5717 (2010).
[CrossRef] [PubMed]

R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000).
[PubMed]

J. Opt. Soc. Am.

R. Zawadzki, S. Choi, S. Jones, S. Oliver, and J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. 24, 1373–1383 (2009).
[CrossRef]

Numerische Math.

M. J. D. Powell, “The uniform convergence of thin plate spline interpolation in two dimensions,” Numerische Math. 68, 107–128 (1994).
[CrossRef]

Ophthalmology

A. Khanifar, A. Koreishi, J. Izatt, and C. Toth, “Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration,” Ophthalmology 115, 1883–1890 (2008).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

M. A. Czudowska, W. D. Ramdas, R. C. Wolfs, A. Hofman, P. T. De Jong, J. R. Vingerling, and N. M. Jansonius, “Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study,” Ophthalmology 117, 1705–1712 (2010).
[CrossRef] [PubMed]

Opt. Express

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. Rosin, P., and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 20, 4730–14744 (2010).

Proc. SPIE

M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591I (2009).
[CrossRef]

R. J. Zawadzki, A. R. Fullerb, S. S. Choia, D. F. Wileyb, B. Hamannb, and J. S. Wernera, “Correction of motion artifacts and scanning beam distortions in 3-D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[CrossRef]

M. Niemeijer, M. K. Garvin, B. van Ginneken, M. Sonka, and M. D. Abràmoff, “Vessel segmentation in 3-D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
[CrossRef]

Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI)

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI) LNCS 5761, pp. 100–107 (2009).

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev spaces,” in Constructive Theory of Functions of Several Variables (Springer-Verlag, 1977), pp. 85–100.
[CrossRef]

L. Tang, M. K. Garvin, K. Lee, W. L. M. Alward, Y. H. Kwon, and M. D. Abràmoff, “Robust multi-scale stereo matching from funuds images with radiometric differences,” IEEE Trans. Pattern Anal. Machine Intell . in press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Fundus photograph depicting the regions scanned in macula-centered and ONH-centered OCT images. (b) A typical central B s -Scan from a macula-centered image showing artifacts characteristic to yz-slices. (c) A typical central B f -scan (xz-slice) from an unprocessed ONH-centered volume, showing the tilt artifact commonly seen in these slices.

Fig. 2
Fig. 2

Selected slices from an OCT dataset showing the two surfaces segmented in the original volume. The reference plane is created by fitting a spline in two stages to the lower surface. The inner limiting membrane (ILM) as well as the lower surface are used in validation processes.

Fig. 3
Fig. 3

Overview of method to determine flattening plane. The flattening plane is determined by fitting a spline to a surface twice, to eliminate the two distinct artifacts seen in these images.

Fig. 4
Fig. 4

Schematics showing acquisition of OCT datasets with orthogonal fast scanning axes from the same patient. (a) Central B f -scan and B s -scan from an OCT image with horizontal fast-scanning axis. (b) Central B f -scan and B s -scan from an OCT image acquired from the same eye with vertical fast-scanning axis. Note that the B f -scan from the first dataset comes from the same location as the B s -scan from the second dataset.

Fig. 5
Fig. 5

Fundus photograph and its corresponding disparity maps. (a) One of a pair of stero fundus photographs of a glaucomatous eye. (b) The disparity map constructed from the stereo fundus photographs. (c) The smoothed disparity map in 3-D showing the overall shape of the opic nerve head.

Fig. 6
Fig. 6

Estimating the shape of the eye from paired OCT datasets with orthogonal fast scanning axes. The isotropic surfaces obtained by fitting a thin-plate spline to a segmented surface from (a) the dataset with the horizontal fast scanning axes, and (b) the dataset with the vertical fast scanning axes. (c) The estimate of the “true” curvature of the retina.

Fig. 7
Fig. 7

Examples of the surface used to create the reference plane. (a), (b) and (c) show the segmented surfaces from a macula-centered OCT dataset in the original, partially corrected and final artifact-corrected image, respectively. (d), (e) and (f) show the segmented surface from an ONH centered OCT dataset in the original, partially corrected and final artifact-corrected image, respectively.

Fig. 8
Fig. 8

Central B f -Scan and B s -scan slices from an OCT dataset before and after flattening. Original (a) B f -Scan and, (b) B s -Scan before artifact correction, respectively. Artifact corrected (c) B f -Scan and (d) B s -Scan, respectively.

Fig. 9
Fig. 9

An ONH-centered dataset before and after the axial artifact correction. (a) The ILM in the original dataset and after the first spline fit. B f -scan and B s -scan from the original dataset from the locations as indicated by arrows in red. (b) The ILM in the flattened artifact corrected dataset with the same B f -scan and B s -scans from the flattened dataset. Smoothed depth image also included.

Tables (1)

Tables Icon

Table 1 Mean Unsigned Difference Seen in the Original, Partially Corrected and Final Artifact-Corrected Images

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E t p s ( s ) = i = 1 N | | s ( ν i ) f ( ν i ) | | + λ R 2 ( 2 s ( θ ) x 2 ) 2 + 2 ( 2 s ( θ ) x y ) 2 + ( 2 s ( θ ) y 2 ) 2 d θ ,
s λ ( θ ) = k = 1 3 d k φ k ( θ ) + i = 1 N c i E ( θ ν i ) , E ( r ) = r 2 log r
( x y 1 ) = ( cos θ sin θ δ x sin θ cos θ δ y 0 0 1 ) ( x y 1 )

Metrics