Abstract

Multiwavelength UV-visible transmission spectrophotometry is a useful tool for the examination of micron-size particle suspensions in the context of particle size and chemical composition. This paper reports the reliability of this method to characterize the spectra of purified red blood cells both in their physiological state and with modified hemoglobin content. Previous studies have suggested the contribution of hypochromism on the particle spectra caused by the close electronic interaction of the encapsulated chromophores. Our research shows, however, that this perceived hypochromism can be accounted for by considering two important issues: the acceptance angle of the instrument and the combined scattering and absorption effect of light on the particles. In order to establish these ideas, spectral analysis was performed on purified and modified red cells where the latter was accomplished with a modified hypotonic shock protocol that altered the hemoglobin concentration within the cells. Moreover, the Mie theory was used to successfully simulate the spectral features and trends of the red cells. With this combination of experimental and theoretical exploration, definition of hypochromism has been extended to two subcategories.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Seiber and P. Latimer, “Extinction efficiencies of large latex spheres,” J. Colloid Interface Sci. 23(4), 509–512 (1967).
    [CrossRef]
  2. G. Crawley, M. Cournil, and D. Di Benedetto, “Size analysis of fine particle suspensions by spectral turbidimetry: potential and limits,” Powder Technol. 91(3), 197–208 (1997).
    [CrossRef]
  3. A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999).
    [CrossRef] [PubMed]
  4. S. Narayanan, S. Orton, G. F. Leparc, L. H. Garcia-Rubio, and R. L. Potter, “Ultraviolet and visible light spectrophotometric approach to blood typing: objective analysis by agglutination index,” Transfusion 39(10), 1051–1059 (1999).
    [CrossRef] [PubMed]
  5. Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, “Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data,” Photochem. Photobiol. 71(5), 610–619 (2000).
    [CrossRef] [PubMed]
  6. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, NY, 1983).
  7. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, NY, 1981)
  8. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, NY, 1969)
  9. L. H. Garcia-Rubio and N. Ro, “Detailed copolymer characterization using ultraviolet spectroscopy,” Can. J. Chem. 63(1), 253–263 (1985).
    [CrossRef]
  10. V. A. Bloomfield, “Static and dynamic light scattering from aggregating particles,” Biopolymers 54(3), 168–172 (2000).
    [CrossRef] [PubMed]
  11. M. Kunitani, S. Wolfe, S. Rana, C. Apicella, V. Levi, and G. Dollinger, “Classical light scattering quantitation of protein aggregates: off-line spectroscopy versus HPLC detection,” J. Pharm. Biomed. Anal. 16(4), 573–586 (1997).
    [CrossRef] [PubMed]
  12. L. H. Garcia-Rubio, “Characterization of proteins during aggregation using turbidimetry,” Chem. Eng. Commun. 80(1), 193–210 (1989).
    [CrossRef]
  13. A. A. Kokhanovskii, “Absorption and scattering of light by large layered ellipsoidal particles,” Opt. Spektrosk. 71(2), 351–354 (1991).
  14. C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19(8), 893–903 (2004).
    [CrossRef] [PubMed]
  15. A. L. Koch and E. Ehrenfeld, “Th size and shape of bacteria by light scattering measurements,” Biochim. Biophys. Acta 165(2), 262–273 (1968).
    [PubMed]
  16. E. Beutler, M. A. Lichtman, B. S. Coller, and T. J. Kipps, Williams Hematology. Fifth Ed. (McGraw-Hill, Inc., New York, NY 1995).
  17. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37(31), 7410–7418 (1998).
    [CrossRef] [PubMed]
  18. A. N. Yaroslavsky, A. V. Priezzhev, J. Rodriguez, I. V. Yaroslavsky, and H. Battarbee, Handbook of Optical Biomedical Diagnostics, Ch 2, Edited by Tuchin, V. V. (SPIE Press, Bellingham, WA 2002).
  19. V. I. Danilov and S. N. Volkov, “Quantum-mechanical study of the hypochromic effect in polynucleotides. Intra- and interstrand interaction contributions,” Biopolymers 14(6), 1205–1212 (1975).
    [CrossRef] [PubMed]
  20. M. Weissbluth, “Hypochromism,” Q. Rev. Biophys. 4(01), 1–34 (1971).
    [CrossRef] [PubMed]
  21. L. N. M. Duyens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim. Biophys. Acta 19(1), 1–12 (1956).
    [CrossRef] [PubMed]
  22. P. Latimer, “The deconvulation of absorption spectra of green plant material-improved corrections for the sieve effect,” Photochem. Photobiol. 38(6), 731–734 (1983).
    [CrossRef]
  23. I. Tinoco., “Hypochromism in polynucleotides,” J. Am. Chem. Soc. 82(18), 4785–4790 (1960).
    [CrossRef]
  24. R. A. Macrae, J. A. McCLURE, and P. Latimer, “Spectral transmission and scattering properties of red blood cells,” J. Opt. Soc. Am. 51(12), 1366–1372 (1961).
    [CrossRef] [PubMed]
  25. N. L. Vekshin, “Screening hypochromism in molecular aggregates and biopolymers,” J. Biol. Phys. 25(4), 339–354 (1999).
    [CrossRef]
  26. T. A. Hoffmann and J. Ladik, “Some remarks on the hypochromicity of polynucleotides,” J. Theor. Biol. 6(1), 26–32 (1964).
    [CrossRef] [PubMed]
  27. N. L. Vekshin, “Screening hypochromism of biological macromolecules and suspensions,” J. Photochem. Photobiol. B 3(4), 625–630 (1989).
    [CrossRef]
  28. N. L. Vekshin, “Screening hypochromism of chromophores in macromolecular biostructures,” Biofizika 44(1), 45–55 (1999).
  29. H. DeVoe and I. Tinoco., “The hypochromism of helical polynucleotides,” J. Mol. Biol. 4(6), 518–527 (1962).
    [CrossRef] [PubMed]
  30. D. Voet and J. G. Voet, Biochemistry, 3rd ed. (Wiley, Hoboken, NJ 2004), Vol. 1.
  31. J. Bateman, S. S. Hsu, J. P. Knudsen, and K. L. Yudowitch, “Hemoglobin spacing in erythrocytes,” Arch. Biochem. Biophys. 45(2), 411–422 (1953).
    [CrossRef] [PubMed]
  32. J. M. Steinke and A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27(19), 4027–4033 (1988).
    [CrossRef] [PubMed]
  33. D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. Opt. 24(9), 1355–1365 (1985).
    [CrossRef] [PubMed]
  34. A. G. Borovoi, E. I. Naats, and U. G. Oppen, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998).
    [CrossRef]
  35. P. Latimer, “The influence of photometer design on optical-conformational changes,” J. Theor. Biol. 51(1), 1–12 (1975).
    [CrossRef] [PubMed]
  36. R. F. Baker, “Entry of ferritin into human red cells during hypotonic haemolysis,” Nature 215(5099), 424–425 (1967).
    [CrossRef] [PubMed]
  37. G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973).
    [CrossRef] [PubMed]
  38. N. V. B. Marsden and S. G. Ostling, “Accumulation of dextran in human red cells after haemolysis,” Nature 184(4687), 723–724 (1959).
    [CrossRef] [PubMed]
  39. G. P. Sartiano and R. L. Hayes, “Hypotonic exchange-loading of erythrocytes. II. introduction of hemoglobins S and C into normal red cells,” J. Lab. Clin. Med. 89(1), 30–40 (1977).
    [PubMed]
  40. H. Bodemann and H. Passow, “Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis,” J. Membr. Biol. 8(1), 1–26 (1972).
    [CrossRef] [PubMed]
  41. J. F. Hoffman, “Physiological characteristics of human red blood cell ghosts,” J. Gen. Physiol. 42(1), 9–28 (1958).
    [CrossRef] [PubMed]
  42. UV Atlas of Organic Compounds, (Plenum, New York, NY., 1966), Vol. II.
  43. I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985).
    [CrossRef]
  44. S. B. McKenzie, Textbook of hematology, (Williams and Wilkins, Baltimore, MD, 1996)
  45. A. L. Koch, “Some calculations on the turbidity of mitochondria and bacteria,” Biochim. Biophys. Acta 51(3), 429–441 (1961).
    [CrossRef] [PubMed]

2004

C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19(8), 893–903 (2004).
[CrossRef] [PubMed]

2000

Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, “Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data,” Photochem. Photobiol. 71(5), 610–619 (2000).
[CrossRef] [PubMed]

V. A. Bloomfield, “Static and dynamic light scattering from aggregating particles,” Biopolymers 54(3), 168–172 (2000).
[CrossRef] [PubMed]

1999

S. Narayanan, S. Orton, G. F. Leparc, L. H. Garcia-Rubio, and R. L. Potter, “Ultraviolet and visible light spectrophotometric approach to blood typing: objective analysis by agglutination index,” Transfusion 39(10), 1051–1059 (1999).
[CrossRef] [PubMed]

N. L. Vekshin, “Screening hypochromism in molecular aggregates and biopolymers,” J. Biol. Phys. 25(4), 339–354 (1999).
[CrossRef]

N. L. Vekshin, “Screening hypochromism of chromophores in macromolecular biostructures,” Biofizika 44(1), 45–55 (1999).

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999).
[CrossRef] [PubMed]

1998

M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37(31), 7410–7418 (1998).
[CrossRef] [PubMed]

A. G. Borovoi, E. I. Naats, and U. G. Oppen, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998).
[CrossRef]

1997

G. Crawley, M. Cournil, and D. Di Benedetto, “Size analysis of fine particle suspensions by spectral turbidimetry: potential and limits,” Powder Technol. 91(3), 197–208 (1997).
[CrossRef]

M. Kunitani, S. Wolfe, S. Rana, C. Apicella, V. Levi, and G. Dollinger, “Classical light scattering quantitation of protein aggregates: off-line spectroscopy versus HPLC detection,” J. Pharm. Biomed. Anal. 16(4), 573–586 (1997).
[CrossRef] [PubMed]

1991

A. A. Kokhanovskii, “Absorption and scattering of light by large layered ellipsoidal particles,” Opt. Spektrosk. 71(2), 351–354 (1991).

1989

L. H. Garcia-Rubio, “Characterization of proteins during aggregation using turbidimetry,” Chem. Eng. Commun. 80(1), 193–210 (1989).
[CrossRef]

N. L. Vekshin, “Screening hypochromism of biological macromolecules and suspensions,” J. Photochem. Photobiol. B 3(4), 625–630 (1989).
[CrossRef]

1988

1985

D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. Opt. 24(9), 1355–1365 (1985).
[CrossRef] [PubMed]

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985).
[CrossRef]

L. H. Garcia-Rubio and N. Ro, “Detailed copolymer characterization using ultraviolet spectroscopy,” Can. J. Chem. 63(1), 253–263 (1985).
[CrossRef]

1983

P. Latimer, “The deconvulation of absorption spectra of green plant material-improved corrections for the sieve effect,” Photochem. Photobiol. 38(6), 731–734 (1983).
[CrossRef]

1977

G. P. Sartiano and R. L. Hayes, “Hypotonic exchange-loading of erythrocytes. II. introduction of hemoglobins S and C into normal red cells,” J. Lab. Clin. Med. 89(1), 30–40 (1977).
[PubMed]

1975

P. Latimer, “The influence of photometer design on optical-conformational changes,” J. Theor. Biol. 51(1), 1–12 (1975).
[CrossRef] [PubMed]

V. I. Danilov and S. N. Volkov, “Quantum-mechanical study of the hypochromic effect in polynucleotides. Intra- and interstrand interaction contributions,” Biopolymers 14(6), 1205–1212 (1975).
[CrossRef] [PubMed]

1973

G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973).
[CrossRef] [PubMed]

1972

H. Bodemann and H. Passow, “Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis,” J. Membr. Biol. 8(1), 1–26 (1972).
[CrossRef] [PubMed]

1971

M. Weissbluth, “Hypochromism,” Q. Rev. Biophys. 4(01), 1–34 (1971).
[CrossRef] [PubMed]

1968

A. L. Koch and E. Ehrenfeld, “Th size and shape of bacteria by light scattering measurements,” Biochim. Biophys. Acta 165(2), 262–273 (1968).
[PubMed]

1967

R. F. Baker, “Entry of ferritin into human red cells during hypotonic haemolysis,” Nature 215(5099), 424–425 (1967).
[CrossRef] [PubMed]

B. A. Seiber and P. Latimer, “Extinction efficiencies of large latex spheres,” J. Colloid Interface Sci. 23(4), 509–512 (1967).
[CrossRef]

1964

T. A. Hoffmann and J. Ladik, “Some remarks on the hypochromicity of polynucleotides,” J. Theor. Biol. 6(1), 26–32 (1964).
[CrossRef] [PubMed]

1962

H. DeVoe and I. Tinoco., “The hypochromism of helical polynucleotides,” J. Mol. Biol. 4(6), 518–527 (1962).
[CrossRef] [PubMed]

1961

1960

I. Tinoco., “Hypochromism in polynucleotides,” J. Am. Chem. Soc. 82(18), 4785–4790 (1960).
[CrossRef]

1959

N. V. B. Marsden and S. G. Ostling, “Accumulation of dextran in human red cells after haemolysis,” Nature 184(4687), 723–724 (1959).
[CrossRef] [PubMed]

1958

J. F. Hoffman, “Physiological characteristics of human red blood cell ghosts,” J. Gen. Physiol. 42(1), 9–28 (1958).
[CrossRef] [PubMed]

1956

L. N. M. Duyens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim. Biophys. Acta 19(1), 1–12 (1956).
[CrossRef] [PubMed]

1953

J. Bateman, S. S. Hsu, J. P. Knudsen, and K. L. Yudowitch, “Hemoglobin spacing in erythrocytes,” Arch. Biochem. Biophys. 45(2), 411–422 (1953).
[CrossRef] [PubMed]

Alupoaei, C. E.

C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19(8), 893–903 (2004).
[CrossRef] [PubMed]

Apicella, C.

M. Kunitani, S. Wolfe, S. Rana, C. Apicella, V. Levi, and G. Dollinger, “Classical light scattering quantitation of protein aggregates: off-line spectroscopy versus HPLC detection,” J. Pharm. Biomed. Anal. 16(4), 573–586 (1997).
[CrossRef] [PubMed]

Baker, R. F.

R. F. Baker, “Entry of ferritin into human red cells during hypotonic haemolysis,” Nature 215(5099), 424–425 (1967).
[CrossRef] [PubMed]

Bateman, J.

J. Bateman, S. S. Hsu, J. P. Knudsen, and K. L. Yudowitch, “Hemoglobin spacing in erythrocytes,” Arch. Biochem. Biophys. 45(2), 411–422 (1953).
[CrossRef] [PubMed]

Bloomfield, V. A.

V. A. Bloomfield, “Static and dynamic light scattering from aggregating particles,” Biopolymers 54(3), 168–172 (2000).
[CrossRef] [PubMed]

Bodemann, H.

H. Bodemann and H. Passow, “Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis,” J. Membr. Biol. 8(1), 1–26 (1972).
[CrossRef] [PubMed]

Borovoi, A. G.

A. G. Borovoi, E. I. Naats, and U. G. Oppen, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998).
[CrossRef]

Chernyshev, A. V.

Cournil, M.

G. Crawley, M. Cournil, and D. Di Benedetto, “Size analysis of fine particle suspensions by spectral turbidimetry: potential and limits,” Powder Technol. 91(3), 197–208 (1997).
[CrossRef]

Crawley, G.

G. Crawley, M. Cournil, and D. Di Benedetto, “Size analysis of fine particle suspensions by spectral turbidimetry: potential and limits,” Powder Technol. 91(3), 197–208 (1997).
[CrossRef]

Danilov, V. I.

V. I. Danilov and S. N. Volkov, “Quantum-mechanical study of the hypochromic effect in polynucleotides. Intra- and interstrand interaction contributions,” Biopolymers 14(6), 1205–1212 (1975).
[CrossRef] [PubMed]

DeVoe, H.

H. DeVoe and I. Tinoco., “The hypochromism of helical polynucleotides,” J. Mol. Biol. 4(6), 518–527 (1962).
[CrossRef] [PubMed]

Di Benedetto, D.

G. Crawley, M. Cournil, and D. Di Benedetto, “Size analysis of fine particle suspensions by spectral turbidimetry: potential and limits,” Powder Technol. 91(3), 197–208 (1997).
[CrossRef]

Dollinger, G.

M. Kunitani, S. Wolfe, S. Rana, C. Apicella, V. Levi, and G. Dollinger, “Classical light scattering quantitation of protein aggregates: off-line spectroscopy versus HPLC detection,” J. Pharm. Biomed. Anal. 16(4), 573–586 (1997).
[CrossRef] [PubMed]

Duyens, L. N. M.

L. N. M. Duyens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim. Biophys. Acta 19(1), 1–12 (1956).
[CrossRef] [PubMed]

Ehrenfeld, E.

A. L. Koch and E. Ehrenfeld, “Th size and shape of bacteria by light scattering measurements,” Biochim. Biophys. Acta 165(2), 262–273 (1968).
[PubMed]

Epstein, E. A.

Garcia-Rubio, L. H.

S. Narayanan, S. Orton, G. F. Leparc, L. H. Garcia-Rubio, and R. L. Potter, “Ultraviolet and visible light spectrophotometric approach to blood typing: objective analysis by agglutination index,” Transfusion 39(10), 1051–1059 (1999).
[CrossRef] [PubMed]

L. H. Garcia-Rubio, “Characterization of proteins during aggregation using turbidimetry,” Chem. Eng. Commun. 80(1), 193–210 (1989).
[CrossRef]

L. H. Garcia-Rubio and N. Ro, “Detailed copolymer characterization using ultraviolet spectroscopy,” Can. J. Chem. 63(1), 253–263 (1985).
[CrossRef]

García-Rubio, L.

Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, “Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data,” Photochem. Photobiol. 71(5), 610–619 (2000).
[CrossRef] [PubMed]

García-Rubio, L. H.

C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19(8), 893–903 (2004).
[CrossRef] [PubMed]

Glew, R. H.

G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973).
[CrossRef] [PubMed]

Grigull, U.

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985).
[CrossRef]

Grinbaum, A.

Hammer, M.

Hayes, R. L.

G. P. Sartiano and R. L. Hayes, “Hypotonic exchange-loading of erythrocytes. II. introduction of hemoglobins S and C into normal red cells,” J. Lab. Clin. Med. 89(1), 30–40 (1977).
[PubMed]

Hoffman, J. F.

J. F. Hoffman, “Physiological characteristics of human red blood cell ghosts,” J. Gen. Physiol. 42(1), 9–28 (1958).
[CrossRef] [PubMed]

Hoffmann, T. A.

T. A. Hoffmann and J. Ladik, “Some remarks on the hypochromicity of polynucleotides,” J. Theor. Biol. 6(1), 26–32 (1964).
[CrossRef] [PubMed]

Hsu, S. S.

J. Bateman, S. S. Hsu, J. P. Knudsen, and K. L. Yudowitch, “Hemoglobin spacing in erythrocytes,” Arch. Biochem. Biophys. 45(2), 411–422 (1953).
[CrossRef] [PubMed]

Ihler, G. M.

G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973).
[CrossRef] [PubMed]

Knudsen, J. P.

J. Bateman, S. S. Hsu, J. P. Knudsen, and K. L. Yudowitch, “Hemoglobin spacing in erythrocytes,” Arch. Biochem. Biophys. 45(2), 411–422 (1953).
[CrossRef] [PubMed]

Koch, A. L.

A. L. Koch and E. Ehrenfeld, “Th size and shape of bacteria by light scattering measurements,” Biochim. Biophys. Acta 165(2), 262–273 (1968).
[PubMed]

A. L. Koch, “Some calculations on the turbidity of mitochondria and bacteria,” Biochim. Biophys. Acta 51(3), 429–441 (1961).
[CrossRef] [PubMed]

Kokhanovskii, A. A.

A. A. Kokhanovskii, “Absorption and scattering of light by large layered ellipsoidal particles,” Opt. Spektrosk. 71(2), 351–354 (1991).

Kolb, A.

Kunitani, M.

M. Kunitani, S. Wolfe, S. Rana, C. Apicella, V. Levi, and G. Dollinger, “Classical light scattering quantitation of protein aggregates: off-line spectroscopy versus HPLC detection,” J. Pharm. Biomed. Anal. 16(4), 573–586 (1997).
[CrossRef] [PubMed]

Ladik, J.

T. A. Hoffmann and J. Ladik, “Some remarks on the hypochromicity of polynucleotides,” J. Theor. Biol. 6(1), 26–32 (1964).
[CrossRef] [PubMed]

Latimer, P.

P. Latimer, “The deconvulation of absorption spectra of green plant material-improved corrections for the sieve effect,” Photochem. Photobiol. 38(6), 731–734 (1983).
[CrossRef]

P. Latimer, “The influence of photometer design on optical-conformational changes,” J. Theor. Biol. 51(1), 1–12 (1975).
[CrossRef] [PubMed]

B. A. Seiber and P. Latimer, “Extinction efficiencies of large latex spheres,” J. Colloid Interface Sci. 23(4), 509–512 (1967).
[CrossRef]

R. A. Macrae, J. A. McCLURE, and P. Latimer, “Spectral transmission and scattering properties of red blood cells,” J. Opt. Soc. Am. 51(12), 1366–1372 (1961).
[CrossRef] [PubMed]

Leparc, G.

Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, “Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data,” Photochem. Photobiol. 71(5), 610–619 (2000).
[CrossRef] [PubMed]

Leparc, G. F.

S. Narayanan, S. Orton, G. F. Leparc, L. H. Garcia-Rubio, and R. L. Potter, “Ultraviolet and visible light spectrophotometric approach to blood typing: objective analysis by agglutination index,” Transfusion 39(10), 1051–1059 (1999).
[CrossRef] [PubMed]

Levi, V.

M. Kunitani, S. Wolfe, S. Rana, C. Apicella, V. Levi, and G. Dollinger, “Classical light scattering quantitation of protein aggregates: off-line spectroscopy versus HPLC detection,” J. Pharm. Biomed. Anal. 16(4), 573–586 (1997).
[CrossRef] [PubMed]

Macrae, R. A.

Maltsev, V. P.

Marsden, N. V. B.

N. V. B. Marsden and S. G. Ostling, “Accumulation of dextran in human red cells after haemolysis,” Nature 184(4687), 723–724 (1959).
[CrossRef] [PubMed]

Mattley, Y.

Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, “Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data,” Photochem. Photobiol. 71(5), 610–619 (2000).
[CrossRef] [PubMed]

McCLURE, J. A.

Metz, M. H.

Michel, B.

Naats, E. I.

A. G. Borovoi, E. I. Naats, and U. G. Oppen, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998).
[CrossRef]

Narayanan, S.

S. Narayanan, S. Orton, G. F. Leparc, L. H. Garcia-Rubio, and R. L. Potter, “Ultraviolet and visible light spectrophotometric approach to blood typing: objective analysis by agglutination index,” Transfusion 39(10), 1051–1059 (1999).
[CrossRef] [PubMed]

Olivares, J. A.

C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19(8), 893–903 (2004).
[CrossRef] [PubMed]

Oppen, U. G.

A. G. Borovoi, E. I. Naats, and U. G. Oppen, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998).
[CrossRef]

Orton, S.

S. Narayanan, S. Orton, G. F. Leparc, L. H. Garcia-Rubio, and R. L. Potter, “Ultraviolet and visible light spectrophotometric approach to blood typing: objective analysis by agglutination index,” Transfusion 39(10), 1051–1059 (1999).
[CrossRef] [PubMed]

Ostling, S. G.

N. V. B. Marsden and S. G. Ostling, “Accumulation of dextran in human red cells after haemolysis,” Nature 184(4687), 723–724 (1959).
[CrossRef] [PubMed]

Passow, H.

H. Bodemann and H. Passow, “Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis,” J. Membr. Biol. 8(1), 1–26 (1972).
[CrossRef] [PubMed]

Potter, R.

Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, “Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data,” Photochem. Photobiol. 71(5), 610–619 (2000).
[CrossRef] [PubMed]

Potter, R. L.

S. Narayanan, S. Orton, G. F. Leparc, L. H. Garcia-Rubio, and R. L. Potter, “Ultraviolet and visible light spectrophotometric approach to blood typing: objective analysis by agglutination index,” Transfusion 39(10), 1051–1059 (1999).
[CrossRef] [PubMed]

Rana, S.

M. Kunitani, S. Wolfe, S. Rana, C. Apicella, V. Levi, and G. Dollinger, “Classical light scattering quantitation of protein aggregates: off-line spectroscopy versus HPLC detection,” J. Pharm. Biomed. Anal. 16(4), 573–586 (1997).
[CrossRef] [PubMed]

Ro, N.

L. H. Garcia-Rubio and N. Ro, “Detailed copolymer characterization using ultraviolet spectroscopy,” Can. J. Chem. 63(1), 253–263 (1985).
[CrossRef]

Sartiano, G. P.

G. P. Sartiano and R. L. Hayes, “Hypotonic exchange-loading of erythrocytes. II. introduction of hemoglobins S and C into normal red cells,” J. Lab. Clin. Med. 89(1), 30–40 (1977).
[PubMed]

Schnure, F. W.

G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973).
[CrossRef] [PubMed]

Schweitzer, D.

Seiber, B. A.

B. A. Seiber and P. Latimer, “Extinction efficiencies of large latex spheres,” J. Colloid Interface Sci. 23(4), 509–512 (1967).
[CrossRef]

Shepherd, A. P.

Shvalov, A. N.

Soini, E.

Soini, J. T.

Steinke, J. M.

Straub, J.

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985).
[CrossRef]

Tarasov, P. A.

Thamm, E.

Thormählen, I.

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985).
[CrossRef]

Tinoco, I.

H. DeVoe and I. Tinoco., “The hypochromism of helical polynucleotides,” J. Mol. Biol. 4(6), 518–527 (1962).
[CrossRef] [PubMed]

I. Tinoco., “Hypochromism in polynucleotides,” J. Am. Chem. Soc. 82(18), 4785–4790 (1960).
[CrossRef]

Tycko, D. H.

Vekshin, N. L.

N. L. Vekshin, “Screening hypochromism in molecular aggregates and biopolymers,” J. Biol. Phys. 25(4), 339–354 (1999).
[CrossRef]

N. L. Vekshin, “Screening hypochromism of chromophores in macromolecular biostructures,” Biofizika 44(1), 45–55 (1999).

N. L. Vekshin, “Screening hypochromism of biological macromolecules and suspensions,” J. Photochem. Photobiol. B 3(4), 625–630 (1989).
[CrossRef]

Volkov, S. N.

V. I. Danilov and S. N. Volkov, “Quantum-mechanical study of the hypochromic effect in polynucleotides. Intra- and interstrand interaction contributions,” Biopolymers 14(6), 1205–1212 (1975).
[CrossRef] [PubMed]

Weissbluth, M.

M. Weissbluth, “Hypochromism,” Q. Rev. Biophys. 4(01), 1–34 (1971).
[CrossRef] [PubMed]

Wolfe, S.

M. Kunitani, S. Wolfe, S. Rana, C. Apicella, V. Levi, and G. Dollinger, “Classical light scattering quantitation of protein aggregates: off-line spectroscopy versus HPLC detection,” J. Pharm. Biomed. Anal. 16(4), 573–586 (1997).
[CrossRef] [PubMed]

Yudowitch, K. L.

J. Bateman, S. S. Hsu, J. P. Knudsen, and K. L. Yudowitch, “Hemoglobin spacing in erythrocytes,” Arch. Biochem. Biophys. 45(2), 411–422 (1953).
[CrossRef] [PubMed]

Appl. Opt.

Arch. Biochem. Biophys.

J. Bateman, S. S. Hsu, J. P. Knudsen, and K. L. Yudowitch, “Hemoglobin spacing in erythrocytes,” Arch. Biochem. Biophys. 45(2), 411–422 (1953).
[CrossRef] [PubMed]

Biochim. Biophys. Acta

A. L. Koch, “Some calculations on the turbidity of mitochondria and bacteria,” Biochim. Biophys. Acta 51(3), 429–441 (1961).
[CrossRef] [PubMed]

A. L. Koch and E. Ehrenfeld, “Th size and shape of bacteria by light scattering measurements,” Biochim. Biophys. Acta 165(2), 262–273 (1968).
[PubMed]

L. N. M. Duyens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim. Biophys. Acta 19(1), 1–12 (1956).
[CrossRef] [PubMed]

Biofizika

N. L. Vekshin, “Screening hypochromism of chromophores in macromolecular biostructures,” Biofizika 44(1), 45–55 (1999).

Biopolymers

V. I. Danilov and S. N. Volkov, “Quantum-mechanical study of the hypochromic effect in polynucleotides. Intra- and interstrand interaction contributions,” Biopolymers 14(6), 1205–1212 (1975).
[CrossRef] [PubMed]

V. A. Bloomfield, “Static and dynamic light scattering from aggregating particles,” Biopolymers 54(3), 168–172 (2000).
[CrossRef] [PubMed]

Biosens. Bioelectron.

C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19(8), 893–903 (2004).
[CrossRef] [PubMed]

Can. J. Chem.

L. H. Garcia-Rubio and N. Ro, “Detailed copolymer characterization using ultraviolet spectroscopy,” Can. J. Chem. 63(1), 253–263 (1985).
[CrossRef]

Chem. Eng. Commun.

L. H. Garcia-Rubio, “Characterization of proteins during aggregation using turbidimetry,” Chem. Eng. Commun. 80(1), 193–210 (1989).
[CrossRef]

J. Am. Chem. Soc.

I. Tinoco., “Hypochromism in polynucleotides,” J. Am. Chem. Soc. 82(18), 4785–4790 (1960).
[CrossRef]

J. Biol. Phys.

N. L. Vekshin, “Screening hypochromism in molecular aggregates and biopolymers,” J. Biol. Phys. 25(4), 339–354 (1999).
[CrossRef]

J. Biomed. Opt.

A. G. Borovoi, E. I. Naats, and U. G. Oppen, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998).
[CrossRef]

J. Colloid Interface Sci.

B. A. Seiber and P. Latimer, “Extinction efficiencies of large latex spheres,” J. Colloid Interface Sci. 23(4), 509–512 (1967).
[CrossRef]

J. Gen. Physiol.

J. F. Hoffman, “Physiological characteristics of human red blood cell ghosts,” J. Gen. Physiol. 42(1), 9–28 (1958).
[CrossRef] [PubMed]

J. Lab. Clin. Med.

G. P. Sartiano and R. L. Hayes, “Hypotonic exchange-loading of erythrocytes. II. introduction of hemoglobins S and C into normal red cells,” J. Lab. Clin. Med. 89(1), 30–40 (1977).
[PubMed]

J. Membr. Biol.

H. Bodemann and H. Passow, “Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis,” J. Membr. Biol. 8(1), 1–26 (1972).
[CrossRef] [PubMed]

J. Mol. Biol.

H. DeVoe and I. Tinoco., “The hypochromism of helical polynucleotides,” J. Mol. Biol. 4(6), 518–527 (1962).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Pharm. Biomed. Anal.

M. Kunitani, S. Wolfe, S. Rana, C. Apicella, V. Levi, and G. Dollinger, “Classical light scattering quantitation of protein aggregates: off-line spectroscopy versus HPLC detection,” J. Pharm. Biomed. Anal. 16(4), 573–586 (1997).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B

N. L. Vekshin, “Screening hypochromism of biological macromolecules and suspensions,” J. Photochem. Photobiol. B 3(4), 625–630 (1989).
[CrossRef]

J. Phys. Chem. Ref. Data

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985).
[CrossRef]

J. Theor. Biol.

P. Latimer, “The influence of photometer design on optical-conformational changes,” J. Theor. Biol. 51(1), 1–12 (1975).
[CrossRef] [PubMed]

T. A. Hoffmann and J. Ladik, “Some remarks on the hypochromicity of polynucleotides,” J. Theor. Biol. 6(1), 26–32 (1964).
[CrossRef] [PubMed]

Nature

R. F. Baker, “Entry of ferritin into human red cells during hypotonic haemolysis,” Nature 215(5099), 424–425 (1967).
[CrossRef] [PubMed]

N. V. B. Marsden and S. G. Ostling, “Accumulation of dextran in human red cells after haemolysis,” Nature 184(4687), 723–724 (1959).
[CrossRef] [PubMed]

Opt. Spektrosk.

A. A. Kokhanovskii, “Absorption and scattering of light by large layered ellipsoidal particles,” Opt. Spektrosk. 71(2), 351–354 (1991).

Photochem. Photobiol.

Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, “Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data,” Photochem. Photobiol. 71(5), 610–619 (2000).
[CrossRef] [PubMed]

P. Latimer, “The deconvulation of absorption spectra of green plant material-improved corrections for the sieve effect,” Photochem. Photobiol. 38(6), 731–734 (1983).
[CrossRef]

Powder Technol.

G. Crawley, M. Cournil, and D. Di Benedetto, “Size analysis of fine particle suspensions by spectral turbidimetry: potential and limits,” Powder Technol. 91(3), 197–208 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973).
[CrossRef] [PubMed]

Q. Rev. Biophys.

M. Weissbluth, “Hypochromism,” Q. Rev. Biophys. 4(01), 1–34 (1971).
[CrossRef] [PubMed]

Transfusion

S. Narayanan, S. Orton, G. F. Leparc, L. H. Garcia-Rubio, and R. L. Potter, “Ultraviolet and visible light spectrophotometric approach to blood typing: objective analysis by agglutination index,” Transfusion 39(10), 1051–1059 (1999).
[CrossRef] [PubMed]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, NY, 1983).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, NY, 1981)

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, NY, 1969)

E. Beutler, M. A. Lichtman, B. S. Coller, and T. J. Kipps, Williams Hematology. Fifth Ed. (McGraw-Hill, Inc., New York, NY 1995).

A. N. Yaroslavsky, A. V. Priezzhev, J. Rodriguez, I. V. Yaroslavsky, and H. Battarbee, Handbook of Optical Biomedical Diagnostics, Ch 2, Edited by Tuchin, V. V. (SPIE Press, Bellingham, WA 2002).

S. B. McKenzie, Textbook of hematology, (Williams and Wilkins, Baltimore, MD, 1996)

UV Atlas of Organic Compounds, (Plenum, New York, NY., 1966), Vol. II.

D. Voet and J. G. Voet, Biochemistry, 3rd ed. (Wiley, Hoboken, NJ 2004), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic representation of the angle of acceptance. The radius of the detector and the distance of the sample to the detector determine the amount of scattered light captured by the spectrophotometer.

Fig. 2
Fig. 2

Angular scattering prediction for an equivalent sphere red cell. The large plot is a linear plot and the inset represents a semi-logarithmic depiction of the same plot. A majority of the scattered light is directed in the forward direction within five degrees.

Fig. 7
Fig. 7

Small acceptance angle spectra comparing purified red cells and hemoglobin in solution acquired from an Agilent 8453 spectrophotometer with an acceptance angle of 2°. The RBCs were purified by washing whole blood by centrifugation and passing the suspension through a leuko-reduction filter. The RBC concentration is approximately 4000 cells/μl. The spectrum of the hemoglobin solution represents a concentration of ~0.12 mg/ml.

Fig. 9
Fig. 9

Diffuse integrating sphere spectra comparing purified red cells and hemoglobin in solution acquired from a Perkin-Elmer Lambda 18 spectrophotometer fitted with an integrating sphere. The RBC concentration is approximately 4000 cells/μl and the concentration for the hemoglobin in solution is ~0.12 mg/ml.

Fig. 3
Fig. 3

Optical properties of oxyhemoglobin and the medium. Plot of the contents of an optical properties file for oxyhemoglobin over the wavelength range of 190-1100 nm. Plots include the absorption coefficient (κ(λ)) and refractive index (n(λ)) of hemoglobin and the refractive index (n0(λ)) of water.

Fig. 4
Fig. 4

Simulated spectra of erythrocytes at varying MCV at constant high MCHC (0.33 mass fraction). The MCV was varied in the physiological range of 80–100 fl. The volumes were expressed in the model as the equivalent sphere diameter. The spectra were normalized to eliminate the effects of number based cell concentration.

Fig. 5
Fig. 5

Simulated spectra of erythrocytes at varying MCV at constant low MCHC (0.05 mass fraction). The MCV was varied in the physiological range of 80–100 fl. The volumes were expressed in the model as the equivalent sphere diameter. The spectra were normalized to eliminate the effects of number based cell concentration.

Fig. 6
Fig. 6

Simulated spectra of erythrocytes at varying MCHC and constant MCV. The MCV was held constant at 80 fl and the hematrocrit at 0.45 mass fraction. The MCHC was varied from the physiological value of 0.33 (high range) and decreased to medium and low ranges. The spectra are expressed per unit cell.

Fig. 8
Fig. 8

Diffuse spectra comparing purified red cells and hemoglobin in solution acquired from a Perkin-Elmer Lambda 900 spectrophotometer with an acceptance angle >2°. The RBC concentration is approximately 4000 cells/μl and the concentration for the hemoglobin in solution is ~0.12 mg/ml.

Fig. 10
Fig. 10

Experimental data set of purified red cells in the high MCHC range with varying MCV values. The data set is normalized in the 230-900 nm range using the area under the curve method. The MCHC is expressed in mass fractions and the MCV in fl. The free hemoglobin solution spectrum is included as a reference.

Fig. 11
Fig. 11

Simulated spectra mimicking the experimental data set from Fig. 6, normalized on a per cell basis. The MCHC is expressed in mass fractions and the MCV in fl. The free hemoglobin solution spectrum is included as a reference.

Fig. 12
Fig. 12

Experimental spectra of resealed cells with varying MCHC and MCV values. The MCHC is expressed in mass fractions and the MCV in fl. The inset represents the raw experimental data with each sample adjusted to a concentration of approximately 4000 cells/μl. The large plot represents the normalized data where each raw data was divided through by the area under their respective curve. The normalized plot amplifies the features of the curves to facilitate visual comparison.

Fig. 13
Fig. 13

Simulated spectra of resealed cells using the experimental MCHC and MCV values in Fig. 10. The MCHC is expressed in mass fractions and the MCV in fl. The inset represents simulations of the raw experimental data. The large plot represents the normalized data where each raw data was divided through by the area under the respective curves. The normalized plot amplifies the features of the curves to facilitate visual comparison.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m ( λ ) = n ( λ ) + i κ ( λ ) n 0 ( λ )
τ = N p 0 π 4 D 2 Q s c a ( α , m ( λ ) ) f ( D ) d D + N p 0 π 4 D 2 Q a b s ( α , m ( λ ) ) f ( D ) d D

Metrics