Abstract

Functional two-photon Ca2+-imaging is a versatile tool to study the dynamics of neuronal populations in brain slices and living animals. However, population imaging is typically restricted to a single two-dimensional image plane. By introducing an electrically tunable lens into the excitation path of a two-photon microscope we were able to realize fast axial focus shifts within 15 ms. The maximum axial scan range was 0.7 mm employing a 40x NA0.8 water immersion objective, plenty for typically required ranges of 0.2–0.3 mm. By combining the axial scanning method with 2D acousto-optic frame scanning and random-access scanning, we measured neuronal population activity of about 40 neurons across two imaging planes separated by 40 μm and achieved scan rates up to 20–30 Hz. The method presented is easily applicable and allows upgrading of existing two-photon microscopes for fast 3D scanning.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [CrossRef] [PubMed]
  2. B. F. Grewe and F. Helmchen, “Optical probing of neuronal ensemble activity,” Curr. Opin. Neurobiol. 19(5), 520–529 (2009).
    [CrossRef] [PubMed]
  3. J. N. Kerr and W. Denk, “Imaging in vivo: watching the brain in action,” Nat. Rev. Neurosci. 9(3), 195–205 (2008).
    [CrossRef] [PubMed]
  4. W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).
    [CrossRef] [PubMed]
  5. B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods 7(5), 399–405 (2010).
    [CrossRef] [PubMed]
  6. W. Göbel and F. Helmchen, “New angles on neuronal dendrites in vivo,” J. Neurophysiol. 98(6), 3770–3779 (2007).
    [CrossRef] [PubMed]
  7. A. M. Kerlin, M. L. Andermann, V. K. Berezovskii, and R. C. Reid, “Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex,” Neuron 67(5), 858–871 (2010).
    [CrossRef] [PubMed]
  8. E. Botcherby, C. Smith, M. Booth, R. Juskaitis, and T. Wilson, “Arbitrary-scan imaging for two-photon microscopy,” Proc. SPIE 7569(756917), 756917, 756917-8 (2010).
    [CrossRef]
  9. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32(14), 2007–2009 (2007).
    [CrossRef] [PubMed]
  10. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
    [CrossRef]
  11. E. E. Hoover, M. D. Young, E. V. Chandler, A. Luo, J. J. Field, K. E. Sheetz, A. W. Sylvester, and J. A. Squier, “Remote focusing for programmable multi-layer differential multiphoton microscopy,” Biomed. Opt. Express 2(1), 113–122 (2011).
    [CrossRef] [PubMed]
  12. P. A. Kirkby, K. M. Srinivas Nadella, and R. A. Silver, “A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13720–13745 (2010).
    [CrossRef] [PubMed]
  13. G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
    [CrossRef] [PubMed]
  14. D. Vučinić and T. J. Sejnowski, “A compact multiphoton 3D imaging system for recording fast neuronal activity,” PLoS ONE 2(8), e699 (2007).
    [CrossRef] [PubMed]
  15. W. Amir, R. Carriles, E. E. Hoover, T. A. Planchon, C. G. Durfee, and J. A. Squier, “Simultaneous imaging of multiple focal planes using a two-photon scanning microscope,” Opt. Lett. 32(12), 1731–1733 (2007).
    [CrossRef] [PubMed]
  16. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
    [CrossRef] [PubMed]
  17. B. H. W. Hendricks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
    [CrossRef]
  18. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [CrossRef]
  19. D. Koyama, R. Isago, and K. Nakamura, “Compact, high-speed variable-focus liquid lens using acoustic radiation force,” Opt. Express 18(24), 25158–25169 (2010).
    [CrossRef] [PubMed]
  20. S. Liu and H. Hua, “Extended depth-of-field microscopic imaging with a variable focus microscope objective,” Opt. Express 19(1), 353–362 (2011).
    [CrossRef] [PubMed]
  21. K. S. Lee, P. Vanderwall, and J. P. Rolland, “Two-photon microscopy with dynamic focusing objective using a liquid lens,” Proc. SPIE 7569, 756923, 756923-7 (2010).
    [CrossRef]
  22. P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, K. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
    [CrossRef]
  23. H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems, 1st ed. (Wiley-VCH, 2008), Vol. 4.
  24. A. Katsuyuki, “Embodiment 1,” Japanese Patent 8–292374 (Nov. 5, 1996).
  25. W. S. Rasband and J. Image, U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2009, http://rsb.info.nih.gov/ij/ .
  26. C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
    [CrossRef] [PubMed]
  27. A. Nimmerjahn, F. Kirchhoff, J. N. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
    [CrossRef] [PubMed]
  28. A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
    [CrossRef] [PubMed]
  29. M. Blum and A. G. Optotune, Ueberlandstrasse 129, Dubendorf, Switzerland (personal communication, 2011).

2011 (3)

2010 (6)

D. Koyama, R. Isago, and K. Nakamura, “Compact, high-speed variable-focus liquid lens using acoustic radiation force,” Opt. Express 18(24), 25158–25169 (2010).
[CrossRef] [PubMed]

K. S. Lee, P. Vanderwall, and J. P. Rolland, “Two-photon microscopy with dynamic focusing objective using a liquid lens,” Proc. SPIE 7569, 756923, 756923-7 (2010).
[CrossRef]

P. A. Kirkby, K. M. Srinivas Nadella, and R. A. Silver, “A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13720–13745 (2010).
[CrossRef] [PubMed]

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods 7(5), 399–405 (2010).
[CrossRef] [PubMed]

A. M. Kerlin, M. L. Andermann, V. K. Berezovskii, and R. C. Reid, “Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex,” Neuron 67(5), 858–871 (2010).
[CrossRef] [PubMed]

E. Botcherby, C. Smith, M. Booth, R. Juskaitis, and T. Wilson, “Arbitrary-scan imaging for two-photon microscopy,” Proc. SPIE 7569(756917), 756917, 756917-8 (2010).
[CrossRef]

2009 (1)

B. F. Grewe and F. Helmchen, “Optical probing of neuronal ensemble activity,” Curr. Opin. Neurobiol. 19(5), 520–529 (2009).
[CrossRef] [PubMed]

2008 (3)

J. N. Kerr and W. Denk, “Imaging in vivo: watching the brain in action,” Nat. Rev. Neurosci. 9(3), 195–205 (2008).
[CrossRef] [PubMed]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[CrossRef]

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

2007 (6)

D. Vučinić and T. J. Sejnowski, “A compact multiphoton 3D imaging system for recording fast neuronal activity,” PLoS ONE 2(8), e699 (2007).
[CrossRef] [PubMed]

W. Amir, R. Carriles, E. E. Hoover, T. A. Planchon, C. G. Durfee, and J. A. Squier, “Simultaneous imaging of multiple focal planes using a two-photon scanning microscope,” Opt. Lett. 32(12), 1731–1733 (2007).
[CrossRef] [PubMed]

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, K. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32(14), 2007–2009 (2007).
[CrossRef] [PubMed]

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).
[CrossRef] [PubMed]

W. Göbel and F. Helmchen, “New angles on neuronal dendrites in vivo,” J. Neurophysiol. 98(6), 3770–3779 (2007).
[CrossRef] [PubMed]

2005 (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

B. H. W. Hendricks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[CrossRef]

2004 (2)

A. Nimmerjahn, F. Kirchhoff, J. N. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
[CrossRef] [PubMed]

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
[CrossRef] [PubMed]

2003 (1)

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
[CrossRef] [PubMed]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Amir, W.

Andermann, M. L.

A. M. Kerlin, M. L. Andermann, V. K. Berezovskii, and R. C. Reid, “Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex,” Neuron 67(5), 858–871 (2010).
[CrossRef] [PubMed]

Arisaka, K.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[CrossRef] [PubMed]

Berezovskii, V. K.

A. M. Kerlin, M. L. Andermann, V. K. Berezovskii, and R. C. Reid, “Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex,” Neuron 67(5), 858–871 (2010).
[CrossRef] [PubMed]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Booth, M.

E. Botcherby, C. Smith, M. Booth, R. Juskaitis, and T. Wilson, “Arbitrary-scan imaging for two-photon microscopy,” Proc. SPIE 7569(756917), 756917, 756917-8 (2010).
[CrossRef]

Booth, M. J.

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[CrossRef]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32(14), 2007–2009 (2007).
[CrossRef] [PubMed]

Botcherby, E.

E. Botcherby, C. Smith, M. Booth, R. Juskaitis, and T. Wilson, “Arbitrary-scan imaging for two-photon microscopy,” Proc. SPIE 7569(756917), 756917, 756917-8 (2010).
[CrossRef]

Botcherby, E. J.

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[CrossRef]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32(14), 2007–2009 (2007).
[CrossRef] [PubMed]

Campbell, K.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, K. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Carriles, R.

Chandler, E. V.

Cheng, A.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[CrossRef] [PubMed]

Denk, W.

J. N. Kerr and W. Denk, “Imaging in vivo: watching the brain in action,” Nat. Rev. Neurosci. 9(3), 195–205 (2008).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Duemani Reddy, G.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Durfee, C. G.

Field, J. J.

Fink, R.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Garaschuk, O.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
[CrossRef] [PubMed]

Göbel, W.

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).
[CrossRef] [PubMed]

W. Göbel and F. Helmchen, “New angles on neuronal dendrites in vivo,” J. Neurophysiol. 98(6), 3770–3779 (2007).
[CrossRef] [PubMed]

Golshani, P.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[CrossRef] [PubMed]

Gonçalves, J. T.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[CrossRef] [PubMed]

Grewe, B. F.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods 7(5), 399–405 (2010).
[CrossRef] [PubMed]

B. F. Grewe and F. Helmchen, “Optical probing of neuronal ensemble activity,” Curr. Opin. Neurobiol. 19(5), 520–529 (2009).
[CrossRef] [PubMed]

Groisman, A.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, K. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Hashimoto, K.

Helmchen, F.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods 7(5), 399–405 (2010).
[CrossRef] [PubMed]

B. F. Grewe and F. Helmchen, “Optical probing of neuronal ensemble activity,” Curr. Opin. Neurobiol. 19(5), 520–529 (2009).
[CrossRef] [PubMed]

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).
[CrossRef] [PubMed]

W. Göbel and F. Helmchen, “New angles on neuronal dendrites in vivo,” J. Neurophysiol. 98(6), 3770–3779 (2007).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

A. Nimmerjahn, F. Kirchhoff, J. N. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
[CrossRef] [PubMed]

Hendricks, B. H. W.

B. H. W. Hendricks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[CrossRef]

Holthoff, K.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
[CrossRef] [PubMed]

Hoover, E. E.

Hua, H.

Isago, R.

Ishikawa, M.

Juskaitis, R.

E. Botcherby, C. Smith, M. Booth, R. Juskaitis, and T. Wilson, “Arbitrary-scan imaging for two-photon microscopy,” Proc. SPIE 7569(756917), 756917, 756917-8 (2010).
[CrossRef]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[CrossRef]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32(14), 2007–2009 (2007).
[CrossRef] [PubMed]

Kam, K.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, K. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Kampa, B. M.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods 7(5), 399–405 (2010).
[CrossRef] [PubMed]

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).
[CrossRef] [PubMed]

Kasper, H.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods 7(5), 399–405 (2010).
[CrossRef] [PubMed]

Kelleher, K.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Kerlin, A. M.

A. M. Kerlin, M. L. Andermann, V. K. Berezovskii, and R. C. Reid, “Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex,” Neuron 67(5), 858–871 (2010).
[CrossRef] [PubMed]

Kerr, J. N.

J. N. Kerr and W. Denk, “Imaging in vivo: watching the brain in action,” Nat. Rev. Neurosci. 9(3), 195–205 (2008).
[CrossRef] [PubMed]

A. Nimmerjahn, F. Kirchhoff, J. N. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
[CrossRef] [PubMed]

Kim, T. N.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, K. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Kirchhoff, F.

A. Nimmerjahn, F. Kirchhoff, J. N. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
[CrossRef] [PubMed]

Kirkby, P. A.

Kleinfeld, D.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, K. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Konnerth, A.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
[CrossRef] [PubMed]

Koyama, D.

Kuiper, S.

B. H. W. Hendricks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[CrossRef]

Langer, D.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods 7(5), 399–405 (2010).
[CrossRef] [PubMed]

Lee, K. S.

K. S. Lee, P. Vanderwall, and J. P. Rolland, “Two-photon microscopy with dynamic focusing objective using a liquid lens,” Proc. SPIE 7569, 756923, 756923-7 (2010).
[CrossRef]

Liu, S.

Luo, A.

Migliori, B.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, K. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Nakamura, K.

Nimmerjahn, A.

A. Nimmerjahn, F. Kirchhoff, J. N. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
[CrossRef] [PubMed]

Oku, H.

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Planchon, T. A.

Portera-Cailliau, C.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[CrossRef] [PubMed]

Reid, R. C.

A. M. Kerlin, M. L. Andermann, V. K. Berezovskii, and R. C. Reid, “Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex,” Neuron 67(5), 858–871 (2010).
[CrossRef] [PubMed]

Renders, C. A.

B. H. W. Hendricks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[CrossRef]

Rolland, J. P.

K. S. Lee, P. Vanderwall, and J. P. Rolland, “Two-photon microscopy with dynamic focusing objective using a liquid lens,” Proc. SPIE 7569, 756923, 756923-7 (2010).
[CrossRef]

Saggau, P.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Sejnowski, T. J.

D. Vučinić and T. J. Sejnowski, “A compact multiphoton 3D imaging system for recording fast neuronal activity,” PLoS ONE 2(8), e699 (2007).
[CrossRef] [PubMed]

Sheetz, K. E.

Silver, R. A.

Smith, C.

E. Botcherby, C. Smith, M. Booth, R. Juskaitis, and T. Wilson, “Arbitrary-scan imaging for two-photon microscopy,” Proc. SPIE 7569(756917), 756917, 756917-8 (2010).
[CrossRef]

Squier, J. A.

Srinivas Nadella, K. M.

Stosiek, C.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
[CrossRef] [PubMed]

Sylvester, A. W.

Tsai, P. S.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, K. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Tukker, T. W.

B. H. W. Hendricks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[CrossRef]

Van As, M. A. J.

B. H. W. Hendricks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[CrossRef]

Vanderwall, P.

K. S. Lee, P. Vanderwall, and J. P. Rolland, “Two-photon microscopy with dynamic focusing objective using a liquid lens,” Proc. SPIE 7569, 756923, 756923-7 (2010).
[CrossRef]

Vucinic, D.

D. Vučinić and T. J. Sejnowski, “A compact multiphoton 3D imaging system for recording fast neuronal activity,” PLoS ONE 2(8), e699 (2007).
[CrossRef] [PubMed]

Wilson, T.

E. Botcherby, C. Smith, M. Booth, R. Juskaitis, and T. Wilson, “Arbitrary-scan imaging for two-photon microscopy,” Proc. SPIE 7569(756917), 756917, 756917-8 (2010).
[CrossRef]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[CrossRef]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32(14), 2007–2009 (2007).
[CrossRef] [PubMed]

Young, M. D.

Appl. Phys. Lett. (1)

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, K. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Biomed. Opt. Express (1)

Curr. Opin. Neurobiol. (1)

B. F. Grewe and F. Helmchen, “Optical probing of neuronal ensemble activity,” Curr. Opin. Neurobiol. 19(5), 520–529 (2009).
[CrossRef] [PubMed]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

J. Neurophysiol. (1)

W. Göbel and F. Helmchen, “New angles on neuronal dendrites in vivo,” J. Neurophysiol. 98(6), 3770–3779 (2007).
[CrossRef] [PubMed]

Nat. Methods (5)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).
[CrossRef] [PubMed]

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods 7(5), 399–405 (2010).
[CrossRef] [PubMed]

A. Nimmerjahn, F. Kirchhoff, J. N. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
[CrossRef] [PubMed]

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[CrossRef] [PubMed]

Nat. Neurosci. (1)

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Nat. Rev. Neurosci. (1)

J. N. Kerr and W. Denk, “Imaging in vivo: watching the brain in action,” Nat. Rev. Neurosci. 9(3), 195–205 (2008).
[CrossRef] [PubMed]

Neuron (1)

A. M. Kerlin, M. L. Andermann, V. K. Berezovskii, and R. C. Reid, “Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex,” Neuron 67(5), 858–871 (2010).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Opt. Rev. (1)

B. H. W. Hendricks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[CrossRef]

PLoS ONE (1)

D. Vučinić and T. J. Sejnowski, “A compact multiphoton 3D imaging system for recording fast neuronal activity,” PLoS ONE 2(8), e699 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
[CrossRef] [PubMed]

Proc. SPIE (2)

K. S. Lee, P. Vanderwall, and J. P. Rolland, “Two-photon microscopy with dynamic focusing objective using a liquid lens,” Proc. SPIE 7569, 756923, 756923-7 (2010).
[CrossRef]

E. Botcherby, C. Smith, M. Booth, R. Juskaitis, and T. Wilson, “Arbitrary-scan imaging for two-photon microscopy,” Proc. SPIE 7569(756917), 756917, 756917-8 (2010).
[CrossRef]

Other (4)

H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems, 1st ed. (Wiley-VCH, 2008), Vol. 4.

A. Katsuyuki, “Embodiment 1,” Japanese Patent 8–292374 (Nov. 5, 1996).

W. S. Rasband and J. Image, U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2009, http://rsb.info.nih.gov/ij/ .

M. Blum and A. G. Optotune, Ueberlandstrasse 129, Dubendorf, Switzerland (personal communication, 2011).

Supplementary Material (5)

» Media 1: JPG (4474 KB)     
» Media 2: JPG (4433 KB)     
» Media 3: MOV (216 KB)     
» Media 4: MOV (3841 KB)     
» Media 5: MOV (563 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical setup and focusing properties of the electrically tunable lens. (a) Upper panel: Electrically tunable lens (ETL). Lower panel: lens assembly consisting of the ETL and the offset lens (OL). (b) Microscope adaptor to mount and align the ETL/OL assembly with respect to the microscope objective and excitation/detection pathways. DC dichroic beam splitter, PMT photomultiplier, CC current control driver. (c) Electrical focusing behavior of the ETL/OL system shown in (b) for three different plano-concave offset lenses (focal lengths: −100 mm/blue, −75 mm/red, −48 mm/green) in combination with the 40x objective. The axial focus shift was measured by refocusing small fluorescent beads using the motorized z-stage of the microscope. (d) Two-photon image (taken with the AOD microscope) of a pollen grain imaged without the ETL/OL assembly inserted. (e) The same pollen grain imaged through the ETL/OL/Objective assembly at different axial focus shifts. The pollen grain was refocused to the imaging plane in (d) using a motorized z-stage. Note the change in magnification or field-of-view size. Scale bars, 5 μm.

Fig. 2
Fig. 2

Optical evaluation of the axial scanning method. (a) Side-view of the z-variations in FOV size visualized by line scans in a glass cuvette containing a Fluorescein solution. (b) Relative change of the field-of-view (FOV) size with axial focus shift with respect to the FOV size without ETL. The simulated change in FOV size is shown as dashed lines. (c) 2D ray tracing layout of the ETL/OL assembly with the microscope objective (OBJ) attached. The simulation was calculated for optimum filling of the ETL/Objective back aperture (BA). The change in NA with axial focus shift is apparent. (d) Upper panel: PSF measurements with and without the ETL/OL assembly at the zero z-position using a galvanometric scan mirror based two-photon microscope. All values are stated as PSF half-widths in μm. The fluorescent beads used were 500 nm in size (Fluoresbrite, Polysciences Inc.). Lower panel: Simulated Strehl ratios of the entire excitation path (with underfilled back aperture) at 850 nm as a function of distance to the optical axis and axial focus shift. Up to a distance of 200 μm from the optical axis, diffraction-limited performance can be maintained (Strehl ratio > 0.8).

Fig. 3
Fig. 3

Dynamical properties of the ETL. (a) Optical oscilloscope setup using a side-viewing microscope focused at the two-photon excited fluorescent spot in a cuvette containing a Fluorescein solution. (b) Magnified image as indicated in (a) shows the maximum axial focal shift of 700 μm using a f = −100 mm concave OL and the 40x objective. (c) Frequency-dependence of direct phase (upper panel) and amplitude normalized to the value at 1 Hz (lower panel) of the ETL/OL/Objective axial scanning system in response to a sinusoidal driving current. Two broad resonance peaks at 300 and 600 Hz are discernible (5 Hz step size). Traces recorded with an eight second exposure time; according to the applied sinusoidal driving signals (5-820 Hz) 40-6560 traces were averaged. Example image shows a typical trace recorded for 5 Hz ETL oscillation frequency. (d) Optical oscilloscope traces showing step response and response using an optimized driving signal. In each case 200 traces were recorded. (e) Registered optical oscilloscope traces after image processing showing the step response with and without optimizing the ETL-current driving signal (gray traces on top of the reconstructed step responses) for different axial steps around the focus position without ETL/OL (z = 0). Employing optimized driving signals axial target positions were reached after 15 ms (indicated by black ticks). (f) Measurements of normalized bead intensities using the AOD frame scanning (5 Hz frame rate) at two different focal depths (step size 35 μm) during 2000 repetitions. Note: Beads were in focus only when switching to the upper axial layer. The position accuracy of axial positioning was then derived offline by a deconvolution of the normalized bead intensity (measured at the center of the bead) with the z-resolution of the AOD microscope (7.9 μm). Our analysis revealed an axial accuracy below 1 μm (±0.42 μm).

Fig. 4
Fig. 4

Two-photon two-layer calcium imaging in mouse neocortex. (a) Two-photon images of a neuronal cell population (green) stained with OGB-1 in L2/3 throughout mouse neocortex starting at 100 μm below the pia. (b) Schematic drawing of two-layer frame scanning and two-layer random-access pattern scanning at different depths. (c) Upper panels: Two L2/3 neuronal cell populations (gray) labeled with OGB-1-AM in mouse barrel cortex. Calcium imaging of neuronal cell populations was performed at different depths below pia mater (left image 180 μm, right image 140 μm). Scale bar, 20 μm. Lower panel: Neuronal activity signals (expressed as relative percentage fluorescence changes ΔF/F) were recorded at 6-Hz frame scanning rate (3 Hz per plane). To induce neuronal activity repeated brief air-puffs were applied to the mouse contralateral whiskers (indicated by black arrows). (d) Upper panels: Two-photon images of a neuronal cell population (gray) stained with OGB-1. Images are recorded at different focal depths (left image 273 μm, right image 233 μm) in mouse barrel cortex. The preselected random-access scanning positions on neuronal somata are shown as blue dots. Scale bar, 20 μm. Lower panel: Fast two-layer imaging was performed using 9-point RAPS targeted to 40 spots (17 cells for each layer plus background spots) that were manually pre-selected from the two reference images. Relative fluorescence traces (ΔF/F, 12 example cells shown) were recorded during short air-puff stimulations of the contralateral whiskers (black arrows). Effective sampling rate was 21.6 Hz. In vivo imaging experiments in (c) and (d) were performed using the 100 mm offset lens.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f tot = 1 k = 1 n ( τ acq , k + τ switch ) ,

Metrics