Abstract

We present a new concept of integrating a micropipette within a closed microfluidic system equipped with optical tweezers and a UV-Vis spectrometer. A single red blood cell (RBC) was optically trapped and steered in three dimensions towards a micropipette that was integrated in the microfluidic system. Different oxygenation states of the RBC, triggered by altering the oxygen content in the microchannels through a pump system, were optically monitored by a UV-Vis spectrometer. The built setup is aimed to act as a multifunctional system where the biochemical content and the electrophysiological reaction of a single cell can be monitored simultaneously. The system can be used for other applications like single cell sorting, in vitro fertilization or electrophysiological experiments with precise environmental control of the gas-, and chemical content.

© 2011 OSA

Full Article  |  PDF Article

Errata

Ahmed Alrifaiy and Kerstin Ramser, "The integration of a micropipette in a closed microfluidic chip with optical tweezers for investigations of single cells: erratum," Biomed. Opt. Express 3, 295-295 (2012)
https://www.osapublishing.org/boe/abstract.cfm?uri=boe-3-2-295

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [CrossRef] [PubMed]
  2. T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
    [CrossRef]
  3. W. W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, and D. Anselmetti, “Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology,” Electrophoresis 26(19), 3689–3696 (2005).
    [CrossRef] [PubMed]
  4. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
    [CrossRef] [PubMed]
  5. A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
    [CrossRef] [PubMed]
  6. J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, “Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation,” Anal. Chem. 71(5), 911–918 (1999).
    [CrossRef] [PubMed]
  7. I. K. Glasgow, H. C. Zeringue, D. J. Beebe, S. J. Choi, J. T. Lyman, N. G. Chan, and M. B. Wheeler, “Handling individual mammalian embryos using microfluidics,” IEEE Trans. Biomed. Eng. 48(5), 570–578 (2001).
    [CrossRef] [PubMed]
  8. D. Figeys, S. P. Gygi, G. McKinnon, and R. Aebersold, “An integrated microfluidics-tandem mass spectrometry system for automated protein analysis,” Anal. Chem. 70(18), 3728–3734 (1998).
    [CrossRef] [PubMed]
  9. Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, and R. Kumar, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Anal. Chem. 71(21), 4851–4859 (1999).
    [CrossRef] [PubMed]
  10. D. D. Cunningham, “Fluidics and sample handling in clinical chemical analysis,” Anal. Chim. Acta 429(1), 1–18 (2001).
    [CrossRef]
  11. F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem. 81(2), 519–526 (2009).
    [CrossRef] [PubMed]
  12. B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for drug development,” Adv. Drug Deliv. Rev. 55(3), 349–377 (2003).
    [CrossRef] [PubMed]
  13. L. Yao, B. Liu, T. Chen, S. Liu, and T. Zuo, “Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser,” Biomed. Microdevices 7(3), 253–257 (2005).
    [CrossRef] [PubMed]
  14. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, 2002).
  15. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
    [CrossRef]
  16. P. Abgrall, L. N. Low, and N. T. Nguyen, “Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding,” Lab Chip 7(4), 520–522 (2007).
    [CrossRef] [PubMed]
  17. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
    [CrossRef] [PubMed]
  18. H. Qi, X. Wang, T. Chen, X. Ma, and T. Zuo, “Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation,” Microsyst. Technol. 15(7), 1027–1030 (2009).
    [CrossRef]
  19. P. Liuni, T. Rob, and D. J. Wilson, “A microfluidic reactor for rapid, low-pressure proteolysis with on-chip electrospray ionization,” Rapid Commun. Mass Spectrom. 24(3), 315–320 (2010).
    [CrossRef]
  20. G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sens. Actuators B Chem. 75(1-2), 142–148 (2001).
    [CrossRef]
  21. O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small 5(14), 1667–1674 (2009).
    [CrossRef] [PubMed]
  22. N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
    [CrossRef]
  23. K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophotonics 3(4), 187–206 (2010).
    [CrossRef] [PubMed]
  24. K. Schütze, H. Pösl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 735–746 (1998).
    [PubMed]
  25. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [CrossRef] [PubMed]
  26. K. Kim, S. Kang, K. Matsumoto, and H. Minamitani, “Thin film waveguide sensor for measurenlent of the absorption coefficient of hemoglobin derivatives,” Opt. Rev. 5(4), 257–261 (1998).
    [CrossRef]

2010 (2)

P. Liuni, T. Rob, and D. J. Wilson, “A microfluidic reactor for rapid, low-pressure proteolysis with on-chip electrospray ionization,” Rapid Commun. Mass Spectrom. 24(3), 315–320 (2010).
[CrossRef]

K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophotonics 3(4), 187–206 (2010).
[CrossRef] [PubMed]

2009 (4)

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small 5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem. 81(2), 519–526 (2009).
[CrossRef] [PubMed]

H. Qi, X. Wang, T. Chen, X. Ma, and T. Zuo, “Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation,” Microsyst. Technol. 15(7), 1027–1030 (2009).
[CrossRef]

2007 (1)

P. Abgrall, L. N. Low, and N. T. Nguyen, “Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding,” Lab Chip 7(4), 520–522 (2007).
[CrossRef] [PubMed]

2006 (1)

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

2005 (3)

L. Yao, B. Liu, T. Chen, S. Liu, and T. Zuo, “Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser,” Biomed. Microdevices 7(3), 253–257 (2005).
[CrossRef] [PubMed]

T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
[CrossRef]

W. W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, and D. Anselmetti, “Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology,” Electrophoresis 26(19), 3689–3696 (2005).
[CrossRef] [PubMed]

2003 (1)

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for drug development,” Adv. Drug Deliv. Rev. 55(3), 349–377 (2003).
[CrossRef] [PubMed]

2001 (3)

D. D. Cunningham, “Fluidics and sample handling in clinical chemical analysis,” Anal. Chim. Acta 429(1), 1–18 (2001).
[CrossRef]

I. K. Glasgow, H. C. Zeringue, D. J. Beebe, S. J. Choi, J. T. Lyman, N. G. Chan, and M. B. Wheeler, “Handling individual mammalian embryos using microfluidics,” IEEE Trans. Biomed. Eng. 48(5), 570–578 (2001).
[CrossRef] [PubMed]

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sens. Actuators B Chem. 75(1-2), 142–148 (2001).
[CrossRef]

1999 (2)

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, “Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation,” Anal. Chem. 71(5), 911–918 (1999).
[CrossRef] [PubMed]

Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, and R. Kumar, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Anal. Chem. 71(21), 4851–4859 (1999).
[CrossRef] [PubMed]

1998 (4)

D. Figeys, S. P. Gygi, G. McKinnon, and R. Aebersold, “An integrated microfluidics-tandem mass spectrometry system for automated protein analysis,” Anal. Chem. 70(18), 3728–3734 (1998).
[CrossRef] [PubMed]

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

K. Schütze, H. Pösl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 735–746 (1998).
[PubMed]

K. Kim, S. Kang, K. Matsumoto, and H. Minamitani, “Thin film waveguide sensor for measurenlent of the absorption coefficient of hemoglobin derivatives,” Opt. Rev. 5(4), 257–261 (1998).
[CrossRef]

1990 (1)

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[CrossRef] [PubMed]

1987 (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

1986 (1)

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[CrossRef] [PubMed]

Abgrall, P.

P. Abgrall, L. N. Low, and N. T. Nguyen, “Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding,” Lab Chip 7(4), 520–522 (2007).
[CrossRef] [PubMed]

Aebersold, R.

D. Figeys, S. P. Gygi, G. McKinnon, and R. Aebersold, “An integrated microfluidics-tandem mass spectrometry system for automated protein analysis,” Anal. Chem. 70(18), 3728–3734 (1998).
[CrossRef] [PubMed]

Anselmetti, D.

W. W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, and D. Anselmetti, “Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology,” Electrophoresis 26(19), 3689–3696 (2005).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[CrossRef] [PubMed]

Ballerini, L.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Balslev, S.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Bardell, R. L.

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for drug development,” Adv. Drug Deliv. Rev. 55(3), 349–377 (2003).
[CrossRef] [PubMed]

Becker, F. F.

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, “Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation,” Anal. Chem. 71(5), 911–918 (1999).
[CrossRef] [PubMed]

Beebe, D. J.

I. K. Glasgow, H. C. Zeringue, D. J. Beebe, S. J. Choi, J. T. Lyman, N. G. Chan, and M. B. Wheeler, “Handling individual mammalian embryos using microfluidics,” IEEE Trans. Biomed. Eng. 48(5), 570–578 (2001).
[CrossRef] [PubMed]

Bellamkonda, R. V.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Bilenberg, B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Bjorkholm, J. E.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[CrossRef] [PubMed]

Cable, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[CrossRef] [PubMed]

Cabrera, C. R.

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for drug development,” Adv. Drug Deliv. Rev. 55(3), 349–377 (2003).
[CrossRef] [PubMed]

Campidelli, S.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Chan, N. G.

I. K. Glasgow, H. C. Zeringue, D. J. Beebe, S. J. Choi, J. T. Lyman, N. G. Chan, and M. B. Wheeler, “Handling individual mammalian embryos using microfluidics,” IEEE Trans. Biomed. Eng. 48(5), 570–578 (2001).
[CrossRef] [PubMed]

Chen, M.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small 5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Chen, S. H.

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sens. Actuators B Chem. 75(1-2), 142–148 (2001).
[CrossRef]

Chen, T.

H. Qi, X. Wang, T. Chen, X. Ma, and T. Zuo, “Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation,” Microsyst. Technol. 15(7), 1027–1030 (2009).
[CrossRef]

L. Yao, B. Liu, T. Chen, S. Liu, and T. Zuo, “Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser,” Biomed. Microdevices 7(3), 253–257 (2005).
[CrossRef] [PubMed]

Choi, S. J.

I. K. Glasgow, H. C. Zeringue, D. J. Beebe, S. J. Choi, J. T. Lyman, N. G. Chan, and M. B. Wheeler, “Handling individual mammalian embryos using microfluidics,” IEEE Trans. Biomed. Eng. 48(5), 570–578 (2001).
[CrossRef] [PubMed]

Chu, S.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[CrossRef] [PubMed]

Clements, I. P.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Cunningham, D. D.

D. D. Cunningham, “Fluidics and sample handling in clinical chemical analysis,” Anal. Chim. Acta 429(1), 1–18 (2001).
[CrossRef]

Dong, Q.

Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, and R. Kumar, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Anal. Chem. 71(21), 4851–4859 (1999).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Espinosa, H. D.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small 5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Euteneuer, U.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[CrossRef] [PubMed]

Fan, Z. H.

Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, and R. Kumar, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Anal. Chem. 71(21), 4851–4859 (1999).
[CrossRef] [PubMed]

Figeys, D.

D. Figeys, S. P. Gygi, G. McKinnon, and R. Aebersold, “An integrated microfluidics-tandem mass spectrometry system for automated protein analysis,” Anal. Chem. 70(18), 3728–3734 (1998).
[CrossRef] [PubMed]

Gascoyne, P. R. C.

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, “Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation,” Anal. Chem. 71(5), 911–918 (1999).
[CrossRef] [PubMed]

Geschke, O.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Glasgow, I. K.

I. K. Glasgow, H. C. Zeringue, D. J. Beebe, S. J. Choi, J. T. Lyman, N. G. Chan, and M. B. Wheeler, “Handling individual mammalian embryos using microfluidics,” IEEE Trans. Biomed. Eng. 48(5), 570–578 (2001).
[CrossRef] [PubMed]

Granzow, R.

Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, and R. Kumar, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Anal. Chem. 71(21), 4851–4859 (1999).
[CrossRef] [PubMed]

Gygi, S. P.

D. Figeys, S. P. Gygi, G. McKinnon, and R. Aebersold, “An integrated microfluidics-tandem mass spectrometry system for automated protein analysis,” Anal. Chem. 70(18), 3728–3734 (1998).
[CrossRef] [PubMed]

Hanstorp, D.

K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophotonics 3(4), 187–206 (2010).
[CrossRef] [PubMed]

Heaney, P.

Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, and R. Kumar, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Anal. Chem. 71(21), 4851–4859 (1999).
[CrossRef] [PubMed]

Hellmich, W. W.

W. W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, and D. Anselmetti, “Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology,” Electrophoresis 26(19), 3689–3696 (2005).
[CrossRef] [PubMed]

Ho, D.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small 5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Ho, W.

Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, and R. Kumar, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Anal. Chem. 71(21), 4851–4859 (1999).
[CrossRef] [PubMed]

Huang, G. R.

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sens. Actuators B Chem. 75(1-2), 142–148 (2001).
[CrossRef]

Huang, H.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small 5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Huang, Y.

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, “Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation,” Anal. Chem. 71(5), 911–918 (1999).
[CrossRef] [PubMed]

Jan, E.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Jorgensen, A. M.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Kam, N. W. S.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Kang, S.

K. Kim, S. Kang, K. Matsumoto, and H. Minamitani, “Thin film waveguide sensor for measurenlent of the absorption coefficient of hemoglobin derivatives,” Opt. Rev. 5(4), 257–261 (1998).
[CrossRef]

Kim, K.

K. Kim, S. Kang, K. Matsumoto, and H. Minamitani, “Thin film waveguide sensor for measurenlent of the absorption coefficient of hemoglobin derivatives,” Opt. Rev. 5(4), 257–261 (1998).
[CrossRef]

Kotov, N. A.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Kristensen, A.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Kumar, R.

Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, and R. Kumar, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Anal. Chem. 71(21), 4851–4859 (1999).
[CrossRef] [PubMed]

Kutter, J. P.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Lahr, G.

K. Schütze, H. Pösl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 735–746 (1998).
[PubMed]

Lam, R.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small 5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Lee, G. B.

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sens. Actuators B Chem. 75(1-2), 142–148 (2001).
[CrossRef]

Leffhalm, K.

W. W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, and D. Anselmetti, “Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology,” Electrophoresis 26(19), 3689–3696 (2005).
[CrossRef] [PubMed]

Lieber, C. M.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Ligler, F. S.

F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem. 81(2), 519–526 (2009).
[CrossRef] [PubMed]

Lin, Y. H.

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sens. Actuators B Chem. 75(1-2), 142–148 (2001).
[CrossRef]

Liu, B.

L. Yao, B. Liu, T. Chen, S. Liu, and T. Zuo, “Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser,” Biomed. Microdevices 7(3), 253–257 (2005).
[CrossRef] [PubMed]

Liu, S.

L. Yao, B. Liu, T. Chen, S. Liu, and T. Zuo, “Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser,” Biomed. Microdevices 7(3), 253–257 (2005).
[CrossRef] [PubMed]

Liuni, P.

P. Liuni, T. Rob, and D. J. Wilson, “A microfluidic reactor for rapid, low-pressure proteolysis with on-chip electrospray ionization,” Rapid Commun. Mass Spectrom. 24(3), 315–320 (2010).
[CrossRef]

Loh, O.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small 5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Low, L. N.

P. Abgrall, L. N. Low, and N. T. Nguyen, “Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding,” Lab Chip 7(4), 520–522 (2007).
[CrossRef] [PubMed]

Lyman, J. T.

I. K. Glasgow, H. C. Zeringue, D. J. Beebe, S. J. Choi, J. T. Lyman, N. G. Chan, and M. B. Wheeler, “Handling individual mammalian embryos using microfluidics,” IEEE Trans. Biomed. Eng. 48(5), 570–578 (2001).
[CrossRef] [PubMed]

Ma, X.

H. Qi, X. Wang, T. Chen, X. Ma, and T. Zuo, “Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation,” Microsyst. Technol. 15(7), 1027–1030 (2009).
[CrossRef]

Mangru, S.

Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, and R. Kumar, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Anal. Chem. 71(21), 4851–4859 (1999).
[CrossRef] [PubMed]

Matsumoto, K.

K. Kim, S. Kang, K. Matsumoto, and H. Minamitani, “Thin film waveguide sensor for measurenlent of the absorption coefficient of hemoglobin derivatives,” Opt. Rev. 5(4), 257–261 (1998).
[CrossRef]

Mazzatenta, A.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

McKinnon, G.

D. Figeys, S. P. Gygi, G. McKinnon, and R. Aebersold, “An integrated microfluidics-tandem mass spectrometry system for automated protein analysis,” Anal. Chem. 70(18), 3728–3734 (1998).
[CrossRef] [PubMed]

Minamitani, H.

K. Kim, S. Kang, K. Matsumoto, and H. Minamitani, “Thin film waveguide sensor for measurenlent of the absorption coefficient of hemoglobin derivatives,” Opt. Rev. 5(4), 257–261 (1998).
[CrossRef]

Mogensen, K. B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Moldovan, N.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small 5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Nguyen, N. T.

P. Abgrall, L. N. Low, and N. T. Nguyen, “Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding,” Lab Chip 7(4), 520–522 (2007).
[CrossRef] [PubMed]

Pathak, S.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Patolsky, F.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Pelargus, C.

W. W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, and D. Anselmetti, “Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology,” Electrophoresis 26(19), 3689–3696 (2005).
[CrossRef] [PubMed]

Pösl, H.

K. Schütze, H. Pösl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 735–746 (1998).
[PubMed]

Prato, M.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Qi, H.

H. Qi, X. Wang, T. Chen, X. Ma, and T. Zuo, “Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation,” Microsyst. Technol. 15(7), 1027–1030 (2009).
[CrossRef]

Quake, S. R.

T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
[CrossRef]

Ramser, K.

K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophotonics 3(4), 187–206 (2010).
[CrossRef] [PubMed]

Rob, T.

P. Liuni, T. Rob, and D. J. Wilson, “A microfluidic reactor for rapid, low-pressure proteolysis with on-chip electrospray ionization,” Rapid Commun. Mass Spectrom. 24(3), 315–320 (2010).
[CrossRef]

Ros, A.

W. W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, and D. Anselmetti, “Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology,” Electrophoresis 26(19), 3689–3696 (2005).
[CrossRef] [PubMed]

Schliwa, M.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[CrossRef] [PubMed]

Schütze, K.

K. Schütze, H. Pösl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 735–746 (1998).
[PubMed]

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[CrossRef] [PubMed]

Silva, G. A.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Snakenborg, D.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Squires, T. M.

T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
[CrossRef]

Sung, W. C.

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sens. Actuators B Chem. 75(1-2), 142–148 (2001).
[CrossRef]

Timko, B. P.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Wang, X.

H. Qi, X. Wang, T. Chen, X. Ma, and T. Zuo, “Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation,” Microsyst. Technol. 15(7), 1027–1030 (2009).
[CrossRef]

Wang, X. B.

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, “Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation,” Anal. Chem. 71(5), 911–918 (1999).
[CrossRef] [PubMed]

Weigl, B. H.

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for drug development,” Adv. Drug Deliv. Rev. 55(3), 349–377 (2003).
[CrossRef] [PubMed]

Wheeler, M. B.

I. K. Glasgow, H. C. Zeringue, D. J. Beebe, S. J. Choi, J. T. Lyman, N. G. Chan, and M. B. Wheeler, “Handling individual mammalian embryos using microfluidics,” IEEE Trans. Biomed. Eng. 48(5), 570–578 (2001).
[CrossRef] [PubMed]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

Wilson, D. J.

P. Liuni, T. Rob, and D. J. Wilson, “A microfluidic reactor for rapid, low-pressure proteolysis with on-chip electrospray ionization,” Rapid Commun. Mass Spectrom. 24(3), 315–320 (2010).
[CrossRef]

Winter, J. O.

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Yang, J.

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, “Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation,” Anal. Chem. 71(5), 911–918 (1999).
[CrossRef] [PubMed]

Yao, L.

L. Yao, B. Liu, T. Chen, S. Liu, and T. Zuo, “Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser,” Biomed. Microdevices 7(3), 253–257 (2005).
[CrossRef] [PubMed]

Zeringue, H. C.

I. K. Glasgow, H. C. Zeringue, D. J. Beebe, S. J. Choi, J. T. Lyman, N. G. Chan, and M. B. Wheeler, “Handling individual mammalian embryos using microfluidics,” IEEE Trans. Biomed. Eng. 48(5), 570–578 (2001).
[CrossRef] [PubMed]

Zuo, T.

H. Qi, X. Wang, T. Chen, X. Ma, and T. Zuo, “Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation,” Microsyst. Technol. 15(7), 1027–1030 (2009).
[CrossRef]

L. Yao, B. Liu, T. Chen, S. Liu, and T. Zuo, “Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser,” Biomed. Microdevices 7(3), 253–257 (2005).
[CrossRef] [PubMed]

Adv. Drug Deliv. Rev. (1)

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for drug development,” Adv. Drug Deliv. Rev. 55(3), 349–377 (2003).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009).
[CrossRef]

Anal. Chem. (4)

F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem. 81(2), 519–526 (2009).
[CrossRef] [PubMed]

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, “Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation,” Anal. Chem. 71(5), 911–918 (1999).
[CrossRef] [PubMed]

D. Figeys, S. P. Gygi, G. McKinnon, and R. Aebersold, “An integrated microfluidics-tandem mass spectrometry system for automated protein analysis,” Anal. Chem. 70(18), 3728–3734 (1998).
[CrossRef] [PubMed]

Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, and R. Kumar, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Anal. Chem. 71(21), 4851–4859 (1999).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

D. D. Cunningham, “Fluidics and sample handling in clinical chemical analysis,” Anal. Chim. Acta 429(1), 1–18 (2001).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

Biomed. Microdevices (1)

L. Yao, B. Liu, T. Chen, S. Liu, and T. Zuo, “Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser,” Biomed. Microdevices 7(3), 253–257 (2005).
[CrossRef] [PubMed]

Cell. Mol. Biol. (Noisy-le-grand) (1)

K. Schütze, H. Pösl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 735–746 (1998).
[PubMed]

Electrophoresis (1)

W. W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, and D. Anselmetti, “Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology,” Electrophoresis 26(19), 3689–3696 (2005).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

I. K. Glasgow, H. C. Zeringue, D. J. Beebe, S. J. Choi, J. T. Lyman, N. G. Chan, and M. B. Wheeler, “Handling individual mammalian embryos using microfluidics,” IEEE Trans. Biomed. Eng. 48(5), 570–578 (2001).
[CrossRef] [PubMed]

J Biophotonics (1)

K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophotonics 3(4), 187–206 (2010).
[CrossRef] [PubMed]

Lab Chip (2)

P. Abgrall, L. N. Low, and N. T. Nguyen, “Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding,” Lab Chip 7(4), 520–522 (2007).
[CrossRef] [PubMed]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Microsyst. Technol. (1)

H. Qi, X. Wang, T. Chen, X. Ma, and T. Zuo, “Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation,” Microsyst. Technol. 15(7), 1027–1030 (2009).
[CrossRef]

Nature (2)

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Opt. Rev. (1)

K. Kim, S. Kang, K. Matsumoto, and H. Minamitani, “Thin film waveguide sensor for measurenlent of the absorption coefficient of hemoglobin derivatives,” Opt. Rev. 5(4), 257–261 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[CrossRef] [PubMed]

Rapid Commun. Mass Spectrom. (1)

P. Liuni, T. Rob, and D. J. Wilson, “A microfluidic reactor for rapid, low-pressure proteolysis with on-chip electrospray ionization,” Rapid Commun. Mass Spectrom. 24(3), 315–320 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
[CrossRef]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sens. Actuators B Chem. 75(1-2), 142–148 (2001).
[CrossRef]

Small (1)

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small 5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Other (1)

M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Inverted microscope that incorporates the following techniques: Gastight lab-on-a-chip with an integrated micropipette coupled to a pump system, optical tweezers for 3D steering of the single cells comprising of an IR laser, a beam expander, mirrors and a dichroic mirror and an IR blocking filter to block the IR laser. UV-Vis spectrometer with an integrated optical fiber to record the oxygenation states of the RBC, CCD camera to monitor the trapping dynamics of the cells within the micro-channel system.

Fig. 2
Fig. 2

(A) UV-Vis absorption oxygenation spectrum of the single RBC, (B) The center of the fiber was moved from position 1 (single RBC) to position 2 (cell-free zone), (C) UV-Vis absorption spectrum of the cell-free zone.

Fig. 3
Fig. 3

(A) Schematic of the gastight microfluidic chamber including the patch clamp micropipette and inlets to be connected to a pump system. (B) The micropipette was fitted within the microfluidic chamber in a gastight surrounding.

Fig. 4
Fig. 4

(A) Single optically trapped RBC, here the micropipette is situated above the RBC, (B) RBC in the same optical plane as the micropipette. (B) The RBC in contact with the patch clamp micropipette.

Fig. 5
Fig. 5

Absorption spectra of the trapped RBC in contact with micropipette in the microfluidic system in (A) oxygenated state (B) deoxygenated state and (C) re-oxygenated state.

Metrics