Abstract

Brachytherapy seed therapy is an increasingly common way to treat prostate cancer through localized radiation. The current standard of care relies on transrectal ultrasound (TRUS) for imaging guidance during the seed placement procedure. As visualization of individual metallic seeds tends to be difficult or inaccurate under TRUS guidance, guide needles are generally tracked to infer seed placement. In an effort to improve seed visualization and placement accuracy, the use of photoacoustic (PA) imaging, which is highly sensitive to metallic objects in soft tissue, was investigated for this clinical application. The PA imaging properties of bare (i.e., embedded in pure gelatin) and tissue-embedded (at depths of up to 13 mm) seeds were investigated with a multi-wavelength (750 to 1090 nm) PA imaging technique. Results indicate that, much like ultrasonic (US) imaging, an angular dependence (i.e., seed orientation relative to imaging transducer) of the PA signal exists. Despite this shortcoming, however, PA imaging offers improved contrast, over US imaging, of a seed in prostate tissue if sufficient local fluence is achieved. Additionally, although the PA signal of a bare seed is greatest for lower laser wavelengths (e.g., 750 nm), the scattering that results from tissue tends to favor the use of higher wavelengths (e.g., 1064 nm, which is the primary wavelength of Nd:YAG lasers) when the seed is located in tissue. A combined PA and US imaging approach (i.e., PAUS imaging) shows strong potential to visualize both the seed and the surrounding anatomical environment of the prostate during brachytherapy seed placement procedures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA-Cancer J. Clin. p. caac. 20073 (2010).
  2. S. Nag, D. Beyer, J. Friedland, P. Grimm, and R. Nath, “American brachytherapy society (abs) recommendations for transperineal permanent brachytherapy of prostate cancer,” Int. J. Radiat. Oncol. 44, 789–799 (1999).
    [CrossRef]
  3. Z. Wei, M. Ding, D. Downey, and A. Fenster, “3d trus guided robot assisted prostate brachytherapy,” in “Medical Image Computing and Computer-Assisted Intervention MICCAI 2005,”, vol. 3750 of Lecture Notes in Computer Science , J. Duncan and G. Gerig, eds. (Springer Berlin / Heidelberg), pp. 17–24.
  4. M. P. R. V. Gellekom, M. A. Moerland, J. J. Battermann, and J. J. W. Lagendijk, “MRI-guided prostate brachytherapy with single needle method–a planning study,” Radiother. Oncol. 71, 327–332 (2004).
    [CrossRef] [PubMed]
  5. J. Xue, F. Waterman, J. Handler, and E. Gressen, “Localization of linked 125i seeds in postimplant trus images for prostate brachytherapy dosimetry,” Int. J. Radiat. Oncol. 62, 912–919 (2005).
    [CrossRef]
  6. B. J. Davis, R. R. Kinnick, M. Fatemi, E. P. Lief, R. A. Robb, and J. F. Greenleaf, “Measurement of the ultrasound backscatter signal from three seed types as a function of incidence angle: application to permanent prostate brachytherapy,” Int. J. Radiat. Oncol. 57, 1174–1182 (2003).
    [CrossRef]
  7. B. H. Han, K. Wallner, G. Merrick, W. Butler, S. Sutlief, and J. Sylvester, “Prostate brachytherapy seed identification on post-implant trus images,” Med. Phys. 30, 898–900 (2003).
    [CrossRef] [PubMed]
  8. S. Nath, Z. Chen, N. Yue, S. Trumpore, and R. Peschel, “Dosimetric effects of needle divergence in prostate seed implant using 125I and 103Pd radioactive seeds,” Med. Phys. 27, 1058–1066 (2000).
    [CrossRef] [PubMed]
  9. S. Prahl, “Optical properties spectra compiled by Scott Prahl,” http://omlc.ogi.edu/spectra/ .
  10. B. Karlsson, C. G. Ribbing, A. Roos, E. Valkonen, and T. Karlsson, “Optical properties of some metal oxides in solar absorbers,” Phys. Scr. 25, 826 (1982).
    [CrossRef]
  11. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
    [CrossRef]
  12. J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15, 021309 (2010).
    [CrossRef] [PubMed]
  13. S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
    [CrossRef]
  14. E. Lee and M. Zaider, “Intraoperative dynamic dose optimization in permanent prostate implants,” Int. J. Radiat. Oncol. 56, 854–861 (2003).
    [CrossRef]
  15. T. Varghese and J. Ophir, “An analysis of elastographic contrast-to-noise ratio,” Ultrasound Med. Biol. 24, 915–924 (1998).
    [CrossRef] [PubMed]
  16. T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophotonics 1, 200–203 (2008).
    [CrossRef]
  17. H. Hricak, R. Jeffrey, G. Dooms, and E. Tanagho, “Evaluation of prostate size: a comparison of ultrasound and magnetic resonance imaging,” Urol. Radiol. 9, 1–8 (1988).
    [CrossRef]
  18. American National Standards Institute, ANSI Z136.1-2007 American national standard for safe use of lasers (2007).
  19. K. Homan, S. Kim, Y. S. Chen, B. Wang, S. Mallidi, and S. Emelianov, “Prospects of molecular photoacoustic imaging at 1064 nm wavelength,” Opt. Lett. 35, 2663–2665 (2010).
    [CrossRef] [PubMed]
  20. J. F. Corbett, J. J. Jezioranski, J. Crook, T. Tran, and I. W. T. Yeung, “The effect of seed orientation deviations on the quality of 125 i prostate implants,” Phys. Med. Biol. 46, 2785 (2001).
    [CrossRef] [PubMed]

2010 (2)

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15, 021309 (2010).
[CrossRef] [PubMed]

K. Homan, S. Kim, Y. S. Chen, B. Wang, S. Mallidi, and S. Emelianov, “Prospects of molecular photoacoustic imaging at 1064 nm wavelength,” Opt. Lett. 35, 2663–2665 (2010).
[CrossRef] [PubMed]

2008 (1)

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophotonics 1, 200–203 (2008).
[CrossRef]

2006 (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

2005 (1)

J. Xue, F. Waterman, J. Handler, and E. Gressen, “Localization of linked 125i seeds in postimplant trus images for prostate brachytherapy dosimetry,” Int. J. Radiat. Oncol. 62, 912–919 (2005).
[CrossRef]

2004 (1)

M. P. R. V. Gellekom, M. A. Moerland, J. J. Battermann, and J. J. W. Lagendijk, “MRI-guided prostate brachytherapy with single needle method–a planning study,” Radiother. Oncol. 71, 327–332 (2004).
[CrossRef] [PubMed]

2003 (3)

B. J. Davis, R. R. Kinnick, M. Fatemi, E. P. Lief, R. A. Robb, and J. F. Greenleaf, “Measurement of the ultrasound backscatter signal from three seed types as a function of incidence angle: application to permanent prostate brachytherapy,” Int. J. Radiat. Oncol. 57, 1174–1182 (2003).
[CrossRef]

B. H. Han, K. Wallner, G. Merrick, W. Butler, S. Sutlief, and J. Sylvester, “Prostate brachytherapy seed identification on post-implant trus images,” Med. Phys. 30, 898–900 (2003).
[CrossRef] [PubMed]

E. Lee and M. Zaider, “Intraoperative dynamic dose optimization in permanent prostate implants,” Int. J. Radiat. Oncol. 56, 854–861 (2003).
[CrossRef]

2001 (2)

J. F. Corbett, J. J. Jezioranski, J. Crook, T. Tran, and I. W. T. Yeung, “The effect of seed orientation deviations on the quality of 125 i prostate implants,” Phys. Med. Biol. 46, 2785 (2001).
[CrossRef] [PubMed]

S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
[CrossRef]

2000 (1)

S. Nath, Z. Chen, N. Yue, S. Trumpore, and R. Peschel, “Dosimetric effects of needle divergence in prostate seed implant using 125I and 103Pd radioactive seeds,” Med. Phys. 27, 1058–1066 (2000).
[CrossRef] [PubMed]

1999 (1)

S. Nag, D. Beyer, J. Friedland, P. Grimm, and R. Nath, “American brachytherapy society (abs) recommendations for transperineal permanent brachytherapy of prostate cancer,” Int. J. Radiat. Oncol. 44, 789–799 (1999).
[CrossRef]

1998 (1)

T. Varghese and J. Ophir, “An analysis of elastographic contrast-to-noise ratio,” Ultrasound Med. Biol. 24, 915–924 (1998).
[CrossRef] [PubMed]

1988 (1)

H. Hricak, R. Jeffrey, G. Dooms, and E. Tanagho, “Evaluation of prostate size: a comparison of ultrasound and magnetic resonance imaging,” Urol. Radiol. 9, 1–8 (1988).
[CrossRef]

1982 (1)

B. Karlsson, C. G. Ribbing, A. Roos, E. Valkonen, and T. Karlsson, “Optical properties of some metal oxides in solar absorbers,” Phys. Scr. 25, 826 (1982).
[CrossRef]

Alerstam, E.

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophotonics 1, 200–203 (2008).
[CrossRef]

Andersson-Engels, S.

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophotonics 1, 200–203 (2008).
[CrossRef]

Battermann, J. J.

M. P. R. V. Gellekom, M. A. Moerland, J. J. Battermann, and J. J. W. Lagendijk, “MRI-guided prostate brachytherapy with single needle method–a planning study,” Radiother. Oncol. 71, 327–332 (2004).
[CrossRef] [PubMed]

Beyer, D.

S. Nag, D. Beyer, J. Friedland, P. Grimm, and R. Nath, “American brachytherapy society (abs) recommendations for transperineal permanent brachytherapy of prostate cancer,” Int. J. Radiat. Oncol. 44, 789–799 (1999).
[CrossRef]

Butler, W.

B. H. Han, K. Wallner, G. Merrick, W. Butler, S. Sutlief, and J. Sylvester, “Prostate brachytherapy seed identification on post-implant trus images,” Med. Phys. 30, 898–900 (2003).
[CrossRef] [PubMed]

Chen, Y. S.

Chen, Z.

S. Nath, Z. Chen, N. Yue, S. Trumpore, and R. Peschel, “Dosimetric effects of needle divergence in prostate seed implant using 125I and 103Pd radioactive seeds,” Med. Phys. 27, 1058–1066 (2000).
[CrossRef] [PubMed]

Ciezki, J. P.

S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
[CrossRef]

Corbett, J. F.

J. F. Corbett, J. J. Jezioranski, J. Crook, T. Tran, and I. W. T. Yeung, “The effect of seed orientation deviations on the quality of 125 i prostate implants,” Phys. Med. Biol. 46, 2785 (2001).
[CrossRef] [PubMed]

Cormack, R.

S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
[CrossRef]

Crook, J.

J. F. Corbett, J. J. Jezioranski, J. Crook, T. Tran, and I. W. T. Yeung, “The effect of seed orientation deviations on the quality of 125 i prostate implants,” Phys. Med. Biol. 46, 2785 (2001).
[CrossRef] [PubMed]

Davis, B. J.

B. J. Davis, R. R. Kinnick, M. Fatemi, E. P. Lief, R. A. Robb, and J. F. Greenleaf, “Measurement of the ultrasound backscatter signal from three seed types as a function of incidence angle: application to permanent prostate brachytherapy,” Int. J. Radiat. Oncol. 57, 1174–1182 (2003).
[CrossRef]

DeWyngaert, K.

S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
[CrossRef]

Ding, M.

Z. Wei, M. Ding, D. Downey, and A. Fenster, “3d trus guided robot assisted prostate brachytherapy,” in “Medical Image Computing and Computer-Assisted Intervention MICCAI 2005,”, vol. 3750 of Lecture Notes in Computer Science , J. Duncan and G. Gerig, eds. (Springer Berlin / Heidelberg), pp. 17–24.

Doggett, S.

S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
[CrossRef]

Dooms, G.

H. Hricak, R. Jeffrey, G. Dooms, and E. Tanagho, “Evaluation of prostate size: a comparison of ultrasound and magnetic resonance imaging,” Urol. Radiol. 9, 1–8 (1988).
[CrossRef]

Downey, D.

Z. Wei, M. Ding, D. Downey, and A. Fenster, “3d trus guided robot assisted prostate brachytherapy,” in “Medical Image Computing and Computer-Assisted Intervention MICCAI 2005,”, vol. 3750 of Lecture Notes in Computer Science , J. Duncan and G. Gerig, eds. (Springer Berlin / Heidelberg), pp. 17–24.

Edmundson, G. K.

S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
[CrossRef]

Einarsdóttír, M.

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophotonics 1, 200–203 (2008).
[CrossRef]

Emelianov, S.

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15, 021309 (2010).
[CrossRef] [PubMed]

K. Homan, S. Kim, Y. S. Chen, B. Wang, S. Mallidi, and S. Emelianov, “Prospects of molecular photoacoustic imaging at 1064 nm wavelength,” Opt. Lett. 35, 2663–2665 (2010).
[CrossRef] [PubMed]

Fatemi, M.

B. J. Davis, R. R. Kinnick, M. Fatemi, E. P. Lief, R. A. Robb, and J. F. Greenleaf, “Measurement of the ultrasound backscatter signal from three seed types as a function of incidence angle: application to permanent prostate brachytherapy,” Int. J. Radiat. Oncol. 57, 1174–1182 (2003).
[CrossRef]

Fenster, A.

Z. Wei, M. Ding, D. Downey, and A. Fenster, “3d trus guided robot assisted prostate brachytherapy,” in “Medical Image Computing and Computer-Assisted Intervention MICCAI 2005,”, vol. 3750 of Lecture Notes in Computer Science , J. Duncan and G. Gerig, eds. (Springer Berlin / Heidelberg), pp. 17–24.

Friedland, J.

S. Nag, D. Beyer, J. Friedland, P. Grimm, and R. Nath, “American brachytherapy society (abs) recommendations for transperineal permanent brachytherapy of prostate cancer,” Int. J. Radiat. Oncol. 44, 789–799 (1999).
[CrossRef]

Gellekom, M. P. R. V.

M. P. R. V. Gellekom, M. A. Moerland, J. J. Battermann, and J. J. W. Lagendijk, “MRI-guided prostate brachytherapy with single needle method–a planning study,” Radiother. Oncol. 71, 327–332 (2004).
[CrossRef] [PubMed]

Greenleaf, J. F.

B. J. Davis, R. R. Kinnick, M. Fatemi, E. P. Lief, R. A. Robb, and J. F. Greenleaf, “Measurement of the ultrasound backscatter signal from three seed types as a function of incidence angle: application to permanent prostate brachytherapy,” Int. J. Radiat. Oncol. 57, 1174–1182 (2003).
[CrossRef]

Gressen, E.

J. Xue, F. Waterman, J. Handler, and E. Gressen, “Localization of linked 125i seeds in postimplant trus images for prostate brachytherapy dosimetry,” Int. J. Radiat. Oncol. 62, 912–919 (2005).
[CrossRef]

Grimm, P.

S. Nag, D. Beyer, J. Friedland, P. Grimm, and R. Nath, “American brachytherapy society (abs) recommendations for transperineal permanent brachytherapy of prostate cancer,” Int. J. Radiat. Oncol. 44, 789–799 (1999).
[CrossRef]

Han, B. H.

B. H. Han, K. Wallner, G. Merrick, W. Butler, S. Sutlief, and J. Sylvester, “Prostate brachytherapy seed identification on post-implant trus images,” Med. Phys. 30, 898–900 (2003).
[CrossRef] [PubMed]

Handler, J.

J. Xue, F. Waterman, J. Handler, and E. Gressen, “Localization of linked 125i seeds in postimplant trus images for prostate brachytherapy dosimetry,” Int. J. Radiat. Oncol. 62, 912–919 (2005).
[CrossRef]

Homan, K.

Hricak, H.

H. Hricak, R. Jeffrey, G. Dooms, and E. Tanagho, “Evaluation of prostate size: a comparison of ultrasound and magnetic resonance imaging,” Urol. Radiol. 9, 1–8 (1988).
[CrossRef]

Jeffrey, R.

H. Hricak, R. Jeffrey, G. Dooms, and E. Tanagho, “Evaluation of prostate size: a comparison of ultrasound and magnetic resonance imaging,” Urol. Radiol. 9, 1–8 (1988).
[CrossRef]

Jezioranski, J. J.

J. F. Corbett, J. J. Jezioranski, J. Crook, T. Tran, and I. W. T. Yeung, “The effect of seed orientation deviations on the quality of 125 i prostate implants,” Phys. Med. Biol. 46, 2785 (2001).
[CrossRef] [PubMed]

Karlsson, B.

B. Karlsson, C. G. Ribbing, A. Roos, E. Valkonen, and T. Karlsson, “Optical properties of some metal oxides in solar absorbers,” Phys. Scr. 25, 826 (1982).
[CrossRef]

Karlsson, T.

B. Karlsson, C. G. Ribbing, A. Roos, E. Valkonen, and T. Karlsson, “Optical properties of some metal oxides in solar absorbers,” Phys. Scr. 25, 826 (1982).
[CrossRef]

Karpiouk, A.

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15, 021309 (2010).
[CrossRef] [PubMed]

Kim, S.

Kinnick, R. R.

B. J. Davis, R. R. Kinnick, M. Fatemi, E. P. Lief, R. A. Robb, and J. F. Greenleaf, “Measurement of the ultrasound backscatter signal from three seed types as a function of incidence angle: application to permanent prostate brachytherapy,” Int. J. Radiat. Oncol. 57, 1174–1182 (2003).
[CrossRef]

Lagendijk, J. J. W.

M. P. R. V. Gellekom, M. A. Moerland, J. J. Battermann, and J. J. W. Lagendijk, “MRI-guided prostate brachytherapy with single needle method–a planning study,” Radiother. Oncol. 71, 327–332 (2004).
[CrossRef] [PubMed]

Lee, E.

E. Lee and M. Zaider, “Intraoperative dynamic dose optimization in permanent prostate implants,” Int. J. Radiat. Oncol. 56, 854–861 (2003).
[CrossRef]

Lief, E. P.

B. J. Davis, R. R. Kinnick, M. Fatemi, E. P. Lief, R. A. Robb, and J. F. Greenleaf, “Measurement of the ultrasound backscatter signal from three seed types as a function of incidence angle: application to permanent prostate brachytherapy,” Int. J. Radiat. Oncol. 57, 1174–1182 (2003).
[CrossRef]

Mallidi, S.

Merrick, G.

B. H. Han, K. Wallner, G. Merrick, W. Butler, S. Sutlief, and J. Sylvester, “Prostate brachytherapy seed identification on post-implant trus images,” Med. Phys. 30, 898–900 (2003).
[CrossRef] [PubMed]

Moerland, M. A.

M. P. R. V. Gellekom, M. A. Moerland, J. J. Battermann, and J. J. W. Lagendijk, “MRI-guided prostate brachytherapy with single needle method–a planning study,” Radiother. Oncol. 71, 327–332 (2004).
[CrossRef] [PubMed]

Nag, S.

S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
[CrossRef]

S. Nag, D. Beyer, J. Friedland, P. Grimm, and R. Nath, “American brachytherapy society (abs) recommendations for transperineal permanent brachytherapy of prostate cancer,” Int. J. Radiat. Oncol. 44, 789–799 (1999).
[CrossRef]

Nath, R.

S. Nag, D. Beyer, J. Friedland, P. Grimm, and R. Nath, “American brachytherapy society (abs) recommendations for transperineal permanent brachytherapy of prostate cancer,” Int. J. Radiat. Oncol. 44, 789–799 (1999).
[CrossRef]

Nath, S.

S. Nath, Z. Chen, N. Yue, S. Trumpore, and R. Peschel, “Dosimetric effects of needle divergence in prostate seed implant using 125I and 103Pd radioactive seeds,” Med. Phys. 27, 1058–1066 (2000).
[CrossRef] [PubMed]

Ophir, J.

T. Varghese and J. Ophir, “An analysis of elastographic contrast-to-noise ratio,” Ultrasound Med. Biol. 24, 915–924 (1998).
[CrossRef] [PubMed]

Peschel, R.

S. Nath, Z. Chen, N. Yue, S. Trumpore, and R. Peschel, “Dosimetric effects of needle divergence in prostate seed implant using 125I and 103Pd radioactive seeds,” Med. Phys. 27, 1058–1066 (2000).
[CrossRef] [PubMed]

Ribbing, C. G.

B. Karlsson, C. G. Ribbing, A. Roos, E. Valkonen, and T. Karlsson, “Optical properties of some metal oxides in solar absorbers,” Phys. Scr. 25, 826 (1982).
[CrossRef]

Robb, R. A.

B. J. Davis, R. R. Kinnick, M. Fatemi, E. P. Lief, R. A. Robb, and J. F. Greenleaf, “Measurement of the ultrasound backscatter signal from three seed types as a function of incidence angle: application to permanent prostate brachytherapy,” Int. J. Radiat. Oncol. 57, 1174–1182 (2003).
[CrossRef]

Roos, A.

B. Karlsson, C. G. Ribbing, A. Roos, E. Valkonen, and T. Karlsson, “Optical properties of some metal oxides in solar absorbers,” Phys. Scr. 25, 826 (1982).
[CrossRef]

Stock, R. G.

S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
[CrossRef]

Stone, N. N.

S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
[CrossRef]

Su, J.

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15, 021309 (2010).
[CrossRef] [PubMed]

Sutlief, S.

B. H. Han, K. Wallner, G. Merrick, W. Butler, S. Sutlief, and J. Sylvester, “Prostate brachytherapy seed identification on post-implant trus images,” Med. Phys. 30, 898–900 (2003).
[CrossRef] [PubMed]

Svanberg, K.

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophotonics 1, 200–203 (2008).
[CrossRef]

Svensson, T.

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophotonics 1, 200–203 (2008).
[CrossRef]

Sylvester, J.

B. H. Han, K. Wallner, G. Merrick, W. Butler, S. Sutlief, and J. Sylvester, “Prostate brachytherapy seed identification on post-implant trus images,” Med. Phys. 30, 898–900 (2003).
[CrossRef] [PubMed]

Tanagho, E.

H. Hricak, R. Jeffrey, G. Dooms, and E. Tanagho, “Evaluation of prostate size: a comparison of ultrasound and magnetic resonance imaging,” Urol. Radiol. 9, 1–8 (1988).
[CrossRef]

Tran, T.

J. F. Corbett, J. J. Jezioranski, J. Crook, T. Tran, and I. W. T. Yeung, “The effect of seed orientation deviations on the quality of 125 i prostate implants,” Phys. Med. Biol. 46, 2785 (2001).
[CrossRef] [PubMed]

Trumpore, S.

S. Nath, Z. Chen, N. Yue, S. Trumpore, and R. Peschel, “Dosimetric effects of needle divergence in prostate seed implant using 125I and 103Pd radioactive seeds,” Med. Phys. 27, 1058–1066 (2000).
[CrossRef] [PubMed]

Valkonen, E.

B. Karlsson, C. G. Ribbing, A. Roos, E. Valkonen, and T. Karlsson, “Optical properties of some metal oxides in solar absorbers,” Phys. Scr. 25, 826 (1982).
[CrossRef]

Varghese, T.

T. Varghese and J. Ophir, “An analysis of elastographic contrast-to-noise ratio,” Ultrasound Med. Biol. 24, 915–924 (1998).
[CrossRef] [PubMed]

Wallner, K.

B. H. Han, K. Wallner, G. Merrick, W. Butler, S. Sutlief, and J. Sylvester, “Prostate brachytherapy seed identification on post-implant trus images,” Med. Phys. 30, 898–900 (2003).
[CrossRef] [PubMed]

Wang, B.

K. Homan, S. Kim, Y. S. Chen, B. Wang, S. Mallidi, and S. Emelianov, “Prospects of molecular photoacoustic imaging at 1064 nm wavelength,” Opt. Lett. 35, 2663–2665 (2010).
[CrossRef] [PubMed]

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15, 021309 (2010).
[CrossRef] [PubMed]

Wang, L. V.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Waterman, F.

J. Xue, F. Waterman, J. Handler, and E. Gressen, “Localization of linked 125i seeds in postimplant trus images for prostate brachytherapy dosimetry,” Int. J. Radiat. Oncol. 62, 912–919 (2005).
[CrossRef]

Wei, Z.

Z. Wei, M. Ding, D. Downey, and A. Fenster, “3d trus guided robot assisted prostate brachytherapy,” in “Medical Image Computing and Computer-Assisted Intervention MICCAI 2005,”, vol. 3750 of Lecture Notes in Computer Science , J. Duncan and G. Gerig, eds. (Springer Berlin / Heidelberg), pp. 17–24.

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Xue, J.

J. Xue, F. Waterman, J. Handler, and E. Gressen, “Localization of linked 125i seeds in postimplant trus images for prostate brachytherapy dosimetry,” Int. J. Radiat. Oncol. 62, 912–919 (2005).
[CrossRef]

Yeung, I. W. T.

J. F. Corbett, J. J. Jezioranski, J. Crook, T. Tran, and I. W. T. Yeung, “The effect of seed orientation deviations on the quality of 125 i prostate implants,” Phys. Med. Biol. 46, 2785 (2001).
[CrossRef] [PubMed]

Yu, Y.

S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
[CrossRef]

Yue, N.

S. Nath, Z. Chen, N. Yue, S. Trumpore, and R. Peschel, “Dosimetric effects of needle divergence in prostate seed implant using 125I and 103Pd radioactive seeds,” Med. Phys. 27, 1058–1066 (2000).
[CrossRef] [PubMed]

Zaider, M.

E. Lee and M. Zaider, “Intraoperative dynamic dose optimization in permanent prostate implants,” Int. J. Radiat. Oncol. 56, 854–861 (2003).
[CrossRef]

Zelefsky, M. J.

S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
[CrossRef]

Int. J. Radiat. Oncol. (5)

S. Nag, D. Beyer, J. Friedland, P. Grimm, and R. Nath, “American brachytherapy society (abs) recommendations for transperineal permanent brachytherapy of prostate cancer,” Int. J. Radiat. Oncol. 44, 789–799 (1999).
[CrossRef]

J. Xue, F. Waterman, J. Handler, and E. Gressen, “Localization of linked 125i seeds in postimplant trus images for prostate brachytherapy dosimetry,” Int. J. Radiat. Oncol. 62, 912–919 (2005).
[CrossRef]

B. J. Davis, R. R. Kinnick, M. Fatemi, E. P. Lief, R. A. Robb, and J. F. Greenleaf, “Measurement of the ultrasound backscatter signal from three seed types as a function of incidence angle: application to permanent prostate brachytherapy,” Int. J. Radiat. Oncol. 57, 1174–1182 (2003).
[CrossRef]

S. Nag, J. P. Ciezki, R. Cormack, S. Doggett, K. DeWyngaert, G. K. Edmundson, R. G. Stock, N. N. Stone, Y. Yu, and M. J. Zelefsky, “Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the american brachytherapy society,” Int. J. Radiat. Oncol. 51, 1422–1430 (2001).
[CrossRef]

E. Lee and M. Zaider, “Intraoperative dynamic dose optimization in permanent prostate implants,” Int. J. Radiat. Oncol. 56, 854–861 (2003).
[CrossRef]

J. Biomed. Opt. (1)

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15, 021309 (2010).
[CrossRef] [PubMed]

J. Biophotonics (1)

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophotonics 1, 200–203 (2008).
[CrossRef]

Med. Phys. (2)

B. H. Han, K. Wallner, G. Merrick, W. Butler, S. Sutlief, and J. Sylvester, “Prostate brachytherapy seed identification on post-implant trus images,” Med. Phys. 30, 898–900 (2003).
[CrossRef] [PubMed]

S. Nath, Z. Chen, N. Yue, S. Trumpore, and R. Peschel, “Dosimetric effects of needle divergence in prostate seed implant using 125I and 103Pd radioactive seeds,” Med. Phys. 27, 1058–1066 (2000).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

J. F. Corbett, J. J. Jezioranski, J. Crook, T. Tran, and I. W. T. Yeung, “The effect of seed orientation deviations on the quality of 125 i prostate implants,” Phys. Med. Biol. 46, 2785 (2001).
[CrossRef] [PubMed]

Phys. Scr. (1)

B. Karlsson, C. G. Ribbing, A. Roos, E. Valkonen, and T. Karlsson, “Optical properties of some metal oxides in solar absorbers,” Phys. Scr. 25, 826 (1982).
[CrossRef]

Radiother. Oncol. (1)

M. P. R. V. Gellekom, M. A. Moerland, J. J. Battermann, and J. J. W. Lagendijk, “MRI-guided prostate brachytherapy with single needle method–a planning study,” Radiother. Oncol. 71, 327–332 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Ultrasound Med. Biol. (1)

T. Varghese and J. Ophir, “An analysis of elastographic contrast-to-noise ratio,” Ultrasound Med. Biol. 24, 915–924 (1998).
[CrossRef] [PubMed]

Urol. Radiol. (1)

H. Hricak, R. Jeffrey, G. Dooms, and E. Tanagho, “Evaluation of prostate size: a comparison of ultrasound and magnetic resonance imaging,” Urol. Radiol. 9, 1–8 (1988).
[CrossRef]

Other (4)

American National Standards Institute, ANSI Z136.1-2007 American national standard for safe use of lasers (2007).

A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA-Cancer J. Clin. p. caac. 20073 (2010).

Z. Wei, M. Ding, D. Downey, and A. Fenster, “3d trus guided robot assisted prostate brachytherapy,” in “Medical Image Computing and Computer-Assisted Intervention MICCAI 2005,”, vol. 3750 of Lecture Notes in Computer Science , J. Duncan and G. Gerig, eds. (Springer Berlin / Heidelberg), pp. 17–24.

S. Prahl, “Optical properties spectra compiled by Scott Prahl,” http://omlc.ogi.edu/spectra/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical absorption spectra of various tissue constituents in vivo [9]. Also shown is optical absorption coefficient of stainless steel 316L; the surface passivation layer of stainless steel is primarily Cr2O3, which dominates in generation of PA effect, while stainless steel core is Fe2O3 [10].

Fig. 2
Fig. 2

Schematic representation of 3D phantom (left) and front (center) and side (right) view of transducer rotation apparatus. Yellow triangle/rectangle represents gelatin background; green ellipsoid, seed; blue and gray rectangles, transducer and mount, respectively. Red-shaded regions denote laser irradiation, while black lines represent acoustic transmission, both of which are oversimplifications and included for illustration purposes only. Purple arrow indicates transducer rotation axis.

Fig. 3
Fig. 3

Picture of prostate sample cast in gelatin (a) and schematic views of imaging orientations (b). In picture of sample (a), green dot denotes approximate placement of seed (long-axis perpendicular to table), red line indicates example irradiation path, while US transducer is visible in upper-left portion of image (with aperture oriented perpendicular to table). White scale indicates varied distance of seed from front-most sample edge. In schematic depictions (b), short- (left) and long-axis (right) orientations are offered. Peach cube depicts embedded prostate sample; other conventions are same as used in Fig. 2.

Fig. 4
Fig. 4

US and PA images of brachytherapy seeds at different rotation angles relative to transducer face. Seed schematics (blue background) denote orientation, while first image immediately right offers US B-mode depiction (grayscale) and second image offers PA imaging depiction (yellow-red colormap). PA and US images are displayed with a 30-dB dynamic range, while all images (including schematic) are presented with same scale (i.e., seed is 0.8 x 4.5 mm) and co-registered orientations/positions. Transducer face is located/aligned with top margin of schematic.

Fig. 5
Fig. 5

Normalized PA signal of seed embedded in gelatin (a - red square) and embedded in excised bovine prostate (a - blue circle) and contrast spectrum of seed embedded in prostate sample (b). Proximal end of seed is embedded approximately 1 mm from prostate tissue surface (in direction of laser source). Note for the prostate tissue experiment (i.e., blue circle), data file obtained at 830 nm was corrupt and was thus omitted from analysis.

Fig. 6
Fig. 6

US B-mode (a), PA (b), and combined PAUS (c) images of a seed embedded in a bovine prostate sample in the long-axis orientation. PA image was acquired at 870 nm and is displayed with 35-dB dynamic range; B-mode image is displayed with 55-dB range.

Fig. 7
Fig. 7

Normalized PA spectra and contrast of brachytherapy seed embedded in bovine prostate at three laser irradiation depths: 4 mm (a,d), 10 mm (b,e), and 13 mm (c,f).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Contrast = S s ¯ S b ¯ S b ¯ ,

Metrics