Abstract

The calibration of optical tissue-simulating phantoms remains an open question in spite of the many techniques proposed for accurate measurements of optical properties. As a consequence, a reference phantom with well known optical properties is still missing. As a first step towards a reference phantom we have recently proposed to use dilutions of Intralipid 20%. In this paper we discuss a matter that is commonly ignored when dilutions are prepared, i.e., the possibility of deviations from the simple linear relationships between the optical properties of the dilution and the Intralipid concentration due to the effects of dependent scattering. The results of an experimental investigation showed that dependent scattering does not affect absorption. As for the reduced scattering coefficient the effect can be described adding a term proportional to the square of the concentration. However, for concentrations of interest for tissue optics deviations from linearity remain within about 2%. The experimental investigation also showed that the microphysical properties of Intralipid are not affected by dilution. These results show the possibility to easily obtain a liquid diffusive phantom whose optical properties are known with error smaller than about 1%. Due to the intrinsic limitations of the different techniques proposed for measuring the optical properties it seems difficult to obtain a similar accuracy for solid phantoms.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Madsen, B. Wilson, M. Patterson, Y. Park, S. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
    [CrossRef] [PubMed]
  2. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
    [CrossRef]
  3. E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16, 10440–10454 (2008).
    [CrossRef]
  4. S. Fantini, M. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994).
    [CrossRef]
  5. H. Xu and M. Patterson, “Determination of the optical properties of tissue-simulating phantoms from interstitial frequency domain measurements of relative fluence and phase difference,” Opt. Express 14, 6485–6501 (2006).
    [CrossRef]
  6. P. Marquet, F. P. Bevilacqua, C. D. Depeursinge, and E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
    [CrossRef]
  7. R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett. 27, 246–248 (2002).
    [CrossRef]
  8. C. Chen, J. Q. Lu, H. Ding, K. Jacobs, Y. Du, and X. H. Hu, “A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630nm,” Opt. Express 14, 7420–7435 (2006).
    [CrossRef]
  9. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).
    [CrossRef]
  10. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Mller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44, 2104–2114 (2005).
    [CrossRef]
  11. J. Bouchard, I. Veilleux, R. Jedidi, I. Noiseux, M. Fortin, and O. Mermut, “Reference optical phantoms for diffuse optical spectroscopy. Part 1 – Error analysis of a time resolved transmittance characterization method,” Opt. Express 18, 11495–11507 (2010).
    [CrossRef]
  12. F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express 15, 486–500 (2007).
    [CrossRef]
  13. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15, 6589–6604 (2007).
    [CrossRef]
  14. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
    [CrossRef]
  15. M. Zude (Ed.), Optical Monitoring of Fresh and Processed Agricultural Crops , (Contemporary Food Engineering Series), (CRC Press, Boca Raton, Florida, 2009).
  16. J. Johansson, S. Folestad, M. Josefson, A. Sparn, C. Abrahamsson, S. Anderson-Engels, and S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002).
    [CrossRef]
  17. P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56, N21–N28 (2011).
    [CrossRef]
  18. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles , (Cambridge University Press, Cambridge, UK, 2002).
  19. A. Ishimaru and Y. Kuga , “Attenuation constant of a coherent field in a dense distribution of particles,” J. Opt. Soc. Am. 721317–20 (1982).
    [CrossRef]
  20. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt. 42, 4023–4030 (2003).
    [CrossRef]
  21. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907–5925 (2008).
    [CrossRef]
  22. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles , (John Wiley and Sons, New York, 1983).
  23. P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express 18, 26854–26865 (2010).
    [CrossRef]
  24. B. L. Drolen and C. L. Tien, “Independent and dependent scattering in packed-sphere systems,” J. Thermophys. 1, 63–68 (1987).
    [CrossRef]
  25. G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves in Random Media 5, 413–426 (1995).
    [CrossRef]
  26. J. Kalkman, A. Bykov, D. Faber, and T. van Leeuwen, “Multiple and dependent scattering effects in Doppler optical coherence tomography,” Opt. Express 18, 3883–3892 (2010).
    [CrossRef]
  27. S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004).
    [CrossRef]
  28. G. Zaccanti, L. Alianelli, C. Blumetti, and S. Carraresi, “Method for measuring the mean time of flight spent by photons inside a volume element of a highly diffusing medium,” Opt. Lett. 24, 1290–1292 (1999).
    [CrossRef]

2011

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56, N21–N28 (2011).
[CrossRef]

2010

2009

M. Zude (Ed.), Optical Monitoring of Fresh and Processed Agricultural Crops , (Contemporary Food Engineering Series), (CRC Press, Boca Raton, Florida, 2009).

2008

2007

2006

2005

2004

2003

2002

1999

1995

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves in Random Media 5, 413–426 (1995).
[CrossRef]

P. Marquet, F. P. Bevilacqua, C. D. Depeursinge, and E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

1994

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

S. Fantini, M. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994).
[CrossRef]

1992

1987

B. L. Drolen and C. L. Tien, “Independent and dependent scattering in packed-sphere systems,” J. Thermophys. 1, 63–68 (1987).
[CrossRef]

1983

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles , (John Wiley and Sons, New York, 1983).

1982

Abrahamsson, C.

Alerstam, E.

Alianelli, L.

Anderson-Engels, S.

Andersson-Engels, S.

Avrillier, S.

Bassi, A.

Bevilacqua, F. P.

P. Marquet, F. P. Bevilacqua, C. D. Depeursinge, and E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

Blumetti, C.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles , (John Wiley and Sons, New York, 1983).

Bouchard, J.

Bykov, A.

Carraresi, S.

Chen, C.

Cignini, F.

Cubeddu, R.

de Haller, E. B.

P. Marquet, F. P. Bevilacqua, C. D. Depeursinge, and E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

Del Bianco, S.

Depeursinge, C. D.

P. Marquet, F. P. Bevilacqua, C. D. Depeursinge, and E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

Di Ninni, P.

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56, N21–N28 (2011).
[CrossRef]

P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express 18, 26854–26865 (2010).
[CrossRef]

Ding, H.

Drolen, B. L.

B. L. Drolen and C. L. Tien, “Independent and dependent scattering in packed-sphere systems,” J. Thermophys. 1, 63–68 (1987).
[CrossRef]

Du, Y.

Faber, D.

Fantini, S.

Farina, A.

Folestad, S.

Fortin, M.

Foschum, F.

Franceschini, M.

Fricke, J.

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves in Random Media 5, 413–426 (1995).
[CrossRef]

Göbel, G.

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves in Random Media 5, 413–426 (1995).
[CrossRef]

Gratton, E.

Grosenick, D.

Hefetz, Y.

Hu, X. H.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles , (John Wiley and Sons, New York, 1983).

Ishimaru, A.

Jacobs, K.

Jacques, S.

Jedidi, R.

Johansson, J.

Josefson, M.

Kalkman, J.

Kienle, A.

Kuga, Y.

Kuhn, J.

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves in Random Media 5, 413–426 (1995).
[CrossRef]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles , (Cambridge University Press, Cambridge, UK, 2002).

Lu, J. Q.

Macdonald, R.

Madsen, S.

Marquet, P.

P. Marquet, F. P. Bevilacqua, C. D. Depeursinge, and E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

Martelli, F.

Mermut, O.

Michels, R.

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles , (Cambridge University Press, Cambridge, UK, 2002).

Mller, M.

Musolino, M.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Nghiem, H. L.

Nguyen, T. H.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).
[CrossRef]

Noiseux, I.

Park, Y.

Patterson, M.

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef]

Pifferi, A.

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef]

Rajaram, N.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).
[CrossRef]

Sparn, A.

Spinelli, L.

Stamm, H.

Sterenborg, H. J. C. M.

Svanberg, S.

Svensson, T.

Swartling, J.

Taroni, P.

Tien, C. L.

B. L. Drolen and C. L. Tien, “Independent and dependent scattering in packed-sphere systems,” J. Thermophys. 1, 63–68 (1987).
[CrossRef]

Torricelli, A.

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles , (Cambridge University Press, Cambridge, UK, 2002).

Tualle, J.-M.

Tunnell, J. W.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).
[CrossRef]

Valentini, G.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

van Leeuwen, T.

van Veen, R. L. P.

Veilleux, I.

Verkruysse, W.

Wabnitz, H.

Whelan, M.

Wilson, B.

Xu, H.

Zaccanti, G.

Appl. Opt.

Appl. Spectrosc.

IEEE J. Quantum Electron.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

J. Biomed. Opt.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).
[CrossRef]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Thermophys.

B. L. Drolen and C. L. Tien, “Independent and dependent scattering in packed-sphere systems,” J. Thermophys. 1, 63–68 (1987).
[CrossRef]

Opt. Eng.

P. Marquet, F. P. Bevilacqua, C. D. Depeursinge, and E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

Opt. Express

C. Chen, J. Q. Lu, H. Ding, K. Jacobs, Y. Du, and X. H. Hu, “A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630nm,” Opt. Express 14, 7420–7435 (2006).
[CrossRef]

H. Xu and M. Patterson, “Determination of the optical properties of tissue-simulating phantoms from interstitial frequency domain measurements of relative fluence and phase difference,” Opt. Express 14, 6485–6501 (2006).
[CrossRef]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16, 10440–10454 (2008).
[CrossRef]

J. Bouchard, I. Veilleux, R. Jedidi, I. Noiseux, M. Fortin, and O. Mermut, “Reference optical phantoms for diffuse optical spectroscopy. Part 1 – Error analysis of a time resolved transmittance characterization method,” Opt. Express 18, 11495–11507 (2010).
[CrossRef]

F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express 15, 486–500 (2007).
[CrossRef]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15, 6589–6604 (2007).
[CrossRef]

J. Kalkman, A. Bykov, D. Faber, and T. van Leeuwen, “Multiple and dependent scattering effects in Doppler optical coherence tomography,” Opt. Express 18, 3883–3892 (2010).
[CrossRef]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004).
[CrossRef]

P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express 18, 26854–26865 (2010).
[CrossRef]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907–5925 (2008).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56, N21–N28 (2011).
[CrossRef]

Waves in Random Media

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves in Random Media 5, 413–426 (1995).
[CrossRef]

Other

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles , (John Wiley and Sons, New York, 1983).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles , (Cambridge University Press, Cambridge, UK, 2002).

M. Zude (Ed.), Optical Monitoring of Fresh and Processed Agricultural Crops , (Contemporary Food Engineering Series), (CRC Press, Boca Raton, Florida, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Examples of measurements of collimated transmittance on dilutions of Intralipid 20% prepared in different ways. Panels a) and d): predilution with 1.185 g of Intralipid in 98.348 g of water; panels b) and e): predilution with 267.0 g of Intralipid in 2478 g of water; panels c) and f): predilution with 80.11 g of Intralipid and 2.49 g of prediluted ink in 2458 g of water. Panels a)–c) pertain to λ = 751 nm, panels d)–f) to 833 nm.

Fig. 2
Fig. 2

Dependent scattering: Experimental results for λ = 751 nm. Each panel reports the experimental results (marks) together with the straight line that best fits the results. The error bars are shown only when larger than the marks. Panel a): results for μ e f f 2 as a function of ρil used to obtain ɛ′sil and ɛail with the method of absorption of water (step 1) and ɛ′ s1il , ɛ′ s2il , and ɛail (step 5). Panel b) results for μ e f f 2 as a function of ρink used to obtain ɛaink (steps 2 and 6). Panels c) and d): examples of results for μ e f f 2 as a function of ρink used to obtain μ′s (ρil ) and μa (ρil ) with the method of adding absorption (step 3) for ρil = 0.0204 and 0.1408 respectively. Panels e) and f): the results for μ′s (ρil ) and μa (ρil ) of step 3 are plotted as a function of ρil . These results are used to evaluate the effect of dependent scattering (step 4).

Fig. 3
Fig. 3

Same as Fig. 2, but for λ = 833 nm. The results displayed in panels c) and d) refer to ρil = 0.0214 and 0.1082 respectively.

Tables (1)

Tables Icon

Table 1 Summary of the Experimental Results Obtained at Different Steps

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

μ e ( ρ i l ) = N 0 C e i l ( r λ , n ) f ( r ) d r
μ e ( ρ i l ) = ɛ e i l ρ i l
μ e ( ρ i l ) = 1 L ln P ( ρ i l = 0 ) P ( ρ i l ) ,
ϕ ( r ) = 3 μ s 4 π r exp ( μ e f f r ) ,
ln [ r ϕ ( r ) ] = ln 3 μ s 4 π μ e f f r ,
μ s ( ρ i l ) = ɛ s i l ρ i l
μ a ( ρ i l ) = ɛ a i l ρ i l + ɛ a H 2 O ( 1 ρ i l )
μ e f f 2 ( ρ i l ) = 3 ɛ s i l ɛ a H 2 O ρ i l + 3 ɛ s i l ( ɛ a i l ɛ a H 2 O ) ρ i l 2
ɛ s i l = I i l 3 ɛ a H 2 O
ɛ a i l = S i l 3 ɛ s i l + ɛ a H 2 O = ɛ a H 2 O ( 1 + S i l I i l )
μ e f f 2 ( ρ i l , ρ i n k ) = 3 μ s ( ρ i l ) ( μ a ( ρ i l ) + ɛ a i n k ρ i n k )
ɛ a i n k = S i n k 3 μ s ( ρ i l )
μ s ( ρ i l ) = S 1 i n k 3 ɛ a i n k
μ a ( ρ i l ) = ɛ a i n k I 1 i n k S 1 i n k
μ s ( ρ i l ) = ɛ s 1 i l ρ i l + ɛ s 2 i l ρ i l 2 ,
ɛ s 2 i l ɛ s 1 i l = S 1 i l I 1 i l .
μ e f f 2 ( ρ i l ) = 3 ɛ s 1 i l ɛ a H 2 O ρ i l + 3 [ ɛ s 1 i l ( ɛ a i l ɛ a H 2 O ) + ɛ s 2 i l ɛ a H 2 O ] ρ i l 2 + 3 ɛ s 2 i l ( ɛ a i l ɛ a H 2 O ) ρ i l 3 .
ɛ s 1 i l = I i l 3 ɛ a H 2 O
ɛ a i l = ɛ a H 2 O ( 1 + S i l I i l ɛ s 2 i l ɛ s 1 i l ) .

Metrics