Abstract

By scanning biological tissues in vivo and in vitro with optical coherence tomography, it is found that liquid paraffin can enhance the percutaneous penetration of glycerol in deep layers of tissue and take synergistically optical clearing effect with glycerol. It is shown from experimental results that 30% - 50% liquid paraffin glycerol solutions have the best enhancement effect. Considering the refractive index of liquid paraffin and its medicinal value, we think liquid paraffin will play an important role in optical clearing as the penetration enhancer of glycerol in future clinical research.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Wang and V. V. Tuchin, “Optical tissue clearing to enhance imaging performance for OCT,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds., (Springer, 2008).
  2. V. V. Tuchin, “Optical clearing of tissues and blood using the immersion method,” J. Phys. D Appl. Phys. 38(15), 2497–2518 (2005).
    [CrossRef]
  3. L. V. Wang and H. Wu, in Biomedical Optics: Principles and Imaging (John Wiley & Sons, Inc., 2007), Chap. 2 & Chap. 5.
  4. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007), Chap. 1.
  5. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010).
    [CrossRef] [PubMed]
  6. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
    [CrossRef]
  7. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31(10), 1370–1376 (1992).
    [CrossRef] [PubMed]
  8. E. A. Sharkov, Passive Microwave Remote Sensing of the Earth: Physical Foundations (Springer, 2003), Chap. 9.
  9. I. V. Meglinskii and A. N. Korolevich, “Use of diffusion wave spectroscopy in diagnostics of blood,” J. Appl. Spectrosc. 67(4), 709–716 (2000).
    [CrossRef]
  10. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
    [CrossRef] [PubMed]
  11. D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
    [CrossRef] [PubMed]
  12. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
    [CrossRef] [PubMed]
  13. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
    [CrossRef] [PubMed]
  14. G. Vargas, E. K. Chan, J. K. Barton, and H. G. Rylander III, andA. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
    [CrossRef] [PubMed]
  15. R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18(7), 948–953 (2001).
    [CrossRef]
  16. J. W. Fluhr, R. Darlenski, and C. Surber, “Glycerol and the skin: holistic approach to its origin and functions,” Br. J. Dermatol. 159(1), 23–34 (2008).
    [CrossRef] [PubMed]
  17. C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
    [CrossRef] [PubMed]
  18. V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE, 2006), Chap. 8.
  19. A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
    [CrossRef] [PubMed]
  20. J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Collagen solubility correlates with skin optical clearing,” J. Biomed. Opt. 11(4), 040501 (2006).
    [CrossRef] [PubMed]
  21. J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Correlation between collagen solubility and skin optical clearing using sugars,” Lasers Surg. Med. 39(2), 140–144 (2007).
    [CrossRef] [PubMed]
  22. X. Xu and Q. Zhu, “Feasibility of sonophoretic delivery for effective skin optical clearing,” IEEE Trans. Biomed. Eng. 55(4), 1432–1437 (2008).
    [CrossRef] [PubMed]
  23. M. H. Khan, B. Choi, S. Chess, K. M. Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
    [CrossRef] [PubMed]
  24. X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J Biophotonics 3(1-2), 44–52 (2010).
    [CrossRef] [PubMed]
  25. J. Jiang and R. K. Wang, “Comparing the synergistic effects of oleic acid and dimethyl sulfoxide as vehicles for optical clearing of skin tissue in vitro,” Phys. Med. Biol. 49(23), 5283–5294 (2004).
    [CrossRef] [PubMed]
  26. X. Xu and Q. Zhu, “Evaluation of skin optical clearing enhancement with Azone as a penetration enhancer,” Opt. Commun. 279(1), 223–228 (2007).
    [CrossRef]
  27. X. Xu and R. K. Wang, “The role of water desorption on optical clearing of biotissue: Studied with near infrared reflectance spectroscopy,” Med. Phys. 30(6), 1246–1253 (2003).
    [CrossRef] [PubMed]
  28. X. Xu and R. K. Wang, “Synergistic effect of hyperosmotic agents of dimethyl sulfoxide and glycerol on optical clearing of gastric tissue studied with near infrared spectroscopy,” Phys. Med. Biol. 49(3), 457–468 (2004).
    [CrossRef] [PubMed]
  29. M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 103(15), 1999–2003 (2001).
    [PubMed]
  30. V. V. Tuchin, “A clear vision for laser diagnostics,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1621–1628 (2007).
    [CrossRef]
  31. M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Depth-resolved monitoring of glucose diffusion in tissues by using optical coherence tomography,” Opt. Lett. 31(15), 2314–2316 (2006).
    [CrossRef] [PubMed]
  32. M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J Biophotonics 3(1-2), 25–33 (2010).
    [CrossRef] [PubMed]
  33. N. Sudheendran, M. Mohamed, M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography,” J. Innov. Opt. Health Sci. 3(3), 169–176 (2010).
    [CrossRef] [PubMed]
  34. F. Sharif, E. Crushell, K. O’Driscoll, and B. Bourke, “Liquid paraffin: a reappraisal of its role in the treatment of constipation,” Arch. Dis. Child. 85(2), 121–124 (2001).
    [CrossRef] [PubMed]
  35. Y. Wang, Y. Liang, J. Wang, and S. Zhang, “Image improvement in the wavelet domain for optical coherence tomograms,” J. Innov. Opt. Health Sci. 4(1), 73–78 (2011).
    [CrossRef]
  36. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
    [CrossRef] [PubMed]

2011 (1)

Y. Wang, Y. Liang, J. Wang, and S. Zhang, “Image improvement in the wavelet domain for optical coherence tomograms,” J. Innov. Opt. Health Sci. 4(1), 73–78 (2011).
[CrossRef]

2010 (4)

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J Biophotonics 3(1-2), 25–33 (2010).
[CrossRef] [PubMed]

N. Sudheendran, M. Mohamed, M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography,” J. Innov. Opt. Health Sci. 3(3), 169–176 (2010).
[CrossRef] [PubMed]

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J Biophotonics 3(1-2), 44–52 (2010).
[CrossRef] [PubMed]

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010).
[CrossRef] [PubMed]

2008 (2)

J. W. Fluhr, R. Darlenski, and C. Surber, “Glycerol and the skin: holistic approach to its origin and functions,” Br. J. Dermatol. 159(1), 23–34 (2008).
[CrossRef] [PubMed]

X. Xu and Q. Zhu, “Feasibility of sonophoretic delivery for effective skin optical clearing,” IEEE Trans. Biomed. Eng. 55(4), 1432–1437 (2008).
[CrossRef] [PubMed]

2007 (3)

J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Correlation between collagen solubility and skin optical clearing using sugars,” Lasers Surg. Med. 39(2), 140–144 (2007).
[CrossRef] [PubMed]

X. Xu and Q. Zhu, “Evaluation of skin optical clearing enhancement with Azone as a penetration enhancer,” Opt. Commun. 279(1), 223–228 (2007).
[CrossRef]

V. V. Tuchin, “A clear vision for laser diagnostics,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1621–1628 (2007).
[CrossRef]

2006 (4)

M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Depth-resolved monitoring of glucose diffusion in tissues by using optical coherence tomography,” Opt. Lett. 31(15), 2314–2316 (2006).
[CrossRef] [PubMed]

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[CrossRef] [PubMed]

J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Collagen solubility correlates with skin optical clearing,” J. Biomed. Opt. 11(4), 040501 (2006).
[CrossRef] [PubMed]

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[CrossRef] [PubMed]

2005 (1)

V. V. Tuchin, “Optical clearing of tissues and blood using the immersion method,” J. Phys. D Appl. Phys. 38(15), 2497–2518 (2005).
[CrossRef]

2004 (3)

M. H. Khan, B. Choi, S. Chess, K. M. Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[CrossRef] [PubMed]

X. Xu and R. K. Wang, “Synergistic effect of hyperosmotic agents of dimethyl sulfoxide and glycerol on optical clearing of gastric tissue studied with near infrared spectroscopy,” Phys. Med. Biol. 49(3), 457–468 (2004).
[CrossRef] [PubMed]

J. Jiang and R. K. Wang, “Comparing the synergistic effects of oleic acid and dimethyl sulfoxide as vehicles for optical clearing of skin tissue in vitro,” Phys. Med. Biol. 49(23), 5283–5294 (2004).
[CrossRef] [PubMed]

2003 (2)

X. Xu and R. K. Wang, “The role of water desorption on optical clearing of biotissue: Studied with near infrared reflectance spectroscopy,” Med. Phys. 30(6), 1246–1253 (2003).
[CrossRef] [PubMed]

A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
[CrossRef] [PubMed]

2002 (1)

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

2001 (3)

R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18(7), 948–953 (2001).
[CrossRef]

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 103(15), 1999–2003 (2001).
[PubMed]

F. Sharif, E. Crushell, K. O’Driscoll, and B. Bourke, “Liquid paraffin: a reappraisal of its role in the treatment of constipation,” Arch. Dis. Child. 85(2), 121–124 (2001).
[CrossRef] [PubMed]

2000 (1)

I. V. Meglinskii and A. N. Korolevich, “Use of diffusion wave spectroscopy in diagnostics of blood,” J. Appl. Spectrosc. 67(4), 709–716 (2000).
[CrossRef]

1999 (2)

G. Vargas, E. K. Chan, J. K. Barton, and H. G. Rylander III, andA. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[CrossRef] [PubMed]

G. Vargas, E. K. Chan, J. K. Barton, and H. G. Rylander III, andA. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[CrossRef] [PubMed]

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
[CrossRef] [PubMed]

1998 (1)

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[CrossRef] [PubMed]

1997 (1)

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[CrossRef]

1992 (1)

1988 (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Aarnoudse, J. G.

Barton, J. K.

G. Vargas, E. K. Chan, J. K. Barton, and H. G. Rylander III, andA. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[CrossRef] [PubMed]

Bashkatov, A. N.

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010).
[CrossRef] [PubMed]

Bourke, B.

F. Sharif, E. Crushell, K. O’Driscoll, and B. Bourke, “Liquid paraffin: a reappraisal of its role in the treatment of constipation,” Arch. Dis. Child. 85(2), 121–124 (2001).
[CrossRef] [PubMed]

Brezinski, M.

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 103(15), 1999–2003 (2001).
[PubMed]

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Chan, E. K.

G. Vargas, E. K. Chan, J. K. Barton, and H. G. Rylander III, andA. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[CrossRef] [PubMed]

Chen, Z.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[CrossRef] [PubMed]

Chess, S.

M. H. Khan, B. Choi, S. Chess, K. M. Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[CrossRef] [PubMed]

Choi, B.

J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Correlation between collagen solubility and skin optical clearing using sugars,” Lasers Surg. Med. 39(2), 140–144 (2007).
[CrossRef] [PubMed]

J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Collagen solubility correlates with skin optical clearing,” J. Biomed. Opt. 11(4), 040501 (2006).
[CrossRef] [PubMed]

M. H. Khan, B. Choi, S. Chess, K. M. Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[CrossRef] [PubMed]

A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
[CrossRef] [PubMed]

Crushell, E.

F. Sharif, E. Crushell, K. O’Driscoll, and B. Bourke, “Liquid paraffin: a reappraisal of its role in the treatment of constipation,” Arch. Dis. Child. 85(2), 121–124 (2001).
[CrossRef] [PubMed]

Darlenski, R.

J. W. Fluhr, R. Darlenski, and C. Surber, “Glycerol and the skin: holistic approach to its origin and functions,” Br. J. Dermatol. 159(1), 23–34 (2008).
[CrossRef] [PubMed]

de Mul, F. F. M.

Diller, K. R.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[CrossRef] [PubMed]

Ding, H.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[CrossRef] [PubMed]

Elder, J. B.

Fluhr, J. W.

J. W. Fluhr, R. Darlenski, and C. Surber, “Glycerol and the skin: holistic approach to its origin and functions,” Br. J. Dermatol. 159(1), 23–34 (2008).
[CrossRef] [PubMed]

Fujimoto, J.

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 103(15), 1999–2003 (2001).
[PubMed]

Genina, E. A.

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010).
[CrossRef] [PubMed]

Ghosn, M. G.

N. Sudheendran, M. Mohamed, M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography,” J. Innov. Opt. Health Sci. 3(3), 169–176 (2010).
[CrossRef] [PubMed]

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J Biophotonics 3(1-2), 25–33 (2010).
[CrossRef] [PubMed]

M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Depth-resolved monitoring of glucose diffusion in tissues by using optical coherence tomography,” Opt. Lett. 31(15), 2314–2316 (2006).
[CrossRef] [PubMed]

Glasser, A.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J Biophotonics 3(1-2), 25–33 (2010).
[CrossRef] [PubMed]

Graaff, R.

Greve, J.

Han, Z.

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J Biophotonics 3(1-2), 44–52 (2010).
[CrossRef] [PubMed]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Hirshburg, J.

J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Correlation between collagen solubility and skin optical clearing using sugars,” Lasers Surg. Med. 39(2), 140–144 (2007).
[CrossRef] [PubMed]

J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Collagen solubility correlates with skin optical clearing,” J. Biomed. Opt. 11(4), 040501 (2006).
[CrossRef] [PubMed]

Hu, X. H.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[CrossRef] [PubMed]

Jesser, C.

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 103(15), 1999–2003 (2001).
[PubMed]

Jiang, J.

J. Jiang and R. K. Wang, “Comparing the synergistic effects of oleic acid and dimethyl sulfoxide as vehicles for optical clearing of skin tissue in vitro,” Phys. Med. Biol. 49(23), 5283–5294 (2004).
[CrossRef] [PubMed]

Kemp, N. J.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[CrossRef] [PubMed]

Khan, M. H.

M. H. Khan, B. Choi, S. Chess, K. M. Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[CrossRef] [PubMed]

Koelink, M. H.

Kon, I. L.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[CrossRef]

Korolevich, A. N.

I. V. Meglinskii and A. N. Korolevich, “Use of diffusion wave spectroscopy in diagnostics of blood,” J. Appl. Spectrosc. 67(4), 709–716 (2000).
[CrossRef]

Kragel, P. J.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[CrossRef] [PubMed]

Larin, K. V.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J Biophotonics 3(1-2), 25–33 (2010).
[CrossRef] [PubMed]

N. Sudheendran, M. Mohamed, M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography,” J. Innov. Opt. Health Sci. 3(3), 169–176 (2010).
[CrossRef] [PubMed]

M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Depth-resolved monitoring of glucose diffusion in tissues by using optical coherence tomography,” Opt. Lett. 31(15), 2314–2316 (2006).
[CrossRef] [PubMed]

Li, X.

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 103(15), 1999–2003 (2001).
[PubMed]

Liang, Y.

Y. Wang, Y. Liang, J. Wang, and S. Zhang, “Image improvement in the wavelet domain for optical coherence tomograms,” J. Innov. Opt. Health Sci. 4(1), 73–78 (2011).
[CrossRef]

Lindmo, T.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[CrossRef] [PubMed]

Lu, J. Q.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[CrossRef] [PubMed]

M. Kelly, K.

M. H. Khan, B. Choi, S. Chess, K. M. Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[CrossRef] [PubMed]

Maksimova, I. L.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[CrossRef]

Mao, Z.

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J Biophotonics 3(1-2), 44–52 (2010).
[CrossRef] [PubMed]

Mavlutov, A. H.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[CrossRef]

McCullough, J.

M. H. Khan, B. Choi, S. Chess, K. M. Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[CrossRef] [PubMed]

Meglinskii, I. V.

I. V. Meglinskii and A. N. Korolevich, “Use of diffusion wave spectroscopy in diagnostics of blood,” J. Appl. Spectrosc. 67(4), 709–716 (2000).
[CrossRef]

Mendenhall, J. M.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[CrossRef] [PubMed]

Milner, T. E.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[CrossRef] [PubMed]

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[CrossRef] [PubMed]

Mishin, A. A.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[CrossRef]

Mohamed, M.

N. Sudheendran, M. Mohamed, M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography,” J. Innov. Opt. Health Sci. 3(3), 169–176 (2010).
[CrossRef] [PubMed]

Nelson, J. S.

J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Correlation between collagen solubility and skin optical clearing using sugars,” Lasers Surg. Med. 39(2), 140–144 (2007).
[CrossRef] [PubMed]

J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Collagen solubility correlates with skin optical clearing,” J. Biomed. Opt. 11(4), 040501 (2006).
[CrossRef] [PubMed]

M. H. Khan, B. Choi, S. Chess, K. M. Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[CrossRef] [PubMed]

A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
[CrossRef] [PubMed]

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[CrossRef] [PubMed]

O’Driscoll, K.

F. Sharif, E. Crushell, K. O’Driscoll, and B. Bourke, “Liquid paraffin: a reappraisal of its role in the treatment of constipation,” Arch. Dis. Child. 85(2), 121–124 (2001).
[CrossRef] [PubMed]

Pine, D. J.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Rylander, C. G.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[CrossRef] [PubMed]

Rylander, H. G.

G. Vargas, E. K. Chan, J. K. Barton, and H. G. Rylander III, andA. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[CrossRef] [PubMed]

Saunders, K.

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 103(15), 1999–2003 (2001).
[PubMed]

Sharif, F.

F. Sharif, E. Crushell, K. O’Driscoll, and B. Bourke, “Liquid paraffin: a reappraisal of its role in the treatment of constipation,” Arch. Dis. Child. 85(2), 121–124 (2001).
[CrossRef] [PubMed]

Sloot, P. M. A.

Smithies, D. J.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[CrossRef] [PubMed]

Stumpp, O. F.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[CrossRef] [PubMed]

Sudheendran, N.

N. Sudheendran, M. Mohamed, M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography,” J. Innov. Opt. Health Sci. 3(3), 169–176 (2010).
[CrossRef] [PubMed]

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J Biophotonics 3(1-2), 25–33 (2010).
[CrossRef] [PubMed]

Surber, C.

J. W. Fluhr, R. Darlenski, and C. Surber, “Glycerol and the skin: holistic approach to its origin and functions,” Br. J. Dermatol. 159(1), 23–34 (2008).
[CrossRef] [PubMed]

Tromberg, B. J.

A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
[CrossRef] [PubMed]

Tuchin, V. V.

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J Biophotonics 3(1-2), 44–52 (2010).
[CrossRef] [PubMed]

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010).
[CrossRef] [PubMed]

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J Biophotonics 3(1-2), 25–33 (2010).
[CrossRef] [PubMed]

N. Sudheendran, M. Mohamed, M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography,” J. Innov. Opt. Health Sci. 3(3), 169–176 (2010).
[CrossRef] [PubMed]

V. V. Tuchin, “A clear vision for laser diagnostics,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1621–1628 (2007).
[CrossRef]

M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Depth-resolved monitoring of glucose diffusion in tissues by using optical coherence tomography,” Opt. Lett. 31(15), 2314–2316 (2006).
[CrossRef] [PubMed]

V. V. Tuchin, “Optical clearing of tissues and blood using the immersion method,” J. Phys. D Appl. Phys. 38(15), 2497–2518 (2005).
[CrossRef]

R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18(7), 948–953 (2001).
[CrossRef]

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[CrossRef]

Vargas, G.

G. Vargas, E. K. Chan, J. K. Barton, and H. G. Rylander III, andA. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[CrossRef] [PubMed]

Wang, J.

Y. Wang, Y. Liang, J. Wang, and S. Zhang, “Image improvement in the wavelet domain for optical coherence tomograms,” J. Innov. Opt. Health Sci. 4(1), 73–78 (2011).
[CrossRef]

Wang, L. V.

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
[CrossRef] [PubMed]

Wang, R. K.

J. Jiang and R. K. Wang, “Comparing the synergistic effects of oleic acid and dimethyl sulfoxide as vehicles for optical clearing of skin tissue in vitro,” Phys. Med. Biol. 49(23), 5283–5294 (2004).
[CrossRef] [PubMed]

X. Xu and R. K. Wang, “Synergistic effect of hyperosmotic agents of dimethyl sulfoxide and glycerol on optical clearing of gastric tissue studied with near infrared spectroscopy,” Phys. Med. Biol. 49(3), 457–468 (2004).
[CrossRef] [PubMed]

X. Xu and R. K. Wang, “The role of water desorption on optical clearing of biotissue: Studied with near infrared reflectance spectroscopy,” Med. Phys. 30(6), 1246–1253 (2003).
[CrossRef] [PubMed]

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18(7), 948–953 (2001).
[CrossRef]

Wang, Y.

Y. Wang, Y. Liang, J. Wang, and S. Zhang, “Image improvement in the wavelet domain for optical coherence tomograms,” J. Innov. Opt. Health Sci. 4(1), 73–78 (2011).
[CrossRef]

Weitz, D. A.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Welch, A. J.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[CrossRef] [PubMed]

G. Vargas, E. K. Chan, J. K. Barton, and H. G. Rylander III, andA. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[CrossRef] [PubMed]

Wen, X.

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J Biophotonics 3(1-2), 44–52 (2010).
[CrossRef] [PubMed]

Wendt, M.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J Biophotonics 3(1-2), 25–33 (2010).
[CrossRef] [PubMed]

Wooden, W. A.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[CrossRef] [PubMed]

Xu, X.

X. Xu and Q. Zhu, “Feasibility of sonophoretic delivery for effective skin optical clearing,” IEEE Trans. Biomed. Eng. 55(4), 1432–1437 (2008).
[CrossRef] [PubMed]

X. Xu and Q. Zhu, “Evaluation of skin optical clearing enhancement with Azone as a penetration enhancer,” Opt. Commun. 279(1), 223–228 (2007).
[CrossRef]

X. Xu and R. K. Wang, “Synergistic effect of hyperosmotic agents of dimethyl sulfoxide and glycerol on optical clearing of gastric tissue studied with near infrared spectroscopy,” Phys. Med. Biol. 49(3), 457–468 (2004).
[CrossRef] [PubMed]

X. Xu and R. K. Wang, “The role of water desorption on optical clearing of biotissue: Studied with near infrared reflectance spectroscopy,” Med. Phys. 30(6), 1246–1253 (2003).
[CrossRef] [PubMed]

R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18(7), 948–953 (2001).
[CrossRef]

Yao, G.

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
[CrossRef] [PubMed]

Yeh, A. T.

J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Correlation between collagen solubility and skin optical clearing using sugars,” Lasers Surg. Med. 39(2), 140–144 (2007).
[CrossRef] [PubMed]

J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Collagen solubility correlates with skin optical clearing,” J. Biomed. Opt. 11(4), 040501 (2006).
[CrossRef] [PubMed]

A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
[CrossRef] [PubMed]

Zhang, S.

Y. Wang, Y. Liang, J. Wang, and S. Zhang, “Image improvement in the wavelet domain for optical coherence tomograms,” J. Innov. Opt. Health Sci. 4(1), 73–78 (2011).
[CrossRef]

Zhu, D.

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J Biophotonics 3(1-2), 44–52 (2010).
[CrossRef] [PubMed]

Zhu, Q.

X. Xu and Q. Zhu, “Feasibility of sonophoretic delivery for effective skin optical clearing,” IEEE Trans. Biomed. Eng. 55(4), 1432–1437 (2008).
[CrossRef] [PubMed]

X. Xu and Q. Zhu, “Evaluation of skin optical clearing enhancement with Azone as a penetration enhancer,” Opt. Commun. 279(1), 223–228 (2007).
[CrossRef]

Zijp, J. R.

Zimnyakov, D. A.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[CrossRef]

Appl. Opt. (1)

Arch. Dis. Child. (1)

F. Sharif, E. Crushell, K. O’Driscoll, and B. Bourke, “Liquid paraffin: a reappraisal of its role in the treatment of constipation,” Arch. Dis. Child. 85(2), 121–124 (2001).
[CrossRef] [PubMed]

Br. J. Dermatol. (1)

J. W. Fluhr, R. Darlenski, and C. Surber, “Glycerol and the skin: holistic approach to its origin and functions,” Br. J. Dermatol. 159(1), 23–34 (2008).
[CrossRef] [PubMed]

Circulation (1)

M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood,” Circulation 103(15), 1999–2003 (2001).
[PubMed]

Expert Rev. Med. Devices (1)

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices 7(6), 825–842 (2010).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

V. V. Tuchin, “A clear vision for laser diagnostics,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1621–1628 (2007).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

X. Xu and Q. Zhu, “Feasibility of sonophoretic delivery for effective skin optical clearing,” IEEE Trans. Biomed. Eng. 55(4), 1432–1437 (2008).
[CrossRef] [PubMed]

J Biophotonics (2)

X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J Biophotonics 3(1-2), 44–52 (2010).
[CrossRef] [PubMed]

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J Biophotonics 3(1-2), 25–33 (2010).
[CrossRef] [PubMed]

J. Appl. Spectrosc. (1)

I. V. Meglinskii and A. N. Korolevich, “Use of diffusion wave spectroscopy in diagnostics of blood,” J. Appl. Spectrosc. 67(4), 709–716 (2000).
[CrossRef]

J. Biomed. Opt. (3)

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[CrossRef]

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[CrossRef] [PubMed]

J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Collagen solubility correlates with skin optical clearing,” J. Biomed. Opt. 11(4), 040501 (2006).
[CrossRef] [PubMed]

J. Innov. Opt. Health Sci. (2)

N. Sudheendran, M. Mohamed, M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography,” J. Innov. Opt. Health Sci. 3(3), 169–176 (2010).
[CrossRef] [PubMed]

Y. Wang, Y. Liang, J. Wang, and S. Zhang, “Image improvement in the wavelet domain for optical coherence tomograms,” J. Innov. Opt. Health Sci. 4(1), 73–78 (2011).
[CrossRef]

J. Invest. Dermatol. (1)

A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

V. V. Tuchin, “Optical clearing of tissues and blood using the immersion method,” J. Phys. D Appl. Phys. 38(15), 2497–2518 (2005).
[CrossRef]

Lasers Surg. Med. (3)

G. Vargas, E. K. Chan, J. K. Barton, and H. G. Rylander III, andA. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[CrossRef] [PubMed]

J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Correlation between collagen solubility and skin optical clearing using sugars,” Lasers Surg. Med. 39(2), 140–144 (2007).
[CrossRef] [PubMed]

M. H. Khan, B. Choi, S. Chess, K. M. Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med. 34(2), 83–85 (2004).
[CrossRef] [PubMed]

Med. Phys. (1)

X. Xu and R. K. Wang, “The role of water desorption on optical clearing of biotissue: Studied with near infrared reflectance spectroscopy,” Med. Phys. 30(6), 1246–1253 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

X. Xu and Q. Zhu, “Evaluation of skin optical clearing enhancement with Azone as a penetration enhancer,” Opt. Commun. 279(1), 223–228 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (6)

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[CrossRef] [PubMed]

X. Xu and R. K. Wang, “Synergistic effect of hyperosmotic agents of dimethyl sulfoxide and glycerol on optical clearing of gastric tissue studied with near infrared spectroscopy,” Phys. Med. Biol. 49(3), 457–468 (2004).
[CrossRef] [PubMed]

J. Jiang and R. K. Wang, “Comparing the synergistic effects of oleic acid and dimethyl sulfoxide as vehicles for optical clearing of skin tissue in vitro,” Phys. Med. Biol. 49(23), 5283–5294 (2004).
[CrossRef] [PubMed]

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[CrossRef] [PubMed]

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
[CrossRef] [PubMed]

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Other (5)

E. A. Sharkov, Passive Microwave Remote Sensing of the Earth: Physical Foundations (Springer, 2003), Chap. 9.

L. V. Wang and H. Wu, in Biomedical Optics: Principles and Imaging (John Wiley & Sons, Inc., 2007), Chap. 2 & Chap. 5.

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007), Chap. 1.

R. K. Wang and V. V. Tuchin, “Optical tissue clearing to enhance imaging performance for OCT,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds., (Springer, 2008).

V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE, 2006), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Ratios of RIR with and without applying the mixed solution. Y-axis represents the ratio of RIR, and X-axis represents the volume fraction of liquid paraffin in the mixed solution.

Fig. 2
Fig. 2

The thickness variation of rat skin with time elapsing by applying the mixed agents of different concentrations. Y-axis represents the reduced thickness, and X-axis represents scanning time.

Fig. 3
Fig. 3

Ratios of RIR of rat skin with time elapsing at 30%, 40% and 50% concentrations. (a) is the results at 300 µm interval, (b) is the results at 500 µm interval. Error bars depict the maximum and minimum of different samples at 40% concentration.

Fig. 4
Fig. 4

A group of OCT images of rat skin. (a) OCT image without the agent, (b) 10 min, (c) 20 min, (d) 30 min, and (e) 40 min OCT images after topical application of 40% liquid paraffin glycerol solution on the same area, respectively.

Fig. 5
Fig. 5

Intensity of OCT signals with scanning depth in Fig. 4. (a) is the average intensity in a region shown in the yellow rectangle of Fig. 4(a). (b) is the intensity of an arbitrarily selected position shown in the yellow line in Fig. 4(a).

Fig. 6
Fig. 6

Ratios of RIR of human finger with time elapsing at 30%, 40% and 50% concentrations. (a) is the results at 500 µm interval, (b) is the results at 700 µm interval.

Fig. 7
Fig. 7

OCT images of human finger. (a) an OCT image without the agent, (b) 5 min, (c) 10 min, (d) 15 min, (e) 20 min, (f) 25 min and (g) 30min OCT images after topical application of 30% liquid paraffin glycerol solution on the same area, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

μ s = 3.28 π r 2 ρ ( 2 π r / λ ) 0.37 ( ( n s / n 0 ) 1 ) 2.09 ,
R I R = 1 N 1 x , y i n t e r n a l g ( x , y ) 1 N 2 x , y s u r f a c e g ( x , y ) ,

Metrics