Abstract

Ultrafast (femtosecond) lasers have become an important tool to investigate biological phenomena because of their ability to effect highly localized tissue removal in surgical applications. Here we describe programmable, microscale, femtosecond-laser ablation of melanocytes found on Xenopus laevis tadpoles, a technique that is applicable to biological studies in development, regeneration, and cancer research. We illustrate laser marking of individual melanocytes, and the drawing of patterns on melanocyte clusters to help track their migration and/or regeneration. We also demonstrate that this system can upgrade scratch tests, a technique used widely with cultured cells to study cell migration and wound healing, to the more realistic in vivo realm, by clearing a region of melanocytes and monitoring their return over time. In addition, we show how melanocyte ablation can be used for loss-of-function experiments by damaging neighboring tissue, using the example of abnormal tail regeneration following localized spinal cord damage. Since the size, shape, and depth of melanocytes vary as a function of tadpole age and melanocyte location (head or tail), an ablation threshold chart is given. Mechanisms of laser ablation are also discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  2. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
    [CrossRef] [PubMed]
  3. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
    [CrossRef] [PubMed]
  4. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
    [CrossRef] [PubMed]
  5. V. Kohli and A. Y. Elezzabi, “Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: optimal parameters for exogenous material delivery, and the laser’s effect on short- and long-term development,” BMC Biotechnol. 8(1), 7 (2008).
    [CrossRef] [PubMed]
  6. W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
    [CrossRef] [PubMed]
  7. J. Green, “Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment,” Dev. Dyn. 225(4), 392–408 (2002).
    [CrossRef] [PubMed]
  8. C. W. Beck and J. M. Slack, “An amphibian with ambition: a new role for Xenopus in the 21st century,” Genome Biol. 2(10), reviews1029.1–reviews1029.5 (2001).
    [CrossRef] [PubMed]
  9. J. B. Wallingford, “Tumors in tadpoles: the Xenopus embryo as a model system for the study of tumorigenesis,” Trends Genet. 15(10), 385–388 (1999).
    [CrossRef] [PubMed]
  10. A. S. Tseng and M. Levin, “Tail regeneration in Xenopus laevis as a model for understanding tissue repair,” J. Dent. Res. 87(9), 806–816 (2008).
    [CrossRef] [PubMed]
  11. J. M. W. Slack, C. W. Beck, C. Gargioli, and B. Christen, “Cellular and molecular mechanisms of regeneration in Xenopus,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1445), 745–751 (2004).
    [CrossRef] [PubMed]
  12. C. W. Beck, J. C. Izpisúa Belmonte, and B. Christen, “Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms,” Dev. Dyn. 238(6), 1226–1248 (2009).
    [CrossRef] [PubMed]
  13. S. L. Klein, R. L. Strausberg, L. Wagner, J. Pontius, S. W. Clifton, and P. Richardson, “Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative,” Dev. Dyn. 225(4), 384–391 (2002).
    [CrossRef] [PubMed]
  14. D. S. Adams, “A new tool for tissue engineers: ions as regulators of morphogenesis during development and regeneration,” Tissue Eng. Part A 14(9), 1461–1468 (2008).
    [CrossRef] [PubMed]
  15. H. Ogino and H. Ochi, “Resources and transgenesis techniques for functional genomics in Xenopus,” Dev. Growth Differ. 51(4), 387–401 (2009).
    [CrossRef] [PubMed]
  16. M. L. Tomlinson, P. Guan, R. J. Morris, M. D. Fidock, M. Rejzek, C. Garcia-Morales, R. A. Field, and G. N. Wheeler, “A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration,” Chem. Biol. 16(1), 93–104 (2009).
    [CrossRef] [PubMed]
  17. D. Blackiston, D. S. Adams, J. M. Lemire, M. Lobikin, and M. Levin, “Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway,” Dis Model Mech 4(1), 67–85 (2011).
    [CrossRef] [PubMed]
  18. T. O’Reilly-Pol and S. L. Johnson, “Melanocyte regeneration reveals mechanisms of adult stem cell regulation,” Semin. Cell Dev. Biol. 20(1), 117–124 (2009).
    [CrossRef] [PubMed]
  19. P. D. Nieuwkoop and J. Faber, Normal Table of Xenopus laevis (Daudin): a Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis (North-Holland, Amsterdam, 1956).
  20. M. Kumasaka, H. Sato, S. Sato, I. Yajima, and H. Yamamoto, “Isolation and developmental expression of Mitf in Xenopus laevis,” Dev. Dyn. 230(1), 107–113 (2004).
    [CrossRef] [PubMed]
  21. C.-T. Yang, R. D. Sengelmann, and S. L. Johnson, “Larval melanocyte regeneration following laser ablation in zebrafish,” J. Invest. Dermatol. 123(5), 924–929 (2004).
    [CrossRef] [PubMed]
  22. H. L. Sive, R. M. Grainger, and R. M. Harland, Early Development of Xenopus laevis: a Laboratory Manual (Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY, 2000).
  23. J. Morokuma, D. Blackiston, D. S. Adams, G. Seebohm, B. Trimmer, and M. Levin, “Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells,” Proc. Natl. Acad. Sci. U.S.A. 105(43), 16608–16613 (2008).
    [CrossRef] [PubMed]
  24. R. M. Steinman, “An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis,” Am. J. Anat. 122(1), 19–55 (1968).
    [CrossRef] [PubMed]
  25. Z. B. Wang, M. H. Hong, Y. F. Lu, D. J. Wu, B. Lan, and T. C. Chong, “Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air,” J. Appl. Phys. 93(10), 6375–6380 (2003).
    [CrossRef]
  26. T. H. Morgan, Regeneration (The Macmillan Company, 1901).
  27. J. M. Slack, G. Lin, and Y. Chen, “Molecular and cellular basis of regeneration and tissue repair: the Xenopus tadpole: a new model for regeneration research,” Cell. Mol. Life Sci. 65(1), 54–63 (2008).
    [CrossRef] [PubMed]
  28. Y. Taniguchi, T. Sugiura, A. Tazaki, K. Watanabe, and M. Mochii, “Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles,” Dev. Growth Differ. 50(2), 109–120 (2008).
    [CrossRef] [PubMed]
  29. J. P. Mondia, M. Levin, F. G. Omenetto, R. D. Orendorff, and D. S. Adams, “Long-distance positional signals are required for normal morphogenesis during regeneration of the Xenopus tadpole tail, as revealed by femtosecond-laser cell ablation along the dorsal axis,” in preparation.
  30. K. Kuetemeyer, R. Rezgui, H. Lubatschowski, and A. Heisterkamp, “Influence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery,” Biomed. Opt. Express 1(2), 587–597 (2010).
    [CrossRef] [PubMed]
  31. A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
    [CrossRef] [PubMed]

2011

D. Blackiston, D. S. Adams, J. M. Lemire, M. Lobikin, and M. Levin, “Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway,” Dis Model Mech 4(1), 67–85 (2011).
[CrossRef] [PubMed]

2010

2009

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

H. Ogino and H. Ochi, “Resources and transgenesis techniques for functional genomics in Xenopus,” Dev. Growth Differ. 51(4), 387–401 (2009).
[CrossRef] [PubMed]

M. L. Tomlinson, P. Guan, R. J. Morris, M. D. Fidock, M. Rejzek, C. Garcia-Morales, R. A. Field, and G. N. Wheeler, “A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration,” Chem. Biol. 16(1), 93–104 (2009).
[CrossRef] [PubMed]

T. O’Reilly-Pol and S. L. Johnson, “Melanocyte regeneration reveals mechanisms of adult stem cell regulation,” Semin. Cell Dev. Biol. 20(1), 117–124 (2009).
[CrossRef] [PubMed]

C. W. Beck, J. C. Izpisúa Belmonte, and B. Christen, “Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms,” Dev. Dyn. 238(6), 1226–1248 (2009).
[CrossRef] [PubMed]

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[CrossRef] [PubMed]

2008

V. Kohli and A. Y. Elezzabi, “Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: optimal parameters for exogenous material delivery, and the laser’s effect on short- and long-term development,” BMC Biotechnol. 8(1), 7 (2008).
[CrossRef] [PubMed]

A. S. Tseng and M. Levin, “Tail regeneration in Xenopus laevis as a model for understanding tissue repair,” J. Dent. Res. 87(9), 806–816 (2008).
[CrossRef] [PubMed]

J. Morokuma, D. Blackiston, D. S. Adams, G. Seebohm, B. Trimmer, and M. Levin, “Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells,” Proc. Natl. Acad. Sci. U.S.A. 105(43), 16608–16613 (2008).
[CrossRef] [PubMed]

D. S. Adams, “A new tool for tissue engineers: ions as regulators of morphogenesis during development and regeneration,” Tissue Eng. Part A 14(9), 1461–1468 (2008).
[CrossRef] [PubMed]

J. M. Slack, G. Lin, and Y. Chen, “Molecular and cellular basis of regeneration and tissue repair: the Xenopus tadpole: a new model for regeneration research,” Cell. Mol. Life Sci. 65(1), 54–63 (2008).
[CrossRef] [PubMed]

Y. Taniguchi, T. Sugiura, A. Tazaki, K. Watanabe, and M. Mochii, “Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles,” Dev. Growth Differ. 50(2), 109–120 (2008).
[CrossRef] [PubMed]

2005

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

2004

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

J. M. W. Slack, C. W. Beck, C. Gargioli, and B. Christen, “Cellular and molecular mechanisms of regeneration in Xenopus,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1445), 745–751 (2004).
[CrossRef] [PubMed]

M. Kumasaka, H. Sato, S. Sato, I. Yajima, and H. Yamamoto, “Isolation and developmental expression of Mitf in Xenopus laevis,” Dev. Dyn. 230(1), 107–113 (2004).
[CrossRef] [PubMed]

C.-T. Yang, R. D. Sengelmann, and S. L. Johnson, “Larval melanocyte regeneration following laser ablation in zebrafish,” J. Invest. Dermatol. 123(5), 924–929 (2004).
[CrossRef] [PubMed]

2003

Z. B. Wang, M. H. Hong, Y. F. Lu, D. J. Wu, B. Lan, and T. C. Chong, “Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air,” J. Appl. Phys. 93(10), 6375–6380 (2003).
[CrossRef]

2002

S. L. Klein, R. L. Strausberg, L. Wagner, J. Pontius, S. W. Clifton, and P. Richardson, “Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative,” Dev. Dyn. 225(4), 384–391 (2002).
[CrossRef] [PubMed]

J. Green, “Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment,” Dev. Dyn. 225(4), 392–408 (2002).
[CrossRef] [PubMed]

2001

C. W. Beck and J. M. Slack, “An amphibian with ambition: a new role for Xenopus in the 21st century,” Genome Biol. 2(10), reviews1029.1–reviews1029.5 (2001).
[CrossRef] [PubMed]

2000

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[CrossRef] [PubMed]

1999

J. B. Wallingford, “Tumors in tadpoles: the Xenopus embryo as a model system for the study of tumorigenesis,” Trends Genet. 15(10), 385–388 (1999).
[CrossRef] [PubMed]

1968

R. M. Steinman, “An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis,” Am. J. Anat. 122(1), 19–55 (1968).
[CrossRef] [PubMed]

Adams, D. S.

D. Blackiston, D. S. Adams, J. M. Lemire, M. Lobikin, and M. Levin, “Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway,” Dis Model Mech 4(1), 67–85 (2011).
[CrossRef] [PubMed]

J. Morokuma, D. Blackiston, D. S. Adams, G. Seebohm, B. Trimmer, and M. Levin, “Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells,” Proc. Natl. Acad. Sci. U.S.A. 105(43), 16608–16613 (2008).
[CrossRef] [PubMed]

D. S. Adams, “A new tool for tissue engineers: ions as regulators of morphogenesis during development and regeneration,” Tissue Eng. Part A 14(9), 1461–1468 (2008).
[CrossRef] [PubMed]

Beaurepaire, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[CrossRef] [PubMed]

Beck, C. W.

C. W. Beck, J. C. Izpisúa Belmonte, and B. Christen, “Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms,” Dev. Dyn. 238(6), 1226–1248 (2009).
[CrossRef] [PubMed]

J. M. W. Slack, C. W. Beck, C. Gargioli, and B. Christen, “Cellular and molecular mechanisms of regeneration in Xenopus,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1445), 745–751 (2004).
[CrossRef] [PubMed]

C. W. Beck and J. M. Slack, “An amphibian with ambition: a new role for Xenopus in the 21st century,” Genome Biol. 2(10), reviews1029.1–reviews1029.5 (2001).
[CrossRef] [PubMed]

Ben-Yakar, A.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Blackiston, D.

D. Blackiston, D. S. Adams, J. M. Lemire, M. Lobikin, and M. Levin, “Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway,” Dis Model Mech 4(1), 67–85 (2011).
[CrossRef] [PubMed]

J. Morokuma, D. Blackiston, D. S. Adams, G. Seebohm, B. Trimmer, and M. Levin, “Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells,” Proc. Natl. Acad. Sci. U.S.A. 105(43), 16608–16613 (2008).
[CrossRef] [PubMed]

Brady-Kalnay, S. M.

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

Brouzés, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[CrossRef] [PubMed]

Burden-Gulley, S. M.

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

Burgoyne, A. M.

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

Chen, Y.

J. M. Slack, G. Lin, and Y. Chen, “Molecular and cellular basis of regeneration and tissue repair: the Xenopus tadpole: a new model for regeneration research,” Cell. Mol. Life Sci. 65(1), 54–63 (2008).
[CrossRef] [PubMed]

Chisholm, A. D.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Chong, T. C.

Z. B. Wang, M. H. Hong, Y. F. Lu, D. J. Wu, B. Lan, and T. C. Chong, “Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air,” J. Appl. Phys. 93(10), 6375–6380 (2003).
[CrossRef]

Christen, B.

C. W. Beck, J. C. Izpisúa Belmonte, and B. Christen, “Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms,” Dev. Dyn. 238(6), 1226–1248 (2009).
[CrossRef] [PubMed]

J. M. W. Slack, C. W. Beck, C. Gargioli, and B. Christen, “Cellular and molecular mechanisms of regeneration in Xenopus,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1445), 745–751 (2004).
[CrossRef] [PubMed]

Chung, S. H.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[CrossRef] [PubMed]

Cinar, H.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Cinar, H. N.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Clifton, S. W.

S. L. Klein, R. L. Strausberg, L. Wagner, J. Pontius, S. W. Clifton, and P. Richardson, “Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative,” Dev. Dyn. 225(4), 384–391 (2002).
[CrossRef] [PubMed]

Débarre, D.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[CrossRef] [PubMed]

Elezzabi, A. Y.

V. Kohli and A. Y. Elezzabi, “Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: optimal parameters for exogenous material delivery, and the laser’s effect on short- and long-term development,” BMC Biotechnol. 8(1), 7 (2008).
[CrossRef] [PubMed]

Farge, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[CrossRef] [PubMed]

Fidock, M. D.

M. L. Tomlinson, P. Guan, R. J. Morris, M. D. Fidock, M. Rejzek, C. Garcia-Morales, R. A. Field, and G. N. Wheeler, “A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration,” Chem. Biol. 16(1), 93–104 (2009).
[CrossRef] [PubMed]

Field, R. A.

M. L. Tomlinson, P. Guan, R. J. Morris, M. D. Fidock, M. Rejzek, C. Garcia-Morales, R. A. Field, and G. N. Wheeler, “A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration,” Chem. Biol. 16(1), 93–104 (2009).
[CrossRef] [PubMed]

Garcia-Morales, C.

M. L. Tomlinson, P. Guan, R. J. Morris, M. D. Fidock, M. Rejzek, C. Garcia-Morales, R. A. Field, and G. N. Wheeler, “A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration,” Chem. Biol. 16(1), 93–104 (2009).
[CrossRef] [PubMed]

Gargioli, C.

J. M. W. Slack, C. W. Beck, C. Gargioli, and B. Christen, “Cellular and molecular mechanisms of regeneration in Xenopus,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1445), 745–751 (2004).
[CrossRef] [PubMed]

Green, J.

J. Green, “Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment,” Dev. Dyn. 225(4), 392–408 (2002).
[CrossRef] [PubMed]

Guan, P.

M. L. Tomlinson, P. Guan, R. J. Morris, M. D. Fidock, M. Rejzek, C. Garcia-Morales, R. A. Field, and G. N. Wheeler, “A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration,” Chem. Biol. 16(1), 93–104 (2009).
[CrossRef] [PubMed]

Heisterkamp, A.

Hong, M. H.

Z. B. Wang, M. H. Hong, Y. F. Lu, D. J. Wu, B. Lan, and T. C. Chong, “Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air,” J. Appl. Phys. 93(10), 6375–6380 (2003).
[CrossRef]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Izpisúa Belmonte, J. C.

C. W. Beck, J. C. Izpisúa Belmonte, and B. Christen, “Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms,” Dev. Dyn. 238(6), 1226–1248 (2009).
[CrossRef] [PubMed]

Jin, Y.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Johnson, S. L.

T. O’Reilly-Pol and S. L. Johnson, “Melanocyte regeneration reveals mechanisms of adult stem cell regulation,” Semin. Cell Dev. Biol. 20(1), 117–124 (2009).
[CrossRef] [PubMed]

C.-T. Yang, R. D. Sengelmann, and S. L. Johnson, “Larval melanocyte regeneration following laser ablation in zebrafish,” J. Invest. Dermatol. 123(5), 924–929 (2004).
[CrossRef] [PubMed]

Klein, S. L.

S. L. Klein, R. L. Strausberg, L. Wagner, J. Pontius, S. W. Clifton, and P. Richardson, “Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative,” Dev. Dyn. 225(4), 384–391 (2002).
[CrossRef] [PubMed]

Kohli, V.

V. Kohli and A. Y. Elezzabi, “Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: optimal parameters for exogenous material delivery, and the laser’s effect on short- and long-term development,” BMC Biotechnol. 8(1), 7 (2008).
[CrossRef] [PubMed]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[CrossRef] [PubMed]

Kuetemeyer, K.

Kumasaka, M.

M. Kumasaka, H. Sato, S. Sato, I. Yajima, and H. Yamamoto, “Isolation and developmental expression of Mitf in Xenopus laevis,” Dev. Dyn. 230(1), 107–113 (2004).
[CrossRef] [PubMed]

Lan, B.

Z. B. Wang, M. H. Hong, Y. F. Lu, D. J. Wu, B. Lan, and T. C. Chong, “Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air,” J. Appl. Phys. 93(10), 6375–6380 (2003).
[CrossRef]

Lemire, J. M.

D. Blackiston, D. S. Adams, J. M. Lemire, M. Lobikin, and M. Levin, “Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway,” Dis Model Mech 4(1), 67–85 (2011).
[CrossRef] [PubMed]

Levin, M.

D. Blackiston, D. S. Adams, J. M. Lemire, M. Lobikin, and M. Levin, “Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway,” Dis Model Mech 4(1), 67–85 (2011).
[CrossRef] [PubMed]

J. Morokuma, D. Blackiston, D. S. Adams, G. Seebohm, B. Trimmer, and M. Levin, “Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells,” Proc. Natl. Acad. Sci. U.S.A. 105(43), 16608–16613 (2008).
[CrossRef] [PubMed]

A. S. Tseng and M. Levin, “Tail regeneration in Xenopus laevis as a model for understanding tissue repair,” J. Dent. Res. 87(9), 806–816 (2008).
[CrossRef] [PubMed]

Lin, G.

J. M. Slack, G. Lin, and Y. Chen, “Molecular and cellular basis of regeneration and tissue repair: the Xenopus tadpole: a new model for regeneration research,” Cell. Mol. Life Sci. 65(1), 54–63 (2008).
[CrossRef] [PubMed]

Lobikin, M.

D. Blackiston, D. S. Adams, J. M. Lemire, M. Lobikin, and M. Levin, “Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway,” Dis Model Mech 4(1), 67–85 (2011).
[CrossRef] [PubMed]

Lu, Y. F.

Z. B. Wang, M. H. Hong, Y. F. Lu, D. J. Wu, B. Lan, and T. C. Chong, “Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air,” J. Appl. Phys. 93(10), 6375–6380 (2003).
[CrossRef]

Lubatschowski, H.

Major, D. L.

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

Martin, J.-L.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[CrossRef] [PubMed]

Mazur, E.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[CrossRef] [PubMed]

Miller, R. H.

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

Mochii, M.

Y. Taniguchi, T. Sugiura, A. Tazaki, K. Watanabe, and M. Mochii, “Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles,” Dev. Growth Differ. 50(2), 109–120 (2008).
[CrossRef] [PubMed]

Morokuma, J.

J. Morokuma, D. Blackiston, D. S. Adams, G. Seebohm, B. Trimmer, and M. Levin, “Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells,” Proc. Natl. Acad. Sci. U.S.A. 105(43), 16608–16613 (2008).
[CrossRef] [PubMed]

Morris, R. J.

M. L. Tomlinson, P. Guan, R. J. Morris, M. D. Fidock, M. Rejzek, C. Garcia-Morales, R. A. Field, and G. N. Wheeler, “A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration,” Chem. Biol. 16(1), 93–104 (2009).
[CrossRef] [PubMed]

Moulia, B.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[CrossRef] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

O’Reilly-Pol, T.

T. O’Reilly-Pol and S. L. Johnson, “Melanocyte regeneration reveals mechanisms of adult stem cell regulation,” Semin. Cell Dev. Biol. 20(1), 117–124 (2009).
[CrossRef] [PubMed]

Ochi, H.

H. Ogino and H. Ochi, “Resources and transgenesis techniques for functional genomics in Xenopus,” Dev. Growth Differ. 51(4), 387–401 (2009).
[CrossRef] [PubMed]

Ogino, H.

H. Ogino and H. Ochi, “Resources and transgenesis techniques for functional genomics in Xenopus,” Dev. Growth Differ. 51(4), 387–401 (2009).
[CrossRef] [PubMed]

Palomo, J. M.

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Phillips-Mason, P. J.

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

Pontius, J.

S. L. Klein, R. L. Strausberg, L. Wagner, J. Pontius, S. W. Clifton, and P. Richardson, “Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative,” Dev. Dyn. 225(4), 384–391 (2002).
[CrossRef] [PubMed]

Rejzek, M.

M. L. Tomlinson, P. Guan, R. J. Morris, M. D. Fidock, M. Rejzek, C. Garcia-Morales, R. A. Field, and G. N. Wheeler, “A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration,” Chem. Biol. 16(1), 93–104 (2009).
[CrossRef] [PubMed]

Rezgui, R.

Richardson, P.

S. L. Klein, R. L. Strausberg, L. Wagner, J. Pontius, S. W. Clifton, and P. Richardson, “Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative,” Dev. Dyn. 225(4), 384–391 (2002).
[CrossRef] [PubMed]

Robinson, S.

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

Sato, H.

M. Kumasaka, H. Sato, S. Sato, I. Yajima, and H. Yamamoto, “Isolation and developmental expression of Mitf in Xenopus laevis,” Dev. Dyn. 230(1), 107–113 (2004).
[CrossRef] [PubMed]

Sato, S.

M. Kumasaka, H. Sato, S. Sato, I. Yajima, and H. Yamamoto, “Isolation and developmental expression of Mitf in Xenopus laevis,” Dev. Dyn. 230(1), 107–113 (2004).
[CrossRef] [PubMed]

Seebohm, G.

J. Morokuma, D. Blackiston, D. S. Adams, G. Seebohm, B. Trimmer, and M. Levin, “Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells,” Proc. Natl. Acad. Sci. U.S.A. 105(43), 16608–16613 (2008).
[CrossRef] [PubMed]

Sengelmann, R. D.

C.-T. Yang, R. D. Sengelmann, and S. L. Johnson, “Larval melanocyte regeneration following laser ablation in zebrafish,” J. Invest. Dermatol. 123(5), 924–929 (2004).
[CrossRef] [PubMed]

Slack, J. M.

J. M. Slack, G. Lin, and Y. Chen, “Molecular and cellular basis of regeneration and tissue repair: the Xenopus tadpole: a new model for regeneration research,” Cell. Mol. Life Sci. 65(1), 54–63 (2008).
[CrossRef] [PubMed]

C. W. Beck and J. M. Slack, “An amphibian with ambition: a new role for Xenopus in the 21st century,” Genome Biol. 2(10), reviews1029.1–reviews1029.5 (2001).
[CrossRef] [PubMed]

Slack, J. M. W.

J. M. W. Slack, C. W. Beck, C. Gargioli, and B. Christen, “Cellular and molecular mechanisms of regeneration in Xenopus,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1445), 745–751 (2004).
[CrossRef] [PubMed]

Sloan, A. E.

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

Steinman, R. M.

R. M. Steinman, “An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis,” Am. J. Anat. 122(1), 19–55 (1968).
[CrossRef] [PubMed]

Strausberg, R. L.

S. L. Klein, R. L. Strausberg, L. Wagner, J. Pontius, S. W. Clifton, and P. Richardson, “Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative,” Dev. Dyn. 225(4), 384–391 (2002).
[CrossRef] [PubMed]

Sugiura, T.

Y. Taniguchi, T. Sugiura, A. Tazaki, K. Watanabe, and M. Mochii, “Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles,” Dev. Growth Differ. 50(2), 109–120 (2008).
[CrossRef] [PubMed]

Supatto, W.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[CrossRef] [PubMed]

Taniguchi, Y.

Y. Taniguchi, T. Sugiura, A. Tazaki, K. Watanabe, and M. Mochii, “Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles,” Dev. Growth Differ. 50(2), 109–120 (2008).
[CrossRef] [PubMed]

Tazaki, A.

Y. Taniguchi, T. Sugiura, A. Tazaki, K. Watanabe, and M. Mochii, “Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles,” Dev. Growth Differ. 50(2), 109–120 (2008).
[CrossRef] [PubMed]

Tomlinson, M. L.

M. L. Tomlinson, P. Guan, R. J. Morris, M. D. Fidock, M. Rejzek, C. Garcia-Morales, R. A. Field, and G. N. Wheeler, “A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration,” Chem. Biol. 16(1), 93–104 (2009).
[CrossRef] [PubMed]

Trimmer, B.

J. Morokuma, D. Blackiston, D. S. Adams, G. Seebohm, B. Trimmer, and M. Levin, “Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells,” Proc. Natl. Acad. Sci. U.S.A. 105(43), 16608–16613 (2008).
[CrossRef] [PubMed]

Tseng, A. S.

A. S. Tseng and M. Levin, “Tail regeneration in Xenopus laevis as a model for understanding tissue repair,” J. Dent. Res. 87(9), 806–816 (2008).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Vogelbaum, M. A.

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

Wagner, L.

S. L. Klein, R. L. Strausberg, L. Wagner, J. Pontius, S. W. Clifton, and P. Richardson, “Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative,” Dev. Dyn. 225(4), 384–391 (2002).
[CrossRef] [PubMed]

Wallingford, J. B.

J. B. Wallingford, “Tumors in tadpoles: the Xenopus embryo as a model system for the study of tumorigenesis,” Trends Genet. 15(10), 385–388 (1999).
[CrossRef] [PubMed]

Wang, Z. B.

Z. B. Wang, M. H. Hong, Y. F. Lu, D. J. Wu, B. Lan, and T. C. Chong, “Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air,” J. Appl. Phys. 93(10), 6375–6380 (2003).
[CrossRef]

Watanabe, K.

Y. Taniguchi, T. Sugiura, A. Tazaki, K. Watanabe, and M. Mochii, “Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles,” Dev. Growth Differ. 50(2), 109–120 (2008).
[CrossRef] [PubMed]

Wheeler, G. N.

M. L. Tomlinson, P. Guan, R. J. Morris, M. D. Fidock, M. Rejzek, C. Garcia-Morales, R. A. Field, and G. N. Wheeler, “A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration,” Chem. Biol. 16(1), 93–104 (2009).
[CrossRef] [PubMed]

Wu, D. J.

Z. B. Wang, M. H. Hong, Y. F. Lu, D. J. Wu, B. Lan, and T. C. Chong, “Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air,” J. Appl. Phys. 93(10), 6375–6380 (2003).
[CrossRef]

Yajima, I.

M. Kumasaka, H. Sato, S. Sato, I. Yajima, and H. Yamamoto, “Isolation and developmental expression of Mitf in Xenopus laevis,” Dev. Dyn. 230(1), 107–113 (2004).
[CrossRef] [PubMed]

Yamamoto, H.

M. Kumasaka, H. Sato, S. Sato, I. Yajima, and H. Yamamoto, “Isolation and developmental expression of Mitf in Xenopus laevis,” Dev. Dyn. 230(1), 107–113 (2004).
[CrossRef] [PubMed]

Yang, C.-T.

C.-T. Yang, R. D. Sengelmann, and S. L. Johnson, “Larval melanocyte regeneration following laser ablation in zebrafish,” J. Invest. Dermatol. 123(5), 924–929 (2004).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Zaremba, A.

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

Am. J. Anat.

R. M. Steinman, “An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis,” Am. J. Anat. 122(1), 19–55 (1968).
[CrossRef] [PubMed]

Appl. Phys. B

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Biomed. Opt. Express

BMC Biotechnol.

V. Kohli and A. Y. Elezzabi, “Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: optimal parameters for exogenous material delivery, and the laser’s effect on short- and long-term development,” BMC Biotechnol. 8(1), 7 (2008).
[CrossRef] [PubMed]

Cell. Mol. Life Sci.

J. M. Slack, G. Lin, and Y. Chen, “Molecular and cellular basis of regeneration and tissue repair: the Xenopus tadpole: a new model for regeneration research,” Cell. Mol. Life Sci. 65(1), 54–63 (2008).
[CrossRef] [PubMed]

Chem. Biol.

M. L. Tomlinson, P. Guan, R. J. Morris, M. D. Fidock, M. Rejzek, C. Garcia-Morales, R. A. Field, and G. N. Wheeler, “A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration,” Chem. Biol. 16(1), 93–104 (2009).
[CrossRef] [PubMed]

Dev. Dyn.

C. W. Beck, J. C. Izpisúa Belmonte, and B. Christen, “Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms,” Dev. Dyn. 238(6), 1226–1248 (2009).
[CrossRef] [PubMed]

S. L. Klein, R. L. Strausberg, L. Wagner, J. Pontius, S. W. Clifton, and P. Richardson, “Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative,” Dev. Dyn. 225(4), 384–391 (2002).
[CrossRef] [PubMed]

J. Green, “Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment,” Dev. Dyn. 225(4), 392–408 (2002).
[CrossRef] [PubMed]

M. Kumasaka, H. Sato, S. Sato, I. Yajima, and H. Yamamoto, “Isolation and developmental expression of Mitf in Xenopus laevis,” Dev. Dyn. 230(1), 107–113 (2004).
[CrossRef] [PubMed]

Dev. Growth Differ.

H. Ogino and H. Ochi, “Resources and transgenesis techniques for functional genomics in Xenopus,” Dev. Growth Differ. 51(4), 387–401 (2009).
[CrossRef] [PubMed]

Y. Taniguchi, T. Sugiura, A. Tazaki, K. Watanabe, and M. Mochii, “Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles,” Dev. Growth Differ. 50(2), 109–120 (2008).
[CrossRef] [PubMed]

Dis Model Mech

D. Blackiston, D. S. Adams, J. M. Lemire, M. Lobikin, and M. Levin, “Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway,” Dis Model Mech 4(1), 67–85 (2011).
[CrossRef] [PubMed]

Genome Biol.

C. W. Beck and J. M. Slack, “An amphibian with ambition: a new role for Xenopus in the 21st century,” Genome Biol. 2(10), reviews1029.1–reviews1029.5 (2001).
[CrossRef] [PubMed]

J. Appl. Phys.

Z. B. Wang, M. H. Hong, Y. F. Lu, D. J. Wu, B. Lan, and T. C. Chong, “Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air,” J. Appl. Phys. 93(10), 6375–6380 (2003).
[CrossRef]

J. Biophotonics

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[CrossRef] [PubMed]

J. Dent. Res.

A. S. Tseng and M. Levin, “Tail regeneration in Xenopus laevis as a model for understanding tissue repair,” J. Dent. Res. 87(9), 806–816 (2008).
[CrossRef] [PubMed]

J. Invest. Dermatol.

C.-T. Yang, R. D. Sengelmann, and S. L. Johnson, “Larval melanocyte regeneration following laser ablation in zebrafish,” J. Invest. Dermatol. 123(5), 924–929 (2004).
[CrossRef] [PubMed]

J. Microsc.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[CrossRef] [PubMed]

Nature

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Neuro-oncol.

A. M. Burgoyne, J. M. Palomo, P. J. Phillips-Mason, S. M. Burden-Gulley, D. L. Major, A. Zaremba, S. Robinson, A. E. Sloan, M. A. Vogelbaum, R. H. Miller, and S. M. Brady-Kalnay, “PTPμ suppresses glioma cell migration and dispersal,” Neuro-oncol. 11(6), 767–778 (2009).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci.

J. M. W. Slack, C. W. Beck, C. Gargioli, and B. Christen, “Cellular and molecular mechanisms of regeneration in Xenopus,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1445), 745–751 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. U.S.A. 102(4), 1047–1052 (2005).
[CrossRef] [PubMed]

J. Morokuma, D. Blackiston, D. S. Adams, G. Seebohm, B. Trimmer, and M. Levin, “Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells,” Proc. Natl. Acad. Sci. U.S.A. 105(43), 16608–16613 (2008).
[CrossRef] [PubMed]

Semin. Cell Dev. Biol.

T. O’Reilly-Pol and S. L. Johnson, “Melanocyte regeneration reveals mechanisms of adult stem cell regulation,” Semin. Cell Dev. Biol. 20(1), 117–124 (2009).
[CrossRef] [PubMed]

Tissue Eng. Part A

D. S. Adams, “A new tool for tissue engineers: ions as regulators of morphogenesis during development and regeneration,” Tissue Eng. Part A 14(9), 1461–1468 (2008).
[CrossRef] [PubMed]

Trends Genet.

J. B. Wallingford, “Tumors in tadpoles: the Xenopus embryo as a model system for the study of tumorigenesis,” Trends Genet. 15(10), 385–388 (1999).
[CrossRef] [PubMed]

Other

P. D. Nieuwkoop and J. Faber, Normal Table of Xenopus laevis (Daudin): a Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis (North-Holland, Amsterdam, 1956).

H. L. Sive, R. M. Grainger, and R. M. Harland, Early Development of Xenopus laevis: a Laboratory Manual (Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY, 2000).

T. H. Morgan, Regeneration (The Macmillan Company, 1901).

J. P. Mondia, M. Levin, F. G. Omenetto, R. D. Orendorff, and D. S. Adams, “Long-distance positional signals are required for normal morphogenesis during regeneration of the Xenopus tadpole tail, as revealed by femtosecond-laser cell ablation along the dorsal axis,” in preparation.

Supplementary Material (2)

» Media 1: MOV (4384 KB)     
» Media 2: MOV (2450 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of femtosecond laser ablation of Xenopus tadpoles. (a) Femtosecond pulses were focused onto the specimens mounted on top of the motorized stage. For laser ablation, Xenopus laevis younger than stage 40 were held between a Petri dish with a glass welled bottom and a cover slip, while older tadpoles were placed inside a depression made of agar, secured with a glass cover slip, and then inverted for placement on the stage. (HWP—half wave plate, PBC—polarizing beam cube, SPF—short pass filter, DM—dichroic mirror, WL—white light source) (b) Images of Xenopus tadpoles at three different developmental stages.

Fig. 2
Fig. 2

(a) Absorption spectrum from a paste made of Xenopus tails and diluted in deionized water. Arrow indicates peak likely due to hemoglobin. The inset plots the absorption spectrum of melanin and oxygenated hemoglobin and the dashed line indicates the laser wavelength. (b) Histology section of undamaged tadpole tail (24 hpa) showing location of the notochord (N), the melanocytes surrounding the spinal cord (SC) and the dorsal muscle (DM). (c) Another section of the same tail where the red arrow points to absence of a melanocyte after laser treatment for one insult, i.e., shutter duration of 200ms and laser fluence of 26 mJ/cm2. (d) Section showing damage to SC and DM after multiple laser insults to melanocytes.

Fig. 3
Fig. 3

Different methods to mark melanocytes. (a) Top image is a melanocyte located on anterior dorsal side of a stage 46 Xenopus before laser ablation and the bottom image shows multiple ablated spots after a laser fluence of 2 mJ/cm2 and a shutter duration of 10 ms. (b) Tagging of individual melanocytes located near the tadpole’s eye with triangles using a fluence of 2 mJ/cm2 and scan speed of 50 µm/s. (c) Before and after images of lines drawn on a dark wild-type stage 36 Xenopus for a 14 mJ/cm2 fluence and 150 µm/s scan speed. The red marker points to a long-lasting cavitation bubble. (d) Top image of melanocyte located on dorsal fin before laser ablation, middle image is the melanocyte after laser irradiation at 26 mJ/cm2 and shutter duration of 200 ms, and the bottom image shows a dark blue coloring of the ablated area, after bathing the Xenopus in the vital stain trypan blue, which indicates cell death.

Fig. 4
Fig. 4

Images of melanocyte migration after clearing a large area of melanocytes using laser ablation (raster scan with line spacing of 5 μm, F = 6 mJ/cm2, scan speed = 150 μm/s). Red arrowheads indicate the position of ablation (a), 19 hrs later (b), and 28 hrs later (c). (d) shows a dorsal image comparing the left (nonablated) and right (ablated) side of the Xenopus 28 hrs after laser ablation.

Fig. 5
Fig. 5

Tail regeneration after targeting the spinal cord. (a) Image of the position where the tail was amputated from a stage 40 Xenopus tadpole. The blue box highlights the region targeted by the laser. (b) Image after targeting laser in 10 locations inside blue box with laser fluence of 26 mJ/cm2 and a 200 ms shutter duration. The dark melanocytes that were targeted are gone. (c) An image showing the same tail after 1 week. (d) The normal shape of a regenerated tail.

Tables (1)

Tables Icon

Table 1 Damage threshold for Xenopus melanocytes located on the head and tail for different stages of growth a

Metrics