N. Engheta and R. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).

[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).

[CrossRef]
[PubMed]

A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92(7), 077401 (2004).

[CrossRef]
[PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[CrossRef]
[PubMed]

Z. Ye, “Optical transmission and reflection of perfect lenses by left handed materials,” Phys. Rev. B 67(19), 193106 (2003).

[CrossRef]

A. Grbic and G. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92(10), 5930–5935 (2002).

[CrossRef]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).

[CrossRef]

K. Volke-Sepulveda, V. Garcés-Chavez, S. Chávez-Cerda, J. Arlt, and D. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).

[CrossRef]
[PubMed]

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 056625 (2001).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).

[CrossRef]
[PubMed]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155(1-3), 169–179 (1998).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized lorenz-mie theory,” Appl. Opt. 37(19), 4218–4225 (1998).

[CrossRef]
[PubMed]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. on-axis beams,” J. Opt. Soc. Am. A 11(9), 2503–2515 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. off-axis beams,” J. Opt. Soc. Am. A 11(9), 2516–2525 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).

[CrossRef]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988).

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic beam,” Phys. Rev. A 30(5), 2508–2516 (1984).

[CrossRef]

G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. (Paris) 13, 97–103 (1982).

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979).

[CrossRef]

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).

[CrossRef]

G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).

[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).

[CrossRef]
[PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime,” Opt. Express 18(23), 24287–24292 (2010).

[CrossRef]
[PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory,” Biomed. Opt. Express 1(5), 1284–1301 (2010).

[CrossRef]
[PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Trapping double negative particles in the ray optics regime using optical tweezers with focused beams,” Opt. Express 17(24), 21918–21924 (2009).

[CrossRef]
[PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Radiation pressure cross-sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” to appear in Appl. Opt.

K. Volke-Sepulveda, V. Garcés-Chavez, S. Chávez-Cerda, J. Arlt, and D. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).

[CrossRef]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).

[CrossRef]

K. Volke-Sepulveda, V. Garcés-Chavez, S. Chávez-Cerda, J. Arlt, and D. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).

[CrossRef]

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic beam,” Phys. Rev. A 30(5), 2508–2516 (1984).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979).

[CrossRef]

K. Volke-Sepulveda, V. Garcés-Chavez, S. Chávez-Cerda, J. Arlt, and D. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).

[CrossRef]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).

[CrossRef]

A. Grbic and G. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92(10), 5930–5935 (2002).

[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).

[CrossRef]
[PubMed]

N. Engheta and R. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).

[CrossRef]

K. Volke-Sepulveda, V. Garcés-Chavez, S. Chávez-Cerda, J. Arlt, and D. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).

[CrossRef]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized lorenz-mie theory,” Appl. Opt. 37(19), 4218–4225 (1998).

[CrossRef]
[PubMed]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155(1-3), 169–179 (1998).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35(15), 2702–2710 (1996).

[CrossRef]
[PubMed]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. off-axis beams,” J. Opt. Soc. Am. A 11(9), 2516–2525 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. on-axis beams,” J. Opt. Soc. Am. A 11(9), 2503–2515 (1994).

[CrossRef]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988).

G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. (Paris) 13, 97–103 (1982).

A. Grbic and G. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92(10), 5930–5935 (2002).

[CrossRef]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155(1-3), 169–179 (1998).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized lorenz-mie theory,” Appl. Opt. 37(19), 4218–4225 (1998).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35(15), 2702–2710 (1996).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994).

[CrossRef]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988).

G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. (Paris) 13, 97–103 (1982).

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[CrossRef]
[PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory,” Biomed. Opt. Express 1(5), 1284–1301 (2010).

[CrossRef]
[PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime,” Opt. Express 18(23), 24287–24292 (2010).

[CrossRef]
[PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Trapping double negative particles in the ray optics regime using optical tweezers with focused beams,” Opt. Express 17(24), 21918–21924 (2009).

[CrossRef]
[PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Radiation pressure cross-sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” to appear in Appl. Opt.

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 056625 (2001).

[CrossRef]
[PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[CrossRef]
[PubMed]

A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92(7), 077401 (2004).

[CrossRef]
[PubMed]

A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92(7), 077401 (2004).

[CrossRef]
[PubMed]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988).

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic beam,” Phys. Rev. A 30(5), 2508–2516 (1984).

[CrossRef]

G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).

[CrossRef]

A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80(1), 013808 (2009).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).

[CrossRef]
[PubMed]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155(1-3), 169–179 (1998).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized lorenz-mie theory,” Appl. Opt. 37(19), 4218–4225 (1998).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35(15), 2702–2710 (1996).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).

[CrossRef]
[PubMed]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).

[CrossRef]

K. Volke-Sepulveda, V. Garcés-Chavez, S. Chávez-Cerda, J. Arlt, and D. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).

[CrossRef]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[CrossRef]
[PubMed]

Z. Ye, “Optical transmission and reflection of perfect lenses by left handed materials,” Phys. Rev. B 67(19), 193106 (2003).

[CrossRef]

N. Engheta and R. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).

[CrossRef]

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 056625 (2001).

[CrossRef]
[PubMed]

G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35(15), 2702–2710 (1996).

[CrossRef]
[PubMed]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized lorenz-mie theory,” Appl. Opt. 37(19), 4218–4225 (1998).

[CrossRef]
[PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Radiation pressure cross-sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” to appear in Appl. Opt.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).

[CrossRef]
[PubMed]

N. Engheta and R. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).

[CrossRef]

A. Grbic and G. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92(10), 5930–5935 (2002).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).

[CrossRef]

G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. (Paris) 13, 97–103 (1982).

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988).

K. Volke-Sepulveda, V. Garcés-Chavez, S. Chávez-Cerda, J. Arlt, and D. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994).

[CrossRef]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155(1-3), 169–179 (1998).

[CrossRef]

A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80(1), 013808 (2009).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979).

[CrossRef]

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic beam,” Phys. Rev. A 30(5), 2508–2516 (1984).

[CrossRef]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).

[CrossRef]

Z. Ye, “Optical transmission and reflection of perfect lenses by left handed materials,” Phys. Rev. B 67(19), 193106 (2003).

[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).

[CrossRef]
[PubMed]

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 056625 (2001).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92(7), 077401 (2004).

[CrossRef]
[PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).

[CrossRef]
[PubMed]

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).

[CrossRef]

N. Engheta and R. Ziolkowski, Metamaterials – Physics and Engineering Explorations (IEEE Press, Wiley-Interscience, John Wiley & Sons, 2006).

C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (IEEE Press, Wiley-Interscience, John Wiley & Sons, 2006).

S. Zouhdi, A. Sihvola, and A. P. Vinogradov, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer, NATO, 2008).

L. A. Ambrosio and H. E. Hernández-Figueroa, “Double-negative optical trapping,” in Biomedical Optics (BIOMED/Digital Holography and Three-Dimensional Imaging) on CD-ROM’10/OSA, BSuD83, Miami, USA, 11–14 April 2010.

K. R. Fen, Diffusion des Faisceaux Feuille Laser par une Particule Sphérique et Applications aux Ecoulements Diphasiques (Ph.D thesis, Faculté des Sciences de L’Université de Rouen, 1995).

L. A. Ambrosio and H. E. Hernández-Figueroa, “Optical torque analysis of double-negative optical trapping with focused Gaussian beams,” in Latin America Optics and Photonics on CD-ROM’10/OSA, Tu05, Recife, Brazil, 27–30 September 2011.

C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, John Wiley & Sons, 1983).