Abstract

Presbyopia is closely associated with the loss of accommodation, and hence with a decline in the viscoelastic properties of the human eye lens. In this article we describe a method for obtaining spatially resolved in vivo measurements of the rheological properties of the eye lens, based on the spectroscopic analysis of spontaneous Brillouin scattering using a virtually imaged phased array (VIPA). The multi-pass configuration enhances resolution to the extent that measurements are possible in elastic biological tissue characterized by intense scattering. We also present spatially resolved measurements obtained in extracted animal eyes and lenses. The results yield entirely new insights into the aging process of the eye lens.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. von Helmholtz, “Ueber die Accommodation des Auges,” Arch. Ophthalmol. 1, 1–74 (1855).
  2. H. A. Weeber, G. Eckert, W. Pechhold, and R. G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
    [CrossRef] [PubMed]
  3. R. F. Fisher, “The elastic constants of the human lens,” J. Physiol. 212(1), 147–180 (1971).
    [PubMed]
  4. R. F. Fisher, “The force of contraction of the human ciliary muscle during accommodation,” J. Physiol. 270(1), 51–74 (1977).
    [PubMed]
  5. R. F. Fisher, “Elastic constants of the human lens capsule,” J. Physiol. 201(1), 1–19 (1969).
    [PubMed]
  6. S. Krag and T. T. Andreassen, “Mechanical properties of the human posterior lens capsule,” Invest. Ophthalmol. Vis. Sci. 44(2), 691–696 (2003).
    [CrossRef] [PubMed]
  7. R. A. Schachar, R. W. Chan, and M. Fu, “Viscoelastic shear properties of the fresh porcine lens,” Br. J. Ophthalmol. 91(3), 366–368 (2007).
    [CrossRef] [PubMed]
  8. S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57(12), 2910–2917 (2010).
    [CrossRef] [PubMed]
  9. J. Randall and J. M. Vaughan, “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci. 214(1197), 449–470 (1982).
    [CrossRef] [PubMed]
  10. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
    [CrossRef] [PubMed]
  11. K. Wileke, “Morphologische und physiologische Untersuchungen an transparenten und kataraktösen Linsen von Farm und Wildlachsen,” Dissertation (Freie Universität Berlin, 2008).
  12. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [CrossRef] [PubMed]
  13. Robert-Bosch-Stiftung Regierungspräsidium Karlsruhe, “Einführung in die Rheologie von Emulsionen,” www.nat.nwt-bw.de/./RBS_Grundlagen_Rheologie.pdf .
  14. A. S. Dukhin and P. J. Goetz, “Bulk viscosity and compressibility measurement using acoustic spectroscopy,” J. Chem. Phys. 130(12), 124519 (2009).
    [CrossRef] [PubMed]
  15. J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
    [CrossRef] [PubMed]
  16. N. Berovic, N. Thomas, R. A. Thornhill, and J. M. Vaughan, “Observation of Brillouin scattering from single muscle fibres,” Eur. Biophys. J. 17(2), 69–74 (1989).
    [CrossRef] [PubMed]
  17. J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin scattering in systems of biological significance,” Philos. Trans. R. Soc. Lond. A 293(1402), 341–348 (1979).
    [CrossRef]
  18. L. Brillouin, “Diffusion de la lumière et des rayonnes X par un corps transparent homogène: influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).
  19. M. Shirasaki, “Virtually imaged phased array,” Fujitsu Sci. Tech. J. 35, 113–125 (1999).
  20. G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
    [CrossRef] [PubMed]
  21. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
    [CrossRef] [PubMed]
  22. T. Mezger, Das Rheologie-Handbuch (Vincentz Verlag, Hannover, 2000).
  23. E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
    [CrossRef] [PubMed]
  24. R. A. Schachar, A. Abolmaali, and F. Kamangar, “Comment on the publication “Three-dimensional ultrasound, biomicroscopy environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation” by O. Stachs et al,” Graefes Arch. Clin. Exp. Ophthalmol. 244(8), 1062–1063, author reply 1064–1065 (2006).
    [CrossRef] [PubMed]
  25. R. A. Schachar, A. Abolmaali, and T. Le, “Insights into the age-related decline in the amplitude of accommodation of the human lens using a non-linear finite-element model,” Br. J. Ophthalmol. 90(10), 1304–1309 (2006).
    [CrossRef] [PubMed]
  26. A. P. Beers and G. L. Van der Heijde, “Presbyopia and velocity of sound in the lens,” Optom. Vis. Sci. 71(4), 250–253 (1994).
    [CrossRef] [PubMed]
  27. R. F. Fisher and B. E. Pettet, “Presbyopia and the water content of the human crystalline lens,” J. Physiol. 234(2), 443–447 (1973).
    [PubMed]
  28. H. Stroppe, Physik, 14th ed. (Carl Hanser Verlag, Leipzig, 2008).
  29. T. A. Litovitz and C. M. Davis, “Structural and Shear Relaxation in Liquids,” in Physical Acoustics: Principles and Methods, W. P. Mason (ed.), Part IIA (Academic Press, New York, 1965), pp. 281–349.
  30. E. Risse, “Kontinuierlich angeregt und aktiv gütegeschaltete Oszillator-Verstärker-Systeme hoher Strahldichte durch Einsatz von Faser-Phasenkonjugatoren,” Dissertation (Technical University of Berlin, Berlin, 2003).
  31. R. Urs, “Investigation of accommodation and presbyopia using ultrasound imaging during ex vivo simulated accommodation,” Ph.D. dissertaion (University of Miami, 2010), Open Access Dissertations, http://scholarlyrepository.miami.edu/oa_dissertations/360 .
  32. T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett. 28(6), 414–416 (2003).
    [CrossRef] [PubMed]
  33. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
  34. H. Melcher and E. Gerth, ““Darstellung von Linienprofilen durch Lorentz-Funktionen n-ten Grades,” Exp,” Tech. Phys. 25(6), 527–538 (1977).
  35. A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972).
    [CrossRef] [PubMed]
  36. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
    [CrossRef] [PubMed]
  37. B. K. Pierscionek, A. Belaidi, and H. H. Bruun, “Refractive index distribution in the porcine eye lens for 532 nm and 633 nm light,” Eye (Lond.) 19(4), 375–381 (2005).
    [CrossRef] [PubMed]
  38. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
    [CrossRef] [PubMed]
  39. A. K. Dillingham, H. Deuring, G. J. Hilborn, L. Garamszegi, and H. Haitjema, DE Patent No. DE 000060113085 T2 (June 2006).
  40. R. Barer and S. Joseph, “Refractometry of living cells,” Q. J. Microsc. Sci. 95(4), 399–423 (1954).
  41. D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J.-M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
    [CrossRef] [PubMed]
  42. D. A. Samuelson, “Embryology and anatomy,” in Veterinary Ophthalmology, 2nd ed., K. N. Gelatt, ed. (Lea & Febiger, Philadelphia, 1991), pp. 75–84.
  43. G. G. Gum, “Physiology of the eye,” in Veterinary Ophthalmology, 2nd ed., K. N. Gelatt, ed. (Lea und Febiger, Philadelphia, 1991), pp. 138–143.
  44. K. Ulrich, Linsenproteine (Kristalline),” in Vergleichende Biochemie der Tiere (Fischer, Jena, 1990), pp. 322–332.
  45. C. L. De Korte, A. F. W. Van Der Steen, J. M. Thijssen, J. J. Duindam, C. Otto, and G. J. Puppels, “Relation between local acoustic parameters and protein distribution in human and porcine eye lenses,” Exp. Eye Res. 59(5), 617–627 (1994).
    [CrossRef] [PubMed]

2011

2010

2009

A. S. Dukhin and P. J. Goetz, “Bulk viscosity and compressibility measurement using acoustic spectroscopy,” J. Chem. Phys. 130(12), 124519 (2009).
[CrossRef] [PubMed]

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[CrossRef] [PubMed]

2008

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[CrossRef] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[CrossRef] [PubMed]

2007

R. A. Schachar, R. W. Chan, and M. Fu, “Viscoelastic shear properties of the fresh porcine lens,” Br. J. Ophthalmol. 91(3), 366–368 (2007).
[CrossRef] [PubMed]

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
[CrossRef] [PubMed]

2006

R. A. Schachar, A. Abolmaali, and F. Kamangar, “Comment on the publication “Three-dimensional ultrasound, biomicroscopy environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation” by O. Stachs et al,” Graefes Arch. Clin. Exp. Ophthalmol. 244(8), 1062–1063, author reply 1064–1065 (2006).
[CrossRef] [PubMed]

R. A. Schachar, A. Abolmaali, and T. Le, “Insights into the age-related decline in the amplitude of accommodation of the human lens using a non-linear finite-element model,” Br. J. Ophthalmol. 90(10), 1304–1309 (2006).
[CrossRef] [PubMed]

2005

B. K. Pierscionek, A. Belaidi, and H. H. Bruun, “Refractive index distribution in the porcine eye lens for 532 nm and 633 nm light,” Eye (Lond.) 19(4), 375–381 (2005).
[CrossRef] [PubMed]

2003

T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett. 28(6), 414–416 (2003).
[CrossRef] [PubMed]

S. Krag and T. T. Andreassen, “Mechanical properties of the human posterior lens capsule,” Invest. Ophthalmol. Vis. Sci. 44(2), 691–696 (2003).
[CrossRef] [PubMed]

2001

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

1999

M. Shirasaki, “Virtually imaged phased array,” Fujitsu Sci. Tech. J. 35, 113–125 (1999).

1996

1994

C. L. De Korte, A. F. W. Van Der Steen, J. M. Thijssen, J. J. Duindam, C. Otto, and G. J. Puppels, “Relation between local acoustic parameters and protein distribution in human and porcine eye lenses,” Exp. Eye Res. 59(5), 617–627 (1994).
[CrossRef] [PubMed]

A. P. Beers and G. L. Van der Heijde, “Presbyopia and velocity of sound in the lens,” Optom. Vis. Sci. 71(4), 250–253 (1994).
[CrossRef] [PubMed]

1989

N. Berovic, N. Thomas, R. A. Thornhill, and J. M. Vaughan, “Observation of Brillouin scattering from single muscle fibres,” Eur. Biophys. J. 17(2), 69–74 (1989).
[CrossRef] [PubMed]

1988

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).

1982

J. Randall and J. M. Vaughan, “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci. 214(1197), 449–470 (1982).
[CrossRef] [PubMed]

1980

J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
[CrossRef] [PubMed]

1979

J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin scattering in systems of biological significance,” Philos. Trans. R. Soc. Lond. A 293(1402), 341–348 (1979).
[CrossRef]

1977

R. F. Fisher, “The force of contraction of the human ciliary muscle during accommodation,” J. Physiol. 270(1), 51–74 (1977).
[PubMed]

H. Melcher and E. Gerth, ““Darstellung von Linienprofilen durch Lorentz-Funktionen n-ten Grades,” Exp,” Tech. Phys. 25(6), 527–538 (1977).

1973

R. F. Fisher and B. E. Pettet, “Presbyopia and the water content of the human crystalline lens,” J. Physiol. 234(2), 443–447 (1973).
[PubMed]

1972

A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972).
[CrossRef] [PubMed]

1971

R. F. Fisher, “The elastic constants of the human lens,” J. Physiol. 212(1), 147–180 (1971).
[PubMed]

1969

R. F. Fisher, “Elastic constants of the human lens capsule,” J. Physiol. 201(1), 1–19 (1969).
[PubMed]

1954

R. Barer and S. Joseph, “Refractometry of living cells,” Q. J. Microsc. Sci. 95(4), 399–423 (1954).

1922

L. Brillouin, “Diffusion de la lumière et des rayonnes X par un corps transparent homogène: influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).

1855

H. von Helmholtz, “Ueber die Accommodation des Auges,” Arch. Ophthalmol. 1, 1–74 (1855).

Abolmaali, A.

R. A. Schachar, A. Abolmaali, and F. Kamangar, “Comment on the publication “Three-dimensional ultrasound, biomicroscopy environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation” by O. Stachs et al,” Graefes Arch. Clin. Exp. Ophthalmol. 244(8), 1062–1063, author reply 1064–1065 (2006).
[CrossRef] [PubMed]

R. A. Schachar, A. Abolmaali, and T. Le, “Insights into the age-related decline in the amplitude of accommodation of the human lens using a non-linear finite-element model,” Br. J. Ophthalmol. 90(10), 1304–1309 (2006).
[CrossRef] [PubMed]

Andreassen, T. T.

S. Krag and T. T. Andreassen, “Mechanical properties of the human posterior lens capsule,” Invest. Ophthalmol. Vis. Sci. 44(2), 691–696 (2003).
[CrossRef] [PubMed]

Arrieta, E.

Atchison, D. A.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[CrossRef] [PubMed]

Bailey, S. T.

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

Barer, R.

R. Barer and S. Joseph, “Refractometry of living cells,” Q. J. Microsc. Sci. 95(4), 399–423 (1954).

Beers, A. P.

A. P. Beers and G. L. Van der Heijde, “Presbyopia and velocity of sound in the lens,” Optom. Vis. Sci. 71(4), 250–253 (1994).
[CrossRef] [PubMed]

Belaidi, A.

B. K. Pierscionek, A. Belaidi, and H. H. Bruun, “Refractive index distribution in the porcine eye lens for 532 nm and 633 nm light,” Eye (Lond.) 19(4), 375–381 (2005).
[CrossRef] [PubMed]

Berovic, N.

N. Berovic, N. Thomas, R. A. Thornhill, and J. M. Vaughan, “Observation of Brillouin scattering from single muscle fibres,” Eur. Biophys. J. 17(2), 69–74 (1989).
[CrossRef] [PubMed]

Borja, D.

Brillouin, L.

L. Brillouin, “Diffusion de la lumière et des rayonnes X par un corps transparent homogène: influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).

Bruun, H. H.

B. K. Pierscionek, A. Belaidi, and H. H. Bruun, “Refractive index distribution in the porcine eye lens for 532 nm and 633 nm light,” Eye (Lond.) 19(4), 375–381 (2005).
[CrossRef] [PubMed]

Bullimore, M. A.

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

Chan, R. W.

R. A. Schachar, R. W. Chan, and M. Fu, “Viscoelastic shear properties of the fresh porcine lens,” Br. J. Ophthalmol. 91(3), 366–368 (2007).
[CrossRef] [PubMed]

Contag, C. H.

Cusak, S.

J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin scattering in systems of biological significance,” Philos. Trans. R. Soc. Lond. A 293(1402), 341–348 (1979).
[CrossRef]

de Castro, A.

De Korte, C. L.

C. L. De Korte, A. F. W. Van Der Steen, J. M. Thijssen, J. J. Duindam, C. Otto, and G. J. Puppels, “Relation between local acoustic parameters and protein distribution in human and porcine eye lenses,” Exp. Eye Res. 59(5), 617–627 (1994).
[CrossRef] [PubMed]

Dubbelman, M.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Duindam, J. J.

C. L. De Korte, A. F. W. Van Der Steen, J. M. Thijssen, J. J. Duindam, C. Otto, and G. J. Puppels, “Relation between local acoustic parameters and protein distribution in human and porcine eye lenses,” Exp. Eye Res. 59(5), 617–627 (1994).
[CrossRef] [PubMed]

Dukhin, A. S.

A. S. Dukhin and P. J. Goetz, “Bulk viscosity and compressibility measurement using acoustic spectroscopy,” J. Chem. Phys. 130(12), 124519 (2009).
[CrossRef] [PubMed]

Eckert, G.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
[CrossRef] [PubMed]

Fisher, R. F.

R. F. Fisher, “The force of contraction of the human ciliary muscle during accommodation,” J. Physiol. 270(1), 51–74 (1977).
[PubMed]

R. F. Fisher and B. E. Pettet, “Presbyopia and the water content of the human crystalline lens,” J. Physiol. 234(2), 443–447 (1973).
[PubMed]

R. F. Fisher, “The elastic constants of the human lens,” J. Physiol. 212(1), 147–180 (1971).
[PubMed]

R. F. Fisher, “Elastic constants of the human lens capsule,” J. Physiol. 201(1), 1–19 (1969).
[PubMed]

Fu, M.

R. A. Schachar, R. W. Chan, and M. Fu, “Viscoelastic shear properties of the fresh porcine lens,” Br. J. Ophthalmol. 91(3), 366–368 (2007).
[CrossRef] [PubMed]

Gambra, E.

Gerth, E.

H. Melcher and E. Gerth, ““Darstellung von Linienprofilen durch Lorentz-Funktionen n-ten Grades,” Exp,” Tech. Phys. 25(6), 527–538 (1977).

Goetz, P. J.

A. S. Dukhin and P. J. Goetz, “Bulk viscosity and compressibility measurement using acoustic spectroscopy,” J. Chem. Phys. 130(12), 124519 (2009).
[CrossRef] [PubMed]

Gump, J. C.

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

Heethaar, R. M.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[CrossRef] [PubMed]

Helmholtz, H. von

H. von Helmholtz, “Ueber die Accommodation des Auges,” Arch. Ophthalmol. 1, 1–74 (1855).

Hermans, E. A.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[CrossRef] [PubMed]

Hughes, A.

A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972).
[CrossRef] [PubMed]

Joseph, S.

R. Barer and S. Joseph, “Refractometry of living cells,” Q. J. Microsc. Sci. 95(4), 399–423 (1954).

Kamangar, F.

R. A. Schachar, A. Abolmaali, and F. Kamangar, “Comment on the publication “Three-dimensional ultrasound, biomicroscopy environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation” by O. Stachs et al,” Graefes Arch. Clin. Exp. Ophthalmol. 244(8), 1062–1063, author reply 1064–1065 (2006).
[CrossRef] [PubMed]

Kasthurirangan, S.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[CrossRef] [PubMed]

Kino, G. S.

Krag, S.

S. Krag and T. T. Andreassen, “Mechanical properties of the human posterior lens capsule,” Invest. Ophthalmol. Vis. Sci. 44(2), 691–696 (2003).
[CrossRef] [PubMed]

Kuijer, J. P.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[CrossRef] [PubMed]

Le, T.

R. A. Schachar, A. Abolmaali, and T. Le, “Insights into the age-related decline in the amplitude of accommodation of the human lens using a non-linear finite-element model,” Br. J. Ophthalmol. 90(10), 1304–1309 (2006).
[CrossRef] [PubMed]

Mandella, M. J.

Manns, F.

Marcos, S.

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[CrossRef] [PubMed]

Melcher, H.

H. Melcher and E. Gerth, ““Darstellung von Linienprofilen durch Lorentz-Funktionen n-ten Grades,” Exp,” Tech. Phys. 25(6), 527–538 (1977).

Minsky, M.

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).

Ortiz, S.

Otto, C.

C. L. De Korte, A. F. W. Van Der Steen, J. M. Thijssen, J. J. Duindam, C. Otto, and G. J. Puppels, “Relation between local acoustic parameters and protein distribution in human and porcine eye lenses,” Exp. Eye Res. 59(5), 617–627 (1994).
[CrossRef] [PubMed]

Parel, J.-M.

Pechhold, W.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
[CrossRef] [PubMed]

Pettet, B. E.

R. F. Fisher and B. E. Pettet, “Presbyopia and the water content of the human crystalline lens,” J. Physiol. 234(2), 443–447 (1973).
[PubMed]

Pierscionek, B. K.

B. K. Pierscionek, A. Belaidi, and H. H. Bruun, “Refractive index distribution in the porcine eye lens for 532 nm and 633 nm light,” Eye (Lond.) 19(4), 375–381 (2005).
[CrossRef] [PubMed]

Pope, J. M.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[CrossRef] [PubMed]

Pouwels, P. J.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[CrossRef] [PubMed]

Puppels, G. J.

C. L. De Korte, A. F. W. Van Der Steen, J. M. Thijssen, J. J. Duindam, C. Otto, and G. J. Puppels, “Relation between local acoustic parameters and protein distribution in human and porcine eye lenses,” Exp. Eye Res. 59(5), 617–627 (1994).
[CrossRef] [PubMed]

Randall, J.

J. Randall and J. M. Vaughan, “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci. 214(1197), 449–470 (1982).
[CrossRef] [PubMed]

J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin scattering in systems of biological significance,” Philos. Trans. R. Soc. Lond. A 293(1402), 341–348 (1979).
[CrossRef]

Randall, J. T.

J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
[CrossRef] [PubMed]

Scarcelli, G.

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[CrossRef] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[CrossRef] [PubMed]

Schachar, R. A.

R. A. Schachar, R. W. Chan, and M. Fu, “Viscoelastic shear properties of the fresh porcine lens,” Br. J. Ophthalmol. 91(3), 366–368 (2007).
[CrossRef] [PubMed]

R. A. Schachar, A. Abolmaali, and T. Le, “Insights into the age-related decline in the amplitude of accommodation of the human lens using a non-linear finite-element model,” Br. J. Ophthalmol. 90(10), 1304–1309 (2006).
[CrossRef] [PubMed]

R. A. Schachar, A. Abolmaali, and F. Kamangar, “Comment on the publication “Three-dimensional ultrasound, biomicroscopy environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation” by O. Stachs et al,” Graefes Arch. Clin. Exp. Ophthalmol. 244(8), 1062–1063, author reply 1064–1065 (2006).
[CrossRef] [PubMed]

Shirasaki, M.

Siedlecki, D.

Sooryakumar, R.

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

Thijssen, J. M.

C. L. De Korte, A. F. W. Van Der Steen, J. M. Thijssen, J. J. Duindam, C. Otto, and G. J. Puppels, “Relation between local acoustic parameters and protein distribution in human and porcine eye lenses,” Exp. Eye Res. 59(5), 617–627 (1994).
[CrossRef] [PubMed]

Thomas, N.

N. Berovic, N. Thomas, R. A. Thornhill, and J. M. Vaughan, “Observation of Brillouin scattering from single muscle fibres,” Eur. Biophys. J. 17(2), 69–74 (1989).
[CrossRef] [PubMed]

Thornhill, R. A.

N. Berovic, N. Thomas, R. A. Thornhill, and J. M. Vaughan, “Observation of Brillouin scattering from single muscle fibres,” Eur. Biophys. J. 17(2), 69–74 (1989).
[CrossRef] [PubMed]

Twa, M. D.

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

Uhlhorn, S.

Van der Heijde, G. L.

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

A. P. Beers and G. L. Van der Heijde, “Presbyopia and velocity of sound in the lens,” Optom. Vis. Sci. 71(4), 250–253 (1994).
[CrossRef] [PubMed]

van der Heijde, R. G.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[CrossRef] [PubMed]

van der Heijde, R. G. L.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
[CrossRef] [PubMed]

Van Der Steen, A. F. W.

C. L. De Korte, A. F. W. Van Der Steen, J. M. Thijssen, J. J. Duindam, C. Otto, and G. J. Puppels, “Relation between local acoustic parameters and protein distribution in human and porcine eye lenses,” Exp. Eye Res. 59(5), 617–627 (1994).
[CrossRef] [PubMed]

Vaughan, J. M.

N. Berovic, N. Thomas, R. A. Thornhill, and J. M. Vaughan, “Observation of Brillouin scattering from single muscle fibres,” Eur. Biophys. J. 17(2), 69–74 (1989).
[CrossRef] [PubMed]

J. Randall and J. M. Vaughan, “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci. 214(1197), 449–470 (1982).
[CrossRef] [PubMed]

J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
[CrossRef] [PubMed]

J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin scattering in systems of biological significance,” Philos. Trans. R. Soc. Lond. A 293(1402), 341–348 (1979).
[CrossRef]

Venkiteshwar, M.

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

Wang, T. D.

Weeber, H. A.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
[CrossRef] [PubMed]

Yun, S. H.

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[CrossRef] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[CrossRef] [PubMed]

Ann. Phys. (Paris)

L. Brillouin, “Diffusion de la lumière et des rayonnes X par un corps transparent homogène: influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).

Arch. Ophthalmol.

H. von Helmholtz, “Ueber die Accommodation des Auges,” Arch. Ophthalmol. 1, 1–74 (1855).

Biomed. Opt. Express

Br. J. Ophthalmol.

R. A. Schachar, R. W. Chan, and M. Fu, “Viscoelastic shear properties of the fresh porcine lens,” Br. J. Ophthalmol. 91(3), 366–368 (2007).
[CrossRef] [PubMed]

R. A. Schachar, A. Abolmaali, and T. Le, “Insights into the age-related decline in the amplitude of accommodation of the human lens using a non-linear finite-element model,” Br. J. Ophthalmol. 90(10), 1304–1309 (2006).
[CrossRef] [PubMed]

Eur. Biophys. J.

N. Berovic, N. Thomas, R. A. Thornhill, and J. M. Vaughan, “Observation of Brillouin scattering from single muscle fibres,” Eur. Biophys. J. 17(2), 69–74 (1989).
[CrossRef] [PubMed]

Exp. Eye Res.

C. L. De Korte, A. F. W. Van Der Steen, J. M. Thijssen, J. J. Duindam, C. Otto, and G. J. Puppels, “Relation between local acoustic parameters and protein distribution in human and porcine eye lenses,” Exp. Eye Res. 59(5), 617–627 (1994).
[CrossRef] [PubMed]

Eye (Lond.)

B. K. Pierscionek, A. Belaidi, and H. H. Bruun, “Refractive index distribution in the porcine eye lens for 532 nm and 633 nm light,” Eye (Lond.) 19(4), 375–381 (2005).
[CrossRef] [PubMed]

Fujitsu Sci. Tech. J.

M. Shirasaki, “Virtually imaged phased array,” Fujitsu Sci. Tech. J. 35, 113–125 (1999).

Graefes Arch. Clin. Exp. Ophthalmol.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
[CrossRef] [PubMed]

R. A. Schachar, A. Abolmaali, and F. Kamangar, “Comment on the publication “Three-dimensional ultrasound, biomicroscopy environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation” by O. Stachs et al,” Graefes Arch. Clin. Exp. Ophthalmol. 244(8), 1062–1063, author reply 1064–1065 (2006).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng.

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[CrossRef] [PubMed]

S. Krag and T. T. Andreassen, “Mechanical properties of the human posterior lens capsule,” Invest. Ophthalmol. Vis. Sci. 44(2), 691–696 (2003).
[CrossRef] [PubMed]

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[CrossRef] [PubMed]

J. Chem. Phys.

A. S. Dukhin and P. J. Goetz, “Bulk viscosity and compressibility measurement using acoustic spectroscopy,” J. Chem. Phys. 130(12), 124519 (2009).
[CrossRef] [PubMed]

J. Physiol.

R. F. Fisher, “The elastic constants of the human lens,” J. Physiol. 212(1), 147–180 (1971).
[PubMed]

R. F. Fisher, “The force of contraction of the human ciliary muscle during accommodation,” J. Physiol. 270(1), 51–74 (1977).
[PubMed]

R. F. Fisher, “Elastic constants of the human lens capsule,” J. Physiol. 201(1), 1–19 (1969).
[PubMed]

R. F. Fisher and B. E. Pettet, “Presbyopia and the water content of the human crystalline lens,” J. Physiol. 234(2), 443–447 (1973).
[PubMed]

Nat. Photonics

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[CrossRef] [PubMed]

Nature

J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Optom. Vis. Sci.

A. P. Beers and G. L. Van der Heijde, “Presbyopia and velocity of sound in the lens,” Optom. Vis. Sci. 71(4), 250–253 (1994).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. Lond. A

J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin scattering in systems of biological significance,” Philos. Trans. R. Soc. Lond. A 293(1402), 341–348 (1979).
[CrossRef]

Proc. R. Soc. Lond. B Biol. Sci.

J. Randall and J. M. Vaughan, “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci. 214(1197), 449–470 (1982).
[CrossRef] [PubMed]

Q. J. Microsc. Sci.

R. Barer and S. Joseph, “Refractometry of living cells,” Q. J. Microsc. Sci. 95(4), 399–423 (1954).

Scanning

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).

Tech. Phys.

H. Melcher and E. Gerth, ““Darstellung von Linienprofilen durch Lorentz-Funktionen n-ten Grades,” Exp,” Tech. Phys. 25(6), 527–538 (1977).

Vision Res.

A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Other

Robert-Bosch-Stiftung Regierungspräsidium Karlsruhe, “Einführung in die Rheologie von Emulsionen,” www.nat.nwt-bw.de/./RBS_Grundlagen_Rheologie.pdf .

T. Mezger, Das Rheologie-Handbuch (Vincentz Verlag, Hannover, 2000).

K. Wileke, “Morphologische und physiologische Untersuchungen an transparenten und kataraktösen Linsen von Farm und Wildlachsen,” Dissertation (Freie Universität Berlin, 2008).

H. Stroppe, Physik, 14th ed. (Carl Hanser Verlag, Leipzig, 2008).

T. A. Litovitz and C. M. Davis, “Structural and Shear Relaxation in Liquids,” in Physical Acoustics: Principles and Methods, W. P. Mason (ed.), Part IIA (Academic Press, New York, 1965), pp. 281–349.

E. Risse, “Kontinuierlich angeregt und aktiv gütegeschaltete Oszillator-Verstärker-Systeme hoher Strahldichte durch Einsatz von Faser-Phasenkonjugatoren,” Dissertation (Technical University of Berlin, Berlin, 2003).

R. Urs, “Investigation of accommodation and presbyopia using ultrasound imaging during ex vivo simulated accommodation,” Ph.D. dissertaion (University of Miami, 2010), Open Access Dissertations, http://scholarlyrepository.miami.edu/oa_dissertations/360 .

A. K. Dillingham, H. Deuring, G. J. Hilborn, L. Garamszegi, and H. Haitjema, DE Patent No. DE 000060113085 T2 (June 2006).

D. A. Samuelson, “Embryology and anatomy,” in Veterinary Ophthalmology, 2nd ed., K. N. Gelatt, ed. (Lea & Febiger, Philadelphia, 1991), pp. 75–84.

G. G. Gum, “Physiology of the eye,” in Veterinary Ophthalmology, 2nd ed., K. N. Gelatt, ed. (Lea und Febiger, Philadelphia, 1991), pp. 138–143.

K. Ulrich, Linsenproteine (Kristalline),” in Vergleichende Biochemie der Tiere (Fischer, Jena, 1990), pp. 322–332.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic representation of Brillouin scattering.

Fig. 2
Fig. 2

Increasing the wavelength (λ) of the laser lessens the wavelength shift (νB) of inelastically scattered light.

Fig. 3
Fig. 3

Detailed design and function of a VIPA (side view).

Fig. 4
Fig. 4

Schematic diagram illustrating the experimental configuration [EL = eye to be tested, LO = objective lens, L1/L2/L3/L4 = collector lenses, CP = positive cylindrical lens, CM = negative cylindrical lens, M1/M2/M3 = mirrors, P = pinhole, V1/V2 = VIPA].

Fig. 5
Fig. 5

Typically detected scattering signal: (a) after first VIPA (V1); (b) after second VIPA (V2).

Fig. 6
Fig. 6

Typical Brillouin spectrum of biological lens tissue.

Fig. 7
Fig. 7

Brillouin frequency shift (black), storage modulus (red) and loss modulus (green) through a rabbit eye (in vitro) in relation to the real position of the measuring point; AH—aqueous humor, L—lens; VH—vitreous humor.

Fig. 8
Fig. 8

Storage modulus (green) and loss modulus (orange) of an axial depth scan at various lateral measurement points in an extracted rabbit lens (in vitro).

Fig. 9
Fig. 9

Brillouin frequency shift (black), storage modulus (red) and loss modulus (green) through a porcine eye (in vitro) in relation to the real position of the measuring point; AH—aqueous humor, L—lens; VH—vitreous humor.

Fig. 10
Fig. 10

Storage modulus (green) and loss modulus (orange) of an axial depth scan at various lateral measurement points in an extracted porcine lens (in vitro).

Fig. 11
Fig. 11

Storage modulus (green) and loss modulus (orange) of an axial depth scan at various lateral measurement points in an extracted human lens (in vitro).

Fig. 12
Fig. 12

Adjusting the storage modulus based on the refractive index and density. (Black curve: measured Brillouin shift data; red curve: storage modulus assuming uniform refractive index and uniform density for the eye lens; green curve: storage modulus adjustment using the refractive index and density within the lens of the eye)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ν B = ± 2 n λ V cos ( θ 2 )
μ = E 2 G - 1 = 3 K - E 6 K = 3 K - 2 G 6 K + 2 G
M * = M + i M = ( λ ν B 2 n cos ( θ 2 ) ) ² ρ + i ρ V ² Δ ν B ν B
A = λ / Δ λ .

Metrics