Abstract

We present sub-millimeter wave reflectometry of an experimental rat skin burn model obtained by the Terahertz Time-Domain Spectroscopy (THz-TDS) technique. Full thickness burns, as confirmed by histology, were created on rats (n = 4) euthanized immediately prior to the experiments. Statistical analysis shows that the burned tissue exhibits higher reflectivity compared to normal skin over a frequency range between 0.5 and 0.7 THz (p < 0.05), likely due to post-burn formation of interstitial edema. Furthermore, we demonstrate that a double Debye dielectric relaxation model can be used to explain the terahertz response of both normal and less severely burned rat skin. Finally, our data suggest that the degree of conformation between the experimental burn measurements and the model for normal skin can potentially be used to infer the extent of burn severity.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Gómez and L. C. Cancio, “Management of burn wounds in the emergency department,” Emerg. Med. Clin. North Am. 25(1), 135–146 (2007).
    [CrossRef] [PubMed]
  2. B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005).
    [CrossRef] [PubMed]
  3. J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns 27(4), 364–371 (2001).
    [CrossRef] [PubMed]
  4. M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
    [CrossRef] [PubMed]
  5. H. A. Green, D. Bua, R. R. Anderson, and N. S. Nishioka, “Burn depth estimation using indocyanine green fluorescence,” Arch. Dermatol. 128(1), 43–49 (1992).
    [CrossRef] [PubMed]
  6. M. J. Koruda, A. Zimbler, R. G. Settle, D. O. Jacobs, R. H. Rolandelli, G. L. Wolf, and J. L. Rombeau, “Assessing burn wound depth using in vitro nuclear magnetic resonance (NMR),” J. Surg. Res. 40(5), 475–481 (1986).
    [CrossRef] [PubMed]
  7. A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
    [CrossRef] [PubMed]
  8. S. Iraniha, M. E. Cinat, V. M. VanderKam, A. Boyko, D. Lee, J. Jones, and B. M. Achauer, “Determination of burn depth with noncontact ultrasonography,” J. Burn Care Rehabil. 21(4), 333–338 (2000).
    [CrossRef] [PubMed]
  9. A. Papp, T. Lahtinen, M. Härmä, J. Nuutinen, A. Uusaro, and E. Alhava, “Dielectric measurement in experimental burns: a new tool for burn depth determination?” Plast. Reconstr. Surg. 117(3), 889–898 (2006).
    [CrossRef] [PubMed]
  10. S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
    [CrossRef] [PubMed]
  11. M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
    [CrossRef] [PubMed]
  12. K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
    [CrossRef] [PubMed]
  13. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [CrossRef]
  14. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
    [CrossRef]
  15. A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29(2/3), 123–128 (2003).
    [CrossRef]
  16. E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
    [CrossRef]
  17. E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
    [CrossRef] [PubMed]
  18. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
    [CrossRef]
  19. Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett. 33(11), 1258–1260 (2008).
    [CrossRef] [PubMed]
  20. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523–3525 (1995).
    [CrossRef]
  21. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
    [CrossRef]
  22. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
    [CrossRef] [PubMed]
  23. J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100(24), 10373–10379 (1996).
    [CrossRef]
  24. T. W. Panke and C. G. McLeod, Pathology of Thermal Injury: a Practical Approach (Grune & Stratton, 1985).
  25. A. M. I. Watts, M. P. H. Tyler, M. E. Perry, A. H. N. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
    [CrossRef] [PubMed]

2011

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

2010

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[CrossRef] [PubMed]

2008

2007

R. Gómez and L. C. Cancio, “Management of burn wounds in the emergency department,” Emerg. Med. Clin. North Am. 25(1), 135–146 (2007).
[CrossRef] [PubMed]

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[CrossRef] [PubMed]

2006

A. Papp, T. Lahtinen, M. Härmä, J. Nuutinen, A. Uusaro, and E. Alhava, “Dielectric measurement in experimental burns: a new tool for burn depth determination?” Plast. Reconstr. Surg. 117(3), 889–898 (2006).
[CrossRef] [PubMed]

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[CrossRef] [PubMed]

2005

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005).
[CrossRef] [PubMed]

2004

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[CrossRef] [PubMed]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

2003

A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29(2/3), 123–128 (2003).
[CrossRef]

2002

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

2001

A. M. I. Watts, M. P. H. Tyler, M. E. Perry, A. H. N. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[CrossRef] [PubMed]

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns 27(4), 364–371 (2001).
[CrossRef] [PubMed]

2000

S. Iraniha, M. E. Cinat, V. M. VanderKam, A. Boyko, D. Lee, J. Jones, and B. M. Achauer, “Determination of burn depth with noncontact ultrasonography,” J. Burn Care Rehabil. 21(4), 333–338 (2000).
[CrossRef] [PubMed]

1999

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

1996

J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100(24), 10373–10379 (1996).
[CrossRef]

1995

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523–3525 (1995).
[CrossRef]

1992

H. A. Green, D. Bua, R. R. Anderson, and N. S. Nishioka, “Burn depth estimation using indocyanine green fluorescence,” Arch. Dermatol. 128(1), 43–49 (1992).
[CrossRef] [PubMed]

1988

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[CrossRef] [PubMed]

1986

M. J. Koruda, A. Zimbler, R. G. Settle, D. O. Jacobs, R. H. Rolandelli, G. L. Wolf, and J. L. Rombeau, “Assessing burn wound depth using in vitro nuclear magnetic resonance (NMR),” J. Surg. Res. 40(5), 475–481 (1986).
[CrossRef] [PubMed]

Achauer, B. M.

S. Iraniha, M. E. Cinat, V. M. VanderKam, A. Boyko, D. Lee, J. Jones, and B. M. Achauer, “Determination of burn depth with noncontact ultrasonography,” J. Burn Care Rehabil. 21(4), 333–338 (2000).
[CrossRef] [PubMed]

Afromowitz, M. A.

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[CrossRef] [PubMed]

Alhava, E.

A. Papp, T. Lahtinen, M. Härmä, J. Nuutinen, A. Uusaro, and E. Alhava, “Dielectric measurement in experimental burns: a new tool for burn depth determination?” Plast. Reconstr. Surg. 117(3), 889–898 (2006).
[CrossRef] [PubMed]

Anderson, R. R.

H. A. Green, D. Bua, R. R. Anderson, and N. S. Nishioka, “Burn depth estimation using indocyanine green fluorescence,” Arch. Dermatol. 128(1), 43–49 (1992).
[CrossRef] [PubMed]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Atiyeh, B. S.

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005).
[CrossRef] [PubMed]

Baraniuk, R. G.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Berry, E.

A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29(2/3), 123–128 (2003).
[CrossRef]

Boyko, A.

S. Iraniha, M. E. Cinat, V. M. VanderKam, A. Boyko, D. Lee, J. Jones, and B. M. Achauer, “Determination of burn depth with noncontact ultrasonography,” J. Burn Care Rehabil. 21(4), 333–338 (2000).
[CrossRef] [PubMed]

Brown, E. R.

Bua, D.

H. A. Green, D. Bua, R. R. Anderson, and N. S. Nishioka, “Burn depth estimation using indocyanine green fluorescence,” Arch. Dermatol. 128(1), 43–49 (1992).
[CrossRef] [PubMed]

Callis, J. B.

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[CrossRef] [PubMed]

Cancio, L. C.

R. Gómez and L. C. Cancio, “Management of burn wounds in the emergency department,” Emerg. Med. Clin. North Am. 25(1), 135–146 (2007).
[CrossRef] [PubMed]

Chamberlain, J. M.

A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29(2/3), 123–128 (2003).
[CrossRef]

Chen, Z.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[CrossRef] [PubMed]

Cinat, M. E.

S. Iraniha, M. E. Cinat, V. M. VanderKam, A. Boyko, D. Lee, J. Jones, and B. M. Achauer, “Determination of burn depth with noncontact ultrasonography,” J. Burn Care Rehabil. 21(4), 333–338 (2000).
[CrossRef] [PubMed]

Cole, B. E.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

Cross, K. M.

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[CrossRef] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[CrossRef] [PubMed]

Culjat, M. O.

de Boer, J. F.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[CrossRef] [PubMed]

DeSoto, L. A.

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[CrossRef] [PubMed]

Fish, J. S.

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[CrossRef] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[CrossRef] [PubMed]

Fitzgerald, A. J.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29(2/3), 123–128 (2003).
[CrossRef]

Gomez, M.

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[CrossRef] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[CrossRef] [PubMed]

Gómez, R.

R. Gómez and L. C. Cancio, “Management of burn wounds in the emergency department,” Emerg. Med. Clin. North Am. 25(1), 135–146 (2007).
[CrossRef] [PubMed]

Green, H. A.

H. A. Green, D. Bua, R. R. Anderson, and N. S. Nishioka, “Burn depth estimation using indocyanine green fluorescence,” Arch. Dermatol. 128(1), 43–49 (1992).
[CrossRef] [PubMed]

Grundfest, W. S.

Gunn, S. W.

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005).
[CrossRef] [PubMed]

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Härmä, M.

A. Papp, T. Lahtinen, M. Härmä, J. Nuutinen, A. Uusaro, and E. Alhava, “Dielectric measurement in experimental burns: a new tool for burn depth determination?” Plast. Reconstr. Surg. 117(3), 889–898 (2006).
[CrossRef] [PubMed]

Hayek, S. N.

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005).
[CrossRef] [PubMed]

Heimbach, D. M.

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[CrossRef] [PubMed]

Holtz, J. Z.

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns 27(4), 364–371 (2001).
[CrossRef] [PubMed]

Homer-Vanniasinkam, S.

A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29(2/3), 123–128 (2003).
[CrossRef]

Huang, H. E.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[CrossRef] [PubMed]

Iraniha, S.

S. Iraniha, M. E. Cinat, V. M. VanderKam, A. Boyko, D. Lee, J. Jones, and B. M. Achauer, “Determination of burn depth with noncontact ultrasonography,” J. Burn Care Rehabil. 21(4), 333–338 (2000).
[CrossRef] [PubMed]

Island, T. C.

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns 27(4), 364–371 (2001).
[CrossRef] [PubMed]

Jacobs, D. O.

M. J. Koruda, A. Zimbler, R. G. Settle, D. O. Jacobs, R. H. Rolandelli, G. L. Wolf, and J. L. Rombeau, “Assessing burn wound depth using in vitro nuclear magnetic resonance (NMR),” J. Surg. Res. 40(5), 475–481 (1986).
[CrossRef] [PubMed]

Jaskille, A. D.

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[CrossRef] [PubMed]

Jeng, J. C.

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[CrossRef] [PubMed]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

Jones, J.

S. Iraniha, M. E. Cinat, V. M. VanderKam, A. Boyko, D. Lee, J. Jones, and B. M. Achauer, “Determination of burn depth with noncontact ultrasonography,” J. Burn Care Rehabil. 21(4), 333–338 (2000).
[CrossRef] [PubMed]

Jordan, M. H.

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[CrossRef] [PubMed]

Jung, W. Q.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[CrossRef] [PubMed]

Keikhanzadeh, K.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[CrossRef] [PubMed]

Kindt, J. T.

J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100(24), 10373–10379 (1996).
[CrossRef]

Klavuhn, K. G.

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns 27(4), 364–371 (2001).
[CrossRef] [PubMed]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Koruda, M. J.

M. J. Koruda, A. Zimbler, R. G. Settle, D. O. Jacobs, R. H. Rolandelli, G. L. Wolf, and J. L. Rombeau, “Assessing burn wound depth using in vitro nuclear magnetic resonance (NMR),” J. Surg. Res. 40(5), 475–481 (1986).
[CrossRef] [PubMed]

Lahtinen, T.

A. Papp, T. Lahtinen, M. Härmä, J. Nuutinen, A. Uusaro, and E. Alhava, “Dielectric measurement in experimental burns: a new tool for burn depth determination?” Plast. Reconstr. Surg. 117(3), 889–898 (2006).
[CrossRef] [PubMed]

Law, E. J.

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns 27(4), 364–371 (2001).
[CrossRef] [PubMed]

Lee, D.

S. Iraniha, M. E. Cinat, V. M. VanderKam, A. Boyko, D. Lee, J. Jones, and B. M. Achauer, “Determination of burn depth with noncontact ultrasonography,” J. Burn Care Rehabil. 21(4), 333–338 (2000).
[CrossRef] [PubMed]

Lee, H.

Leonardi, L.

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[CrossRef] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[CrossRef] [PubMed]

Levasseur, M. A.

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[CrossRef] [PubMed]

Linfield, E. H.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

McGrouther, D. A.

A. M. I. Watts, M. P. H. Tyler, M. E. Perry, A. H. N. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[CrossRef] [PubMed]

Miles, R. E.

A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29(2/3), 123–128 (2003).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Nelson, J. S.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[CrossRef] [PubMed]

Nishioka, N. S.

H. A. Green, D. Bua, R. R. Anderson, and N. S. Nishioka, “Burn depth estimation using indocyanine green fluorescence,” Arch. Dermatol. 128(1), 43–49 (1992).
[CrossRef] [PubMed]

Norton, M. K.

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[CrossRef] [PubMed]

Nuutinen, J.

A. Papp, T. Lahtinen, M. Härmä, J. Nuutinen, A. Uusaro, and E. Alhava, “Dielectric measurement in experimental burns: a new tool for burn depth determination?” Plast. Reconstr. Surg. 117(3), 889–898 (2006).
[CrossRef] [PubMed]

Papp, A.

A. Papp, T. Lahtinen, M. Härmä, J. Nuutinen, A. Uusaro, and E. Alhava, “Dielectric measurement in experimental burns: a new tool for burn depth determination?” Plast. Reconstr. Surg. 117(3), 889–898 (2006).
[CrossRef] [PubMed]

Park, H.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[CrossRef] [PubMed]

Payette, J. R.

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[CrossRef] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[CrossRef] [PubMed]

Pepper, M.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Perry, M. E.

A. M. I. Watts, M. P. H. Tyler, M. E. Perry, A. H. N. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[CrossRef] [PubMed]

Pickwell, E.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Ramella-Roman, J. C.

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[CrossRef] [PubMed]

Roberts, A. H. N.

A. M. I. Watts, M. P. H. Tyler, M. E. Perry, A. H. N. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[CrossRef] [PubMed]

Rolandelli, R. H.

M. J. Koruda, A. Zimbler, R. G. Settle, D. O. Jacobs, R. H. Rolandelli, G. L. Wolf, and J. L. Rombeau, “Assessing burn wound depth using in vitro nuclear magnetic resonance (NMR),” J. Surg. Res. 40(5), 475–481 (1986).
[CrossRef] [PubMed]

Rombeau, J. L.

M. J. Koruda, A. Zimbler, R. G. Settle, D. O. Jacobs, R. H. Rolandelli, G. L. Wolf, and J. L. Rombeau, “Assessing burn wound depth using in vitro nuclear magnetic resonance (NMR),” J. Surg. Res. 40(5), 475–481 (1986).
[CrossRef] [PubMed]

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Schattka, B. J.

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[CrossRef] [PubMed]

Schmuttenmaer, C. A.

J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100(24), 10373–10379 (1996).
[CrossRef]

Settle, R. G.

M. J. Koruda, A. Zimbler, R. G. Settle, D. O. Jacobs, R. H. Rolandelli, G. L. Wolf, and J. L. Rombeau, “Assessing burn wound depth using in vitro nuclear magnetic resonance (NMR),” J. Surg. Res. 40(5), 475–481 (1986).
[CrossRef] [PubMed]

Shupp, J. W.

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[CrossRef] [PubMed]

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

Singh, R. S.

Smith, M. A.

A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29(2/3), 123–128 (2003).
[CrossRef]

Sowa, M. G.

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[CrossRef] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[CrossRef] [PubMed]

Srinivas, S. M.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[CrossRef] [PubMed]

Still, J. M.

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns 27(4), 364–371 (2001).
[CrossRef] [PubMed]

Suen, J. Y.

Taylor, Z. D.

Tyler, M. P. H.

A. M. I. Watts, M. P. H. Tyler, M. E. Perry, A. H. N. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[CrossRef] [PubMed]

Uusaro, A.

A. Papp, T. Lahtinen, M. Härmä, J. Nuutinen, A. Uusaro, and E. Alhava, “Dielectric measurement in experimental burns: a new tool for burn depth determination?” Plast. Reconstr. Surg. 117(3), 889–898 (2006).
[CrossRef] [PubMed]

VanderKam, V. M.

S. Iraniha, M. E. Cinat, V. M. VanderKam, A. Boyko, D. Lee, J. Jones, and B. M. Achauer, “Determination of burn depth with noncontact ultrasonography,” J. Burn Care Rehabil. 21(4), 333–338 (2000).
[CrossRef] [PubMed]

Wallace, V. P.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Watts, A. M. I.

A. M. I. Watts, M. P. H. Tyler, M. E. Perry, A. H. N. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[CrossRef] [PubMed]

Wolf, G. L.

M. J. Koruda, A. Zimbler, R. G. Settle, D. O. Jacobs, R. H. Rolandelli, G. L. Wolf, and J. L. Rombeau, “Assessing burn wound depth using in vitro nuclear magnetic resonance (NMR),” J. Surg. Res. 40(5), 475–481 (1986).
[CrossRef] [PubMed]

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Wu, Q.

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523–3525 (1995).
[CrossRef]

Zhang, J.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[CrossRef] [PubMed]

Zhang, X.-C.

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523–3525 (1995).
[CrossRef]

Zimbler, A.

M. J. Koruda, A. Zimbler, R. G. Settle, D. O. Jacobs, R. H. Rolandelli, G. L. Wolf, and J. L. Rombeau, “Assessing burn wound depth using in vitro nuclear magnetic resonance (NMR),” J. Surg. Res. 40(5), 475–481 (1986).
[CrossRef] [PubMed]

Zinov’ev, N. N.

A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29(2/3), 123–128 (2003).
[CrossRef]

Appl. Phys. B

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Appl. Phys. Lett.

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523–3525 (1995).
[CrossRef]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

Arch. Dermatol.

H. A. Green, D. Bua, R. R. Anderson, and N. S. Nishioka, “Burn depth estimation using indocyanine green fluorescence,” Arch. Dermatol. 128(1), 43–49 (1992).
[CrossRef] [PubMed]

Burns

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns 27(4), 364–371 (2001).
[CrossRef] [PubMed]

A. M. I. Watts, M. P. H. Tyler, M. E. Perry, A. H. N. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[CrossRef] [PubMed]

Emerg. Med. Clin. North Am.

R. Gómez and L. C. Cancio, “Management of burn wounds in the emergency department,” Emerg. Med. Clin. North Am. 25(1), 135–146 (2007).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng.

M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988).
[CrossRef] [PubMed]

IEEE Trans. Microw. Theory Tech.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

J. Biol. Phys.

A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29(2/3), 123–128 (2003).
[CrossRef]

J. Biomed. Opt.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[CrossRef] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[CrossRef] [PubMed]

J. Burn Care Rehabil.

S. Iraniha, M. E. Cinat, V. M. VanderKam, A. Boyko, D. Lee, J. Jones, and B. M. Achauer, “Determination of burn depth with noncontact ultrasonography,” J. Burn Care Rehabil. 21(4), 333–338 (2000).
[CrossRef] [PubMed]

J. Burn Care Res.

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[CrossRef] [PubMed]

J. Phys. Chem.

J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100(24), 10373–10379 (1996).
[CrossRef]

J. Phys. D Appl. Phys.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

J. Surg. Res.

M. J. Koruda, A. Zimbler, R. G. Settle, D. O. Jacobs, R. H. Rolandelli, G. L. Wolf, and J. L. Rombeau, “Assessing burn wound depth using in vitro nuclear magnetic resonance (NMR),” J. Surg. Res. 40(5), 475–481 (1986).
[CrossRef] [PubMed]

Laser Photon. Rev.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

Plast. Reconstr. Surg.

A. Papp, T. Lahtinen, M. Härmä, J. Nuutinen, A. Uusaro, and E. Alhava, “Dielectric measurement in experimental burns: a new tool for burn depth determination?” Plast. Reconstr. Surg. 117(3), 889–898 (2006).
[CrossRef] [PubMed]

World J. Surg.

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005).
[CrossRef] [PubMed]

Wound Repair Regen.

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[CrossRef] [PubMed]

Other

T. W. Panke and C. G. McLeod, Pathology of Thermal Injury: a Practical Approach (Grune & Stratton, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Image of a 100C, 30 second burn, along with a sample histological cross section of (b) normal and (c) burned skin confirms the existence of a 3rd degree burn. Note that post-burn edema is evident in (a) as well as the reduction in the number and size of discrete normal skin structures (marked) in burned skin relative to normal skin.

Fig. 2
Fig. 2

Representative terahertz time-domain reflection measurement from normal and burned skin after removal of the baseline interference waveform, along with the Differential Reference. Inset: normalized FFT Spectral Amplitudes (S.A.) of the same time-domain signals.

Fig. 3
Fig. 3

(a) Histogram of the average and standard deviation of the reflection spectral amplitudes from normal and burned skin at four frequency points. The observed contrast is statistically significant (p < 0.05) at 0.5, 0.6, and 0.7 THz. (b) The whisker plot represents the normalized difference between terahertz reflectivity of burned and normal skin.

Fig. 4
Fig. 4

Left column panels plot the Fourier amplitudes of the experimental terahertz reflectivity of normal (dotted blue lines) and burned tissue (dotted red lines). The solid lines show the double Debye model fits. Right column shows the calculated absorption coefficient for each burned and normal sample from the model parameters.

Fig. 5
Fig. 5

Histological section images of normal (control experiment) and 100C, 30 second burn injuries are shown along with their respective outputs of the image processing routine.

Fig. 6
Fig. 6

Comparison between the severity of the burn injuries, as indicated by the density of intact skin structures, and the degree of conformation of the experimental results to the double Debye model. The vertical axis is dimensionless (see text).

Tables (1)

Tables Icon

Table 1 Double Debye Parameters for Water, Healthy Human and Rat Skin

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r b r n r n × 100 ,
ε ^ ( ω ) = ε + ε s ε 2 1 + i ω τ 1 + ε 2 ε 1 + i ω τ 2 ,
e r r o r = f ( | r exp | | r model | ) 2 σ 2 ,

Metrics