Abstract

Both point-scanning and line-scanning confocal microscopes provide resolution and optical sectioning to observe nuclear and cellular detail in human tissues, and are being translated for clinical applications. While traditional point-scanning is truly confocal and offers the best possible optical sectioning and resolution, line-scanning is partially confocal but may offer a relatively simpler and lower-cost alternative for more widespread dissemination into clinical settings. The loss of sectioning and loss of contrast due to scattering in tissue is more rapid and more severe with a line-scan than with a point-scan. However, the sectioning and contrast may be recovered with the use of a divided-pupil. Thus, as part of our efforts to translate confocal microscopy for detection of skin cancer, and to determine the best possible approach for clinical applications, we are now developing a quantitative understanding of imaging performance for a set of scanning and pupil conditions. We report a Fourier-analysis-based computational model of confocal microscopy for six configurations. The six configurations are point-scanning and line-scanning, with full-pupil, half-pupil and divided-pupils. The performance, in terms of on-axis irradiance (signal), resolution and sectioning capabilities, is quantified and compared among these six configurations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Gonzalez, M. Gill, and A. C. Halpern, eds., Reflectance Confocal Microscopy of Cutaneous Tumors—An Atlas with Clinical, Dermoscopic and Histological Correlations (Informa Healthcare, London, 2008).
  2. A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90.e1–90.e9 (2010).
    [CrossRef]
  3. Y. Zhao, A. E. Elsner, B. P. Haggerty, D. A. VanNasdale, and B. L. Petrig, "Laser scanning digital camera for retinal imaging with a 40 degree field of view," in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FMG5.
  4. C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
    [CrossRef]
  5. T. Wilson and S. J. Hewlett, “Imaging in scanning microscopes with slit-shaped detectors,” J. Microsc. 160(Pt 2), 115–139 (1990).
    [PubMed]
  6. A. A. Tanbakuchi, A. R. Rouse, J. A. Udovich, K. D. Hatch, and A. F. Gmitro, “Clinical confocal microlaparoscope for real-time in vivo optical biopsies,” J. Biomed. Opt. 14(4), 044030 (2009).
    [CrossRef] [PubMed]
  7. D. S. Gareau, S. Abeytunge, and M. Rajadhyaksha, “Line-scanning reflectance confocal microscopy of human skin: comparison of full-pupil and divided-pupil configurations,” Opt. Lett. 34(20), 3235–3237 (2009).
    [CrossRef] [PubMed]
  8. P. J. Dwyer, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal theta line-scanning microscope for imaging human tissues,” Appl. Opt. 46(10), 1843–1851 (2007).
    [CrossRef] [PubMed]
  9. P. J. Dwyer, C. A. DiMarzio, J. M. Zavislan, W. J. Fox, and M. Rajadhyaksha, “Confocal reflectance theta line scanning microscope for imaging human skin in vivo,” Opt. Lett. 31(7), 942–944 (2006).
    [CrossRef] [PubMed]
  10. B. Simon and C. A. Dimarzio, “Simulation of a theta line-scanning confocal microscope,” J. Biomed. Opt. 12(6), 064020 (2007).
    [CrossRef] [PubMed]
  11. C. J. Koester, “Scanning mirror microscope with optical sectioning characteristics: applications in ophthalmology,” Appl. Opt. 19(11), 1749–1757 (1980).
    [CrossRef] [PubMed]
  12. E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun. 111(5-6), 536–547 (1994).
    [CrossRef]
  13. R. H. Webb and F. Rogomentich, “Confocal microscope with large field and working distance,” Appl. Opt. 38(22), 4870–4875 (1999).
    [CrossRef] [PubMed]
  14. K. Si, W. Gong, and C. J. R. Sheppard, “Three-dimensional coherent transfer function for a confocal microscope with two D-shaped pupils,” Appl. Opt. 48(5), 810–817 (2009).
    [CrossRef] [PubMed]
  15. W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in a confocal microscope with D-shaped apertures,” Appl. Opt. 48(20), 3998–4002 (2009) (H.).
    [CrossRef] [PubMed]
  16. W. Gong, K. Si, and C. J. R. Sheppard, “Divided-aperture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49(4), 752–757 (2010) (H.).
    [CrossRef] [PubMed]
  17. J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt. 13(3), 034020 (2008).
    [CrossRef] [PubMed]
  18. J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, “Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner,” Opt. Lett. 32(3), 256–258 (2007) (H.).
    [CrossRef] [PubMed]
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  20. C. A. DiMarzio, “Diffraction,” in Optics for Engineers (CRC Press, Boca Raton, FL, to be published).

2010 (2)

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90.e1–90.e9 (2010).
[CrossRef]

W. Gong, K. Si, and C. J. R. Sheppard, “Divided-aperture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49(4), 752–757 (2010) (H.).
[CrossRef] [PubMed]

2009 (4)

2008 (1)

J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt. 13(3), 034020 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (1)

1999 (1)

1994 (1)

E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun. 111(5-6), 536–547 (1994).
[CrossRef]

1990 (1)

T. Wilson and S. J. Hewlett, “Imaging in scanning microscopes with slit-shaped detectors,” J. Microsc. 160(Pt 2), 115–139 (1990).
[PubMed]

1988 (1)

C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[CrossRef]

1980 (1)

Abeytunge, S.

Contag, C. H.

J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt. 13(3), 034020 (2008).
[CrossRef] [PubMed]

J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, “Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner,” Opt. Lett. 32(3), 256–258 (2007) (H.).
[CrossRef] [PubMed]

Crawford, J. M.

J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt. 13(3), 034020 (2008).
[CrossRef] [PubMed]

Dimarzio, C. A.

Dwyer, P. J.

Fox, W. J.

Gareau, D. S.

Gmitro, A. F.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90.e1–90.e9 (2010).
[CrossRef]

A. A. Tanbakuchi, A. R. Rouse, J. A. Udovich, K. D. Hatch, and A. F. Gmitro, “Clinical confocal microlaparoscope for real-time in vivo optical biopsies,” J. Biomed. Opt. 14(4), 044030 (2009).
[CrossRef] [PubMed]

Gong, W.

Hatch, K. D.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90.e1–90.e9 (2010).
[CrossRef]

A. A. Tanbakuchi, A. R. Rouse, J. A. Udovich, K. D. Hatch, and A. F. Gmitro, “Clinical confocal microlaparoscope for real-time in vivo optical biopsies,” J. Biomed. Opt. 14(4), 044030 (2009).
[CrossRef] [PubMed]

Hewlett, S. J.

T. Wilson and S. J. Hewlett, “Imaging in scanning microscopes with slit-shaped detectors,” J. Microsc. 160(Pt 2), 115–139 (1990).
[PubMed]

Kino, G. S.

J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt. 13(3), 034020 (2008).
[CrossRef] [PubMed]

J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, “Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner,” Opt. Lett. 32(3), 256–258 (2007) (H.).
[CrossRef] [PubMed]

Koester, C. J.

Lindek, S.

E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun. 111(5-6), 536–547 (1994).
[CrossRef]

Liu, J. T. C.

J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt. 13(3), 034020 (2008).
[CrossRef] [PubMed]

J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, “Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner,” Opt. Lett. 32(3), 256–258 (2007) (H.).
[CrossRef] [PubMed]

Mandella, M. J.

J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt. 13(3), 034020 (2008).
[CrossRef] [PubMed]

J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, “Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner,” Opt. Lett. 32(3), 256–258 (2007) (H.).
[CrossRef] [PubMed]

Mao, X. Q.

C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[CrossRef]

Piyawattanametha, W.

Ra, H.

Rajadhyaksha, M.

Rogomentich, F.

Rouse, A. R.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90.e1–90.e9 (2010).
[CrossRef]

A. A. Tanbakuchi, A. R. Rouse, J. A. Udovich, K. D. Hatch, and A. F. Gmitro, “Clinical confocal microlaparoscope for real-time in vivo optical biopsies,” J. Biomed. Opt. 14(4), 044030 (2009).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Si, K.

Simon, B.

B. Simon and C. A. Dimarzio, “Simulation of a theta line-scanning confocal microscope,” J. Biomed. Opt. 12(6), 064020 (2007).
[CrossRef] [PubMed]

Solgaard, O.

Stelzer, E. H. K.

E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun. 111(5-6), 536–547 (1994).
[CrossRef]

Tanbakuchi, A. A.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90.e1–90.e9 (2010).
[CrossRef]

A. A. Tanbakuchi, A. R. Rouse, J. A. Udovich, K. D. Hatch, and A. F. Gmitro, “Clinical confocal microlaparoscope for real-time in vivo optical biopsies,” J. Biomed. Opt. 14(4), 044030 (2009).
[CrossRef] [PubMed]

Udovich, J. A.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90.e1–90.e9 (2010).
[CrossRef]

A. A. Tanbakuchi, A. R. Rouse, J. A. Udovich, K. D. Hatch, and A. F. Gmitro, “Clinical confocal microlaparoscope for real-time in vivo optical biopsies,” J. Biomed. Opt. 14(4), 044030 (2009).
[CrossRef] [PubMed]

Wang, T. D.

J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt. 13(3), 034020 (2008).
[CrossRef] [PubMed]

J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, “Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner,” Opt. Lett. 32(3), 256–258 (2007) (H.).
[CrossRef] [PubMed]

Webb, R. H.

Wilson, T.

T. Wilson and S. J. Hewlett, “Imaging in scanning microscopes with slit-shaped detectors,” J. Microsc. 160(Pt 2), 115–139 (1990).
[PubMed]

Wong, L. K.

Zavislan, J. M.

Am. J. Obstet. Gynecol. (1)

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90.e1–90.e9 (2010).
[CrossRef]

Appl. Opt. (6)

J. Biomed. Opt. (3)

B. Simon and C. A. Dimarzio, “Simulation of a theta line-scanning confocal microscope,” J. Biomed. Opt. 12(6), 064020 (2007).
[CrossRef] [PubMed]

J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt. 13(3), 034020 (2008).
[CrossRef] [PubMed]

A. A. Tanbakuchi, A. R. Rouse, J. A. Udovich, K. D. Hatch, and A. F. Gmitro, “Clinical confocal microlaparoscope for real-time in vivo optical biopsies,” J. Biomed. Opt. 14(4), 044030 (2009).
[CrossRef] [PubMed]

J. Microsc. (1)

T. Wilson and S. J. Hewlett, “Imaging in scanning microscopes with slit-shaped detectors,” J. Microsc. 160(Pt 2), 115–139 (1990).
[PubMed]

J. Mod. Opt. (1)

C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[CrossRef]

Opt. Commun. (1)

E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun. 111(5-6), 536–547 (1994).
[CrossRef]

Opt. Lett. (3)

Other (4)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

C. A. DiMarzio, “Diffraction,” in Optics for Engineers (CRC Press, Boca Raton, FL, to be published).

S. G. Gonzalez, M. Gill, and A. C. Halpern, eds., Reflectance Confocal Microscopy of Cutaneous Tumors—An Atlas with Clinical, Dermoscopic and Histological Correlations (Informa Healthcare, London, 2008).

Y. Zhao, A. E. Elsner, B. P. Haggerty, D. A. VanNasdale, and B. L. Petrig, "Laser scanning digital camera for retinal imaging with a 40 degree field of view," in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FMG5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fourier-analysis computational model flowchart.

Fig. 2
Fig. 2

Transmission pupil and field irradiance for a full-pupil point-scanning system.

Fig. 3
Fig. 3

Transmit on-axis image irradiance signal versus fill factor, h, for four confocal microscopy configurations.

Fig. 4
Fig. 4

Normalized image irradiance for point-scanning system, for z = 0μm with NA = 0.90, dpinhole = 2.5* dAiryDisc: (a) full-pupil point-scan, (b) half-pupil point-scan, and (c) divided-pupil point-scan. Note: See Fig. 6 for the same curves at z = −0.75μm.

Fig. 5
Fig. 5

Transverse resolution for line-scan, with h = 1.02, NA = 0.90, and dpinhole = 2.5* dAiryDisc for (a) full-pupil configuration (z = 0μm), (b) full-pupil configuration (z = 1μm), (c) half-pupil configuration (z = 1μm), (d) divided-pupil configuration (z = 1μm).

Fig. 6
Fig. 6

Transmit Irradiance of point-scan, for z = −0.75μm with NA = 0.90, dpinhole = 2.5* dAiryDisc, (a) Full-Pupil Point-Scan, (b) Half-Pupil Point-Scan, and (c) Divided-Pupil Point-Scan. NOTE: See Fig. 4 for the same curves at z = 0μm.

Fig. 7
Fig. 7

The axial response for (a) point-scan and (b) line-scan for each configuration.

Fig. 8
Fig. 8

Image Irradiance versus (a) numerical aperture at focal plane, (b) pinhole diameter at focal plane.

Tables (3)

Tables Icon

Table 1 Summary of the optimal fill-factor values and maximum on-axis image irradiance for each source and corresponding configuration in the transmitter path

Tables Icon

Table 2 Summary of transverse resolution measurements

Tables Icon

Table 3 Summary of axial resolution measurements

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E F i e l d ( x f , y f , z f ) = j k 2 π A p e r t u r e E P u p i l ( x p , y p , 0 ) e j k r r d x p d y p
E F i e l d ( x f , y f , z f ) = j k e j k z f 2 π z f + + E P u p i l ( x p , y p , 0 ) e j 2 π ( x f 2 + y f 2 ) r F 2 e j k ( x p x f + y p y f ) z f d x p d y p
r F = 2 λ z f .
1 Q = 1 z o 1 z f ,  r F = 2 λ Q .
E F i e l d ( x f , y f , z f ) = j k e j k z f 2 π z f e j 2 π ( x f 2 + y f 2 ) 2 z f + + E P u p i l ( x p , y p , 0 ) e j 2 π ( x p 2 + y p 2 ) 2 Q e j k ( x p x f + y p y f ) z f d x p d y p .
f x = x p λ z o ,  f y = y p λ z o .

Metrics