Abstract

Here, we report in vivo 3-D visualization of the layered organization of a rat olfactory bulb (OB) by a swept source optical coherence tomography (SS-OCT). The SS-OCT operates at a wavelength of 1334 nm with respective theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm in air and hence it is possible to get a 3D structural map of OB in vivo at the micron level resolution with millimeter-scale imaging depth. Up until now, with methods such as MRI, confocal microscopy, OB depth structure in vivo had not been clearly visualized as these do not satisfy the criterion of simultaneously providing micron-scale spatial resolution and imaging up to a few millimeter in depth. In order to confirm the OB’s layered organization revealed by SS-OCT, we introduced the technique of electrocoagulation to make landmarks across the layered structure. To our knowledge this is such a first study that combines electrocoagulation and OCT in vivo of rat OB. Our results confirmed the layered organization of OB, and moreover the layers were clearly identified by electrocoagulation landmarks both in the OCT structural and anatomical slice images. We expect such a combined study is beneficial for both OCT and neuroscience fields.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
    [CrossRef] [PubMed]
  3. W. Drexler and J. G. Fujimoto eds., Optical Coherence Tomography (Springer-Verlag, 2008).
  4. B. E. Bouma and G. J. Tearney eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  5. W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci.171.19 (2010).
  6. Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
    [CrossRef] [PubMed]
  7. G. M. Shepherd, W. R. Chen, and C. A. Greer, “OLFACTORY BULB,” in The Synaptic Organization of the Brain, G. M. Shepherd, eds. (Oxford University Press, 2004), pp. 165–216.
  8. P. M. Lledo, G. Gheusi, J. D. Vincent, “Information processing in the mammalian olfactory system,” Physiol. Rev. 85(1), 281–317 (2005).
    [CrossRef] [PubMed]
  9. P. Mombaerts, “How smell develops,” Nat. Neurosci. 4(Suppl), 1192–1198 (2001).
    [CrossRef] [PubMed]
  10. K. Mori, H. Nagao, Y. Yoshihara, “The olfactory bulb: coding and processing of odor molecule information,” Science 286(5440), 711–715 (1999).
    [CrossRef] [PubMed]
  11. X. Yang, R. Renken, F. Hyder, M. Siddeek, C. A. Greer, G. M. Shepherd, R. G. Shulman, “Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 95(13), 7715–7720 (1998).
    [CrossRef] [PubMed]
  12. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
    [CrossRef] [PubMed]
  13. T. Sato, G. Uchida, M. Tanifuji, “Cortical columnar organization is reconsidered in inferior temporal cortex,” Cereb. Cortex 19(8), 1870–1888 (2009).
    [CrossRef] [PubMed]
  14. F. Chauveau, S. Moucharrafie, M. Wiart, J. C. Brisset, Y. Berthezène, N. Nighoghossian, T. H. Cho, “In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure,” Exp. Transl. Stroke. Med 2(1), 1–4 (2010).
    [CrossRef] [PubMed]
  15. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
    [CrossRef] [PubMed]
  16. Y. Nakamichi, V. A. Kalatsky, H. Watanabe, U. M. Rajagopalan, M. Tanifuji, “3D structure of the orientation column in cat primary cortex revealed by functional optical coherence tomography,” Abstr. Soc. Neurosci.submitted.
  17. H. Watanabe, R. U. Maheswari, Y. Nakamichi, K. Igarashi, V. D. Madjarova, H. Kadono, M. Tanifuji, “A swept source optical coherence tomography revealed depth structures of rat olfactory bulb in vivo,” Abstr. Soc. Neurosci.submitted.
  18. M. S. Jafri, R. Tang, C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176(2), 85–95 (2009).
    [CrossRef] [PubMed]

2010

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
[CrossRef] [PubMed]

F. Chauveau, S. Moucharrafie, M. Wiart, J. C. Brisset, Y. Berthezène, N. Nighoghossian, T. H. Cho, “In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure,” Exp. Transl. Stroke. Med 2(1), 1–4 (2010).
[CrossRef] [PubMed]

2009

T. Sato, G. Uchida, M. Tanifuji, “Cortical columnar organization is reconsidered in inferior temporal cortex,” Cereb. Cortex 19(8), 1870–1888 (2009).
[CrossRef] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

M. S. Jafri, R. Tang, C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176(2), 85–95 (2009).
[CrossRef] [PubMed]

2005

P. M. Lledo, G. Gheusi, J. D. Vincent, “Information processing in the mammalian olfactory system,” Physiol. Rev. 85(1), 281–317 (2005).
[CrossRef] [PubMed]

2003

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[CrossRef] [PubMed]

2001

P. Mombaerts, “How smell develops,” Nat. Neurosci. 4(Suppl), 1192–1198 (2001).
[CrossRef] [PubMed]

1999

K. Mori, H. Nagao, Y. Yoshihara, “The olfactory bulb: coding and processing of odor molecule information,” Science 286(5440), 711–715 (1999).
[CrossRef] [PubMed]

1998

X. Yang, R. Renken, F. Hyder, M. Siddeek, C. A. Greer, G. M. Shepherd, R. G. Shulman, “Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 95(13), 7715–7720 (1998).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[CrossRef] [PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Aguirre, A. D.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

Berthezène, Y.

F. Chauveau, S. Moucharrafie, M. Wiart, J. C. Brisset, Y. Berthezène, N. Nighoghossian, T. H. Cho, “In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure,” Exp. Transl. Stroke. Med 2(1), 1–4 (2010).
[CrossRef] [PubMed]

Boas, D. A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

Boppart, S. A.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[CrossRef] [PubMed]

Bouma, B. E.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[CrossRef] [PubMed]

Brezinski, M. E.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[CrossRef] [PubMed]

Brisset, J. C.

F. Chauveau, S. Moucharrafie, M. Wiart, J. C. Brisset, Y. Berthezène, N. Nighoghossian, T. H. Cho, “In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure,” Exp. Transl. Stroke. Med 2(1), 1–4 (2010).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chauveau, F.

F. Chauveau, S. Moucharrafie, M. Wiart, J. C. Brisset, Y. Berthezène, N. Nighoghossian, T. H. Cho, “In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure,” Exp. Transl. Stroke. Med 2(1), 1–4 (2010).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

Cho, T. H.

F. Chauveau, S. Moucharrafie, M. Wiart, J. C. Brisset, Y. Berthezène, N. Nighoghossian, T. H. Cho, “In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure,” Exp. Transl. Stroke. Med 2(1), 1–4 (2010).
[CrossRef] [PubMed]

Devor, A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gheusi, G.

P. M. Lledo, G. Gheusi, J. D. Vincent, “Information processing in the mammalian olfactory system,” Physiol. Rev. 85(1), 281–317 (2005).
[CrossRef] [PubMed]

Greer, C. A.

X. Yang, R. Renken, F. Hyder, M. Siddeek, C. A. Greer, G. M. Shepherd, R. G. Shulman, “Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 95(13), 7715–7720 (1998).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hanazono, G.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci.171.19 (2010).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Homma, R.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hyder, F.

X. Yang, R. Renken, F. Hyder, M. Siddeek, C. A. Greer, G. M. Shepherd, R. G. Shulman, “Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 95(13), 7715–7720 (1998).
[CrossRef] [PubMed]

Igarashi, K.

H. Watanabe, R. U. Maheswari, Y. Nakamichi, K. Igarashi, V. D. Madjarova, H. Kadono, M. Tanifuji, “A swept source optical coherence tomography revealed depth structures of rat olfactory bulb in vivo,” Abstr. Soc. Neurosci.submitted.

Ito, K.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci.171.19 (2010).

Jafri, M. S.

M. S. Jafri, R. Tang, C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176(2), 85–95 (2009).
[CrossRef] [PubMed]

Kadono, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[CrossRef] [PubMed]

H. Watanabe, R. U. Maheswari, Y. Nakamichi, K. Igarashi, V. D. Madjarova, H. Kadono, M. Tanifuji, “A swept source optical coherence tomography revealed depth structures of rat olfactory bulb in vivo,” Abstr. Soc. Neurosci.submitted.

Kalatsky, V. A.

Y. Nakamichi, V. A. Kalatsky, H. Watanabe, U. M. Rajagopalan, M. Tanifuji, “3D structure of the orientation column in cat primary cortex revealed by functional optical coherence tomography,” Abstr. Soc. Neurosci.submitted.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lledo, P. M.

P. M. Lledo, G. Gheusi, J. D. Vincent, “Information processing in the mammalian olfactory system,” Physiol. Rev. 85(1), 281–317 (2005).
[CrossRef] [PubMed]

Madjarova, V. D.

H. Watanabe, R. U. Maheswari, Y. Nakamichi, K. Igarashi, V. D. Madjarova, H. Kadono, M. Tanifuji, “A swept source optical coherence tomography revealed depth structures of rat olfactory bulb in vivo,” Abstr. Soc. Neurosci.submitted.

Maheswari, R. U.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[CrossRef] [PubMed]

H. Watanabe, R. U. Maheswari, Y. Nakamichi, K. Igarashi, V. D. Madjarova, H. Kadono, M. Tanifuji, “A swept source optical coherence tomography revealed depth structures of rat olfactory bulb in vivo,” Abstr. Soc. Neurosci.submitted.

Mombaerts, P.

P. Mombaerts, “How smell develops,” Nat. Neurosci. 4(Suppl), 1192–1198 (2001).
[CrossRef] [PubMed]

Mori, K.

K. Mori, H. Nagao, Y. Yoshihara, “The olfactory bulb: coding and processing of odor molecule information,” Science 286(5440), 711–715 (1999).
[CrossRef] [PubMed]

Moucharrafie, S.

F. Chauveau, S. Moucharrafie, M. Wiart, J. C. Brisset, Y. Berthezène, N. Nighoghossian, T. H. Cho, “In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure,” Exp. Transl. Stroke. Med 2(1), 1–4 (2010).
[CrossRef] [PubMed]

Nagao, H.

K. Mori, H. Nagao, Y. Yoshihara, “The olfactory bulb: coding and processing of odor molecule information,” Science 286(5440), 711–715 (1999).
[CrossRef] [PubMed]

Nakamichi, Y.

H. Watanabe, R. U. Maheswari, Y. Nakamichi, K. Igarashi, V. D. Madjarova, H. Kadono, M. Tanifuji, “A swept source optical coherence tomography revealed depth structures of rat olfactory bulb in vivo,” Abstr. Soc. Neurosci.submitted.

Y. Nakamichi, V. A. Kalatsky, H. Watanabe, U. M. Rajagopalan, M. Tanifuji, “3D structure of the orientation column in cat primary cortex revealed by functional optical coherence tomography,” Abstr. Soc. Neurosci.submitted.

Nanjo, T.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci.171.19 (2010).

Nighoghossian, N.

F. Chauveau, S. Moucharrafie, M. Wiart, J. C. Brisset, Y. Berthezène, N. Nighoghossian, T. H. Cho, “In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure,” Exp. Transl. Stroke. Med 2(1), 1–4 (2010).
[CrossRef] [PubMed]

Nishiyama, J.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci.171.19 (2010).

Pitris, C.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rajagopalan, U. M.

Y. Nakamichi, V. A. Kalatsky, H. Watanabe, U. M. Rajagopalan, M. Tanifuji, “3D structure of the orientation column in cat primary cortex revealed by functional optical coherence tomography,” Abstr. Soc. Neurosci.submitted.

Renken, R.

X. Yang, R. Renken, F. Hyder, M. Siddeek, C. A. Greer, G. M. Shepherd, R. G. Shulman, “Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 95(13), 7715–7720 (1998).
[CrossRef] [PubMed]

Ruvinskaya, L.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

Sato, T.

T. Sato, G. Uchida, M. Tanifuji, “Cortical columnar organization is reconsidered in inferior temporal cortex,” Cereb. Cortex 19(8), 1870–1888 (2009).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shepherd, G. M.

X. Yang, R. Renken, F. Hyder, M. Siddeek, C. A. Greer, G. M. Shepherd, R. G. Shulman, “Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 95(13), 7715–7720 (1998).
[CrossRef] [PubMed]

Shulman, R. G.

X. Yang, R. Renken, F. Hyder, M. Siddeek, C. A. Greer, G. M. Shepherd, R. G. Shulman, “Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 95(13), 7715–7720 (1998).
[CrossRef] [PubMed]

Siddeek, M.

X. Yang, R. Renken, F. Hyder, M. Siddeek, C. A. Greer, G. M. Shepherd, R. G. Shulman, “Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 95(13), 7715–7720 (1998).
[CrossRef] [PubMed]

Southern, J. F.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Suzuki, W.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci.171.19 (2010).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Takaoka, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[CrossRef] [PubMed]

Tang, C. M.

M. S. Jafri, R. Tang, C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176(2), 85–95 (2009).
[CrossRef] [PubMed]

Tang, R.

M. S. Jafri, R. Tang, C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176(2), 85–95 (2009).
[CrossRef] [PubMed]

Tanifuji, M.

T. Sato, G. Uchida, M. Tanifuji, “Cortical columnar organization is reconsidered in inferior temporal cortex,” Cereb. Cortex 19(8), 1870–1888 (2009).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[CrossRef] [PubMed]

Y. Nakamichi, V. A. Kalatsky, H. Watanabe, U. M. Rajagopalan, M. Tanifuji, “3D structure of the orientation column in cat primary cortex revealed by functional optical coherence tomography,” Abstr. Soc. Neurosci.submitted.

H. Watanabe, R. U. Maheswari, Y. Nakamichi, K. Igarashi, V. D. Madjarova, H. Kadono, M. Tanifuji, “A swept source optical coherence tomography revealed depth structures of rat olfactory bulb in vivo,” Abstr. Soc. Neurosci.submitted.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci.171.19 (2010).

Tsunoda, K.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci.171.19 (2010).

Uchida, G.

T. Sato, G. Uchida, M. Tanifuji, “Cortical columnar organization is reconsidered in inferior temporal cortex,” Cereb. Cortex 19(8), 1870–1888 (2009).
[CrossRef] [PubMed]

Vincent, J. D.

P. M. Lledo, G. Gheusi, J. D. Vincent, “Information processing in the mammalian olfactory system,” Physiol. Rev. 85(1), 281–317 (2005).
[CrossRef] [PubMed]

Watanabe, H.

H. Watanabe, R. U. Maheswari, Y. Nakamichi, K. Igarashi, V. D. Madjarova, H. Kadono, M. Tanifuji, “A swept source optical coherence tomography revealed depth structures of rat olfactory bulb in vivo,” Abstr. Soc. Neurosci.submitted.

Y. Nakamichi, V. A. Kalatsky, H. Watanabe, U. M. Rajagopalan, M. Tanifuji, “3D structure of the orientation column in cat primary cortex revealed by functional optical coherence tomography,” Abstr. Soc. Neurosci.submitted.

Wiart, M.

F. Chauveau, S. Moucharrafie, M. Wiart, J. C. Brisset, Y. Berthezène, N. Nighoghossian, T. H. Cho, “In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure,” Exp. Transl. Stroke. Med 2(1), 1–4 (2010).
[CrossRef] [PubMed]

Wojtkowski, M.

Yang, X.

X. Yang, R. Renken, F. Hyder, M. Siddeek, C. A. Greer, G. M. Shepherd, R. G. Shulman, “Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 95(13), 7715–7720 (1998).
[CrossRef] [PubMed]

Yoshihara, Y.

K. Mori, H. Nagao, Y. Yoshihara, “The olfactory bulb: coding and processing of odor molecule information,” Science 286(5440), 711–715 (1999).
[CrossRef] [PubMed]

Abstr. Soc. Neurosci.

Y. Nakamichi, V. A. Kalatsky, H. Watanabe, U. M. Rajagopalan, M. Tanifuji, “3D structure of the orientation column in cat primary cortex revealed by functional optical coherence tomography,” Abstr. Soc. Neurosci.submitted.

H. Watanabe, R. U. Maheswari, Y. Nakamichi, K. Igarashi, V. D. Madjarova, H. Kadono, M. Tanifuji, “A swept source optical coherence tomography revealed depth structures of rat olfactory bulb in vivo,” Abstr. Soc. Neurosci.submitted.

Appl. Opt.

Cereb. Cortex

T. Sato, G. Uchida, M. Tanifuji, “Cortical columnar organization is reconsidered in inferior temporal cortex,” Cereb. Cortex 19(8), 1870–1888 (2009).
[CrossRef] [PubMed]

Exp. Transl. Stroke. Med

F. Chauveau, S. Moucharrafie, M. Wiart, J. C. Brisset, Y. Berthezène, N. Nighoghossian, T. H. Cho, “In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure,” Exp. Transl. Stroke. Med 2(1), 1–4 (2010).
[CrossRef] [PubMed]

J. Neurosci. Methods

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[CrossRef] [PubMed]

M. S. Jafri, R. Tang, C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176(2), 85–95 (2009).
[CrossRef] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

Nat. Med.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[CrossRef] [PubMed]

Nat. Neurosci.

P. Mombaerts, “How smell develops,” Nat. Neurosci. 4(Suppl), 1192–1198 (2001).
[CrossRef] [PubMed]

Physiol. Rev.

P. M. Lledo, G. Gheusi, J. D. Vincent, “Information processing in the mammalian olfactory system,” Physiol. Rev. 85(1), 281–317 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

X. Yang, R. Renken, F. Hyder, M. Siddeek, C. A. Greer, G. M. Shepherd, R. G. Shulman, “Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 95(13), 7715–7720 (1998).
[CrossRef] [PubMed]

Science

K. Mori, H. Nagao, Y. Yoshihara, “The olfactory bulb: coding and processing of odor molecule information,” Science 286(5440), 711–715 (1999).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

G. M. Shepherd, W. R. Chen, and C. A. Greer, “OLFACTORY BULB,” in The Synaptic Organization of the Brain, G. M. Shepherd, eds. (Oxford University Press, 2004), pp. 165–216.

W. Drexler and J. G. Fujimoto eds., Optical Coherence Tomography (Springer-Verlag, 2008).

B. E. Bouma and G. J. Tearney eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci.171.19 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) A schematic view of the olfactory bulb (OB) location in a rat. (b) A schematic view of the layer structure of rat OB and (c) an anatomical slice view of Nissl stained OB in red region of (a). OB consists of different layers namely: glomerulous layer (GL), external plexiform layer (EPL), mitral cell body layer (MCL), and granule cell layer (GCL). A, anterior; P, posterior; D, dorsal; V, ventral. Scale bar, 100 μm (c).

Fig. 2
Fig. 2

A Schematic of the SS-OCT system. Swept light source with center wavelength 1334 nm, FWHM of 117nm and a scanning speed of 20 kHz provided an average power of 18.1 mW. The first 1x2 fiber coupler with a coupling ratio 95/5 near the light source splits the light from the source respectively to sample arm (95%) and reference arm (5%). The second 2x2 fiber coupler with a coupling ratio of 50/50 was used to combine reflected lights from the sample and the reference arms and this provides equally divided interference signal to be detected by the balanced receiver. The balanced detector was used to remove the common source fluctuations and DC component from the interference signal. The signal from the balanced photo receiver was finally converted to digital signal with a A/D converter that was analyzed with a computer. Here, PC indicates a polarization controller and was used to optimize the interference signal.

Fig. 3
Fig. 3

Schematic views describing (a) the electrocoagulation process and (b) a magnified view of the penetration of the electrode tip. (c) shows an optical micrograph of the magnified view of the insulation stripped tip region with the scale bar corresponding to 100μm.

Fig. 4
Fig. 4

(a) OCT projection image (integration performed across the entire imaging depth, 2.9mm). (b) Corresponding CCD image. The red line in (a) indicates the scan position of the OCT image with the green arrows indicating the surface blood vessels and the corresponding shadows seen in (c) across the entire imaging depth. In the OCT images shown in this report, all depths were those measured in air and were not corrected of the refractive index of the medium. A, anterior; P, posterior; L, lateral; M, medial; D, dorsal; V, ventral. Scale bars, 100 μm.

Fig. 5
Fig. 5

OCT structural images obtained from two different rats ((a) and (d). Magnified views of the probable glomeruli encased in blue squares shown in (a) and (d) are shown, respectively in (b), (c) and (e), (f). The red encircled regions in (b) and (e) correspond putatively to glomeruli. In spite of the fact the individual glomerulus like circular structures appear to have poor optical contrast as they consist mainly of fibers being optically homogeneous we still could identify the structures. In the magnified views of (b), (c) and (e), (f), we can make out the circular structures. The arrows indicate respectively, the anterior-posterior and dorsal-ventral parts of the rat. Scale bars, 100 μm.

Fig. 6
Fig. 6

OCT images of OB obtained from two different electrocoagulation sites one in the GL layer while the other in the MCL layer. Red circled regions indicate the coagulation sites in both the real OCT backscattered intensity map (a) and (c). The same results (a) and (c) are again shown for clarity as inverted intensity maps respectively in (b) and (d). Figures 5(d)5(f) and Figs. 6(a) and 6(b) were obtained from the same rat OB but cross sectional planes were different. The arrows on the left corner indicate the anterior-posterior and dorsal-ventral parts of the rat. Scale bars, 100 μm.

Fig. 7
Fig. 7

Anatomical images obtained after electrocoagulation with the site just below GL shown in (a) and the site in MCL shown in (b). The coagulation sites in the GL and MCL layers were shown as the red encircled regions. The arrows indicate respectively the anterior-posterior and dorsal-ventral parts of the rat. (a) and (b) respectively correspond to Figs. 6(a) and 6(b), and Figs. 6(c) and 6(d). Scale bars, 100 μm.

Metrics