Abstract

A need exists for a long-term, minimally-invasive system to monitor blood analytes. For certain analytes, such as glucose in the case of diabetics, a continuous system would help reduce complications. Current methods suffer significant drawbacks, such as low patient compliance for the finger stick test or short lifetime (i.e., 3–7 days) and required calibrations for continuous glucose monitors. Red blood cells (RBCs) are potential biocompatible carriers of sensing assays for long-term monitoring. We demonstrate that RBCs can be loaded with an analyte-sensitive fluorescent dye. In the current study, FITC, a pH-sensitive fluorescent dye, is encapsulated within resealed red cell ghosts. Intracellular FITC reports on extracellular pH: fluorescence intensity increases as extracellular pH increases because the RBC rapidly equilibrates to the pH of the external environment through the chloride-bicarbonate exchanger. The resealed ghost sensors exhibit an excellent ability to reversibly track pH over the physiological pH range with a resolution down to 0.014 pH unit. Dye loading efficiency varies from 30% to 80%. Although complete loading is ideal, it is not necessary, as the fluorescence signal is an integration of all resealed ghosts within the excitation volume. The resealed ghosts could serve as a long-term (>1 to 2 months), continuous, circulating biosensor for the management of diseases, such as diabetes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
    [Crossref] [PubMed]
  2. M. S. D. Agus, J. L. Alexander, and P. A. Mantell, “Continuous non-invasive end-tidal CO2 monitoring in pediatric inpatients with diabetic ketoacidosis,” Pediatr. Diabetes 7(4), 196–200 (2006).
    [Crossref] [PubMed]
  3. R. B. Easley, T. R. Johnson, and J. D. Tobias, “Continuous pH monitoring using the Paratrend 7 inserted into a peripheral vein in a patient with shock and congenital lactic acidosis,” Clin. Pediatr. (Phila.) 41(5), 351–355 (2002).
    [Crossref] [PubMed]
  4. E. Garcia, T. J. Abramo, P. Okada, D. D. Guzman, J. S. Reisch, and R. A. Wiebe, “Capnometry for noninvasive continuous monitoring of metabolic status in pediatric diabetic ketoacidosis,” Crit. Care Med. 31(10), 2539–2543 (2003).
    [Crossref] [PubMed]
  5. M. E. McBride, J. W. Berkenbosch, and J. D. Tobias, “Transcutaneous carbon dioxide monitoring during diabetic ketoacidosis in children and adolescents,” Paediatr. Anaesth. 14(2), 167–171 (2004).
    [Crossref] [PubMed]
  6. J. D. Tobias, “Transcutaneous carbon dioxide monitoring in infants and children,” Paediatr. Anaesth. 19(5), 434–444 (2009).
    [Crossref] [PubMed]
  7. J. P. Boyle, T. J. Thompson, E. W. Gregg, L. E. Barker, and D. F. Williamson, “Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence,” Popul. Health Metr. 8(1), 29 (2010).
    [Crossref] [PubMed]
  8. Centers for Disease Control and Prevention, “2011 National diabetes fact sheet” (U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2011).
  9. UK Prospective Diabetes Study (UKPDS) Group, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” Lancet 352(9131), 837–853 (1998).
    [Crossref] [PubMed]
  10. The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” N. Engl. J. Med. 329(14), 977–986 (1993).
    [Crossref] [PubMed]
  11. Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
    [Crossref] [PubMed]
  12. U.S. Department of Health and Human Services, National Diabetes Education Program (NDEP). “Know your blood sugar numbers,” National Diabetes Education Program publication NDEP-10 (2005).
  13. American Diabetes Association, “Standards of medical care in diabetes--2011,” Diabetes Care 34(Suppl 1), S11–S61 (2011).
    [Crossref] [PubMed]
  14. M. R. Burge, S. Mitchell, A. Sawyer, and D. S. Schade, “Continuous glucose monitoring: the future of diabetes management,” Diabetes Spectrum 21(2), 112–119 (2008).
    [Crossref]
  15. J. Wagner, C. Malchoff, and G. Abbott, “Invasiveness as a barrier to self-monitoring of blood glucose in diabetes,” Diabetes Technol. Ther. 7(4), 612–619 (2005).
    [Crossref] [PubMed]
  16. G. McGarraugh, “The chemistry of commercial continuous glucose monitors,” Diabetes Technol. Ther. 11(s1Suppl 1), S17–S24 (2009).
    [Crossref] [PubMed]
  17. I. Torres, M. G. Baena, M. Cayon, J. Ortego-Rojo, and M. Aguilar-Diosdado, “Use of sensors in the treatment and follow-up of patients with diabetes mellitus,” Sensors (Basel Switzerland) 10(8), 7404–7420 (2010).
    [Crossref]
  18. T. Aye, J. Block, and B. Buckingham, “Toward closing the loop: an update on insulin pumps and continuous glucose monitoring systems,” Endocrinol. Metab. Clin. North Am. 39(3), 609–624 (2010).
    [Crossref] [PubMed]
  19. H. Hanaire, “Continuous glucose monitoring and external insulin pump: towards a subcutaneous closed loop,” Diabetes Metab. 32(5), 534–538 (2006).
    [Crossref] [PubMed]
  20. C. Wei, D. J. Lunn, C. L. Acerini, J. M. Allen, A. M. Larsen, M. E. Wilinska, D. B. Dunger, and R. Hovorka, “Measurement delay associated with the Guardian RT continuous glucose monitoring system,” Diabet. Med. 27(1), 117–122 (2010).
    [Crossref] [PubMed]
  21. N. Wisniewski, F. Moussy, and W. M. Reichert, ““Characterization of implantable biosensor membrane biofouling,” Fresenius',” J. Anal. Chem. 366, 611–621 (2000).
  22. G. Voskerician and J. Anderson, “Sensor Biocompatibility and Biofouling in Real-Time Monitoring,” in Wiley Encyclopedia of Biomedical Engineering, (John Wiley & Sons, Inc., 2006).
  23. M. Hamidi and H. Tajerzadeh, “Carrier erythrocytes: an overview,” Drug Deliv. 10(1), 9–20 (2003).
    [Crossref] [PubMed]
  24. G. Schwoch and H. Passow, “Preparation and properties of human erythrocyte ghosts,” Mol. Cell. Biochem. 2(2), 197–218 (1973).
    [Crossref] [PubMed]
  25. J. R. Deloach, “Carrier erythrocytes,” Med. Res. Rev. 6(4), 487–504 (1986).
    [Crossref] [PubMed]
  26. G. M. Ihler and H. C.-W. Tsang, “Hypotonic hemolysis methods for entrapment of agents in resealed erythrocytes,” Methods Enzymol. 149, 221–229 (1987).
    [Crossref] [PubMed]
  27. F. Pierigè, S. Serafini, L. Rossi, and M. Magnani, “Cell-based drug delivery,” Adv. Drug Deliv. Rev. 60(2), 286–295 (2008).
    [Crossref] [PubMed]
  28. P. Seeman, “Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin,” J. Cell Biol. 32(1), 55–70 (1967).
    [Crossref] [PubMed]
  29. L. Rossi, S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini, and M. Magnani, “Erythrocyte-based drug delivery,” Expert Opin. Drug Deliv. 2(2), 311–322 (2005).
    [Crossref] [PubMed]
  30. C. G. Millán, M. L. Marinero, A. Z. Castañeda, and J. M. Lanao, “Drug, enzyme and peptide delivery using erythrocytes as carriers,” J. Control. Release 95(1), 27–49 (2004).
    [Crossref] [PubMed]
  31. M. Magnani, L. Rossi, A. Fraternale, M. Bianchi, A. Antonelli, R. Crinelli, and L. Chiarantini, “Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides,” Gene Ther. 9(11), 749–751 (2002).
    [Crossref] [PubMed]
  32. B. E. Bax, M. D. Bain, P. J. Talbot, E. J. Parker-Williams, and R. A. Chalmers, “Survival of human carrier erythrocytes in vivo,” Clin. Sci. 96(2), 171–178 (1999).
    [Crossref] [PubMed]
  33. R. A. Schlegel, K. Lumley-Sapanski, and P. Williamson, “Single cell analysis of factors increasing the survival of resealed erythrocytes in the circulation of mice,” Adv. Exp. Med. Biol. 326, 133–138 (1992).
    [PubMed]
  34. G. Gardos, “Akkumulation de kalium onen durch menschiche Blutkorperchen,” Acta Physiol. Acad. Sci. Hung. 6, 191–196 (1953).
  35. N. V. B. Marsden and S. G. Ostling, “Accumulation of dextran in human red cells after haemolysis,” Nature 184(4687Suppl 10), 723–724 (1959).
    [Crossref] [PubMed]
  36. G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973).
    [Crossref] [PubMed]
  37. U. Zimmerman, “Jahresbericht der kernforschungsanlage Jülich GmbH” (Nuclear Research Center, Jülich, 1973), pp. 55–58.
  38. M. Hamidi, A. Zarrin, M. Foroozesh, and S. Mohammadi-Samani, “Applications of carrier erythrocytes in delivery of biopharmaceuticals,” J. Control. Release 118(2), 145–160 (2007).
    [Crossref] [PubMed]
  39. R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
    [Crossref] [PubMed]
  40. R. Azoui, J. L. Cuche, J. F. Renaud, M. Safar, and G. Dagher, “A dopamine transporter in human erythrocytes: modulation by insulin,” Exp. Physiol. 81(3), 421–434 (1996).
    [PubMed]
  41. A. Carruthers, “Facilitated diffusion of glucose,” Physiol. Rev. 70(4), 1135–1176 (1990).
    [PubMed]
  42. P. G. LeFevre, “Evidence of active transfer of certain non-electrolytes across the human red cell membrane,” J. Gen. Physiol. 31(6), 505–527 (1948).
    [Crossref] [PubMed]
  43. O. Fröhlich and R. B. Gunn, “Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system,” Biochim Biophys Acta.  864, 169–194 (1986).
  44. J. Funder and J. O. Wieth, “Chloride transport in human erythrocytes and ghosts: a quantitative comparison,” J. Physiol. 262(3), 679–698 (1976).
    [PubMed]
  45. H. Cao and M. D. Heagy, “Fluorescent chemosensors for carbohydrates: a decade’s worth of bright spies for saccharides in review,” J. Fluoresc. 14(5), 569–584 (2004).
    [Crossref] [PubMed]
  46. H. Fang, G. Kaur, and B. Wang, “Progress in boronic acid-based fluorescent glucose sensors,” J. Fluoresc. 14(5), 481–489 (2004).
    [Crossref] [PubMed]
  47. P. S. B. Center, Donating Platelets, http://www.psbc.org/programs/platelets.htm .
  48. P. K. Gasbjerg, P. A. Knauf, and J. Brahm, “Kinetics of bicarbonate transport in human red blood cell membranes at body temperature,” J. Gen. Physiol. 108(6), 565–575 (1996).
    [Crossref] [PubMed]
  49. H. Bodemann and H. Passow, “Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis,” J. Membr. Biol. 8(1), 1–26 (1972).
    [Crossref] [PubMed]

2011 (1)

American Diabetes Association, “Standards of medical care in diabetes--2011,” Diabetes Care 34(Suppl 1), S11–S61 (2011).
[Crossref] [PubMed]

2010 (4)

I. Torres, M. G. Baena, M. Cayon, J. Ortego-Rojo, and M. Aguilar-Diosdado, “Use of sensors in the treatment and follow-up of patients with diabetes mellitus,” Sensors (Basel Switzerland) 10(8), 7404–7420 (2010).
[Crossref]

T. Aye, J. Block, and B. Buckingham, “Toward closing the loop: an update on insulin pumps and continuous glucose monitoring systems,” Endocrinol. Metab. Clin. North Am. 39(3), 609–624 (2010).
[Crossref] [PubMed]

C. Wei, D. J. Lunn, C. L. Acerini, J. M. Allen, A. M. Larsen, M. E. Wilinska, D. B. Dunger, and R. Hovorka, “Measurement delay associated with the Guardian RT continuous glucose monitoring system,” Diabet. Med. 27(1), 117–122 (2010).
[Crossref] [PubMed]

J. P. Boyle, T. J. Thompson, E. W. Gregg, L. E. Barker, and D. F. Williamson, “Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence,” Popul. Health Metr. 8(1), 29 (2010).
[Crossref] [PubMed]

2009 (2)

J. D. Tobias, “Transcutaneous carbon dioxide monitoring in infants and children,” Paediatr. Anaesth. 19(5), 434–444 (2009).
[Crossref] [PubMed]

G. McGarraugh, “The chemistry of commercial continuous glucose monitors,” Diabetes Technol. Ther. 11(s1Suppl 1), S17–S24 (2009).
[Crossref] [PubMed]

2008 (3)

M. R. Burge, S. Mitchell, A. Sawyer, and D. S. Schade, “Continuous glucose monitoring: the future of diabetes management,” Diabetes Spectrum 21(2), 112–119 (2008).
[Crossref]

F. Pierigè, S. Serafini, L. Rossi, and M. Magnani, “Cell-based drug delivery,” Adv. Drug Deliv. Rev. 60(2), 286–295 (2008).
[Crossref] [PubMed]

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

2007 (1)

M. Hamidi, A. Zarrin, M. Foroozesh, and S. Mohammadi-Samani, “Applications of carrier erythrocytes in delivery of biopharmaceuticals,” J. Control. Release 118(2), 145–160 (2007).
[Crossref] [PubMed]

2006 (2)

H. Hanaire, “Continuous glucose monitoring and external insulin pump: towards a subcutaneous closed loop,” Diabetes Metab. 32(5), 534–538 (2006).
[Crossref] [PubMed]

M. S. D. Agus, J. L. Alexander, and P. A. Mantell, “Continuous non-invasive end-tidal CO2 monitoring in pediatric inpatients with diabetic ketoacidosis,” Pediatr. Diabetes 7(4), 196–200 (2006).
[Crossref] [PubMed]

2005 (2)

J. Wagner, C. Malchoff, and G. Abbott, “Invasiveness as a barrier to self-monitoring of blood glucose in diabetes,” Diabetes Technol. Ther. 7(4), 612–619 (2005).
[Crossref] [PubMed]

L. Rossi, S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini, and M. Magnani, “Erythrocyte-based drug delivery,” Expert Opin. Drug Deliv. 2(2), 311–322 (2005).
[Crossref] [PubMed]

2004 (4)

C. G. Millán, M. L. Marinero, A. Z. Castañeda, and J. M. Lanao, “Drug, enzyme and peptide delivery using erythrocytes as carriers,” J. Control. Release 95(1), 27–49 (2004).
[Crossref] [PubMed]

M. E. McBride, J. W. Berkenbosch, and J. D. Tobias, “Transcutaneous carbon dioxide monitoring during diabetic ketoacidosis in children and adolescents,” Paediatr. Anaesth. 14(2), 167–171 (2004).
[Crossref] [PubMed]

H. Cao and M. D. Heagy, “Fluorescent chemosensors for carbohydrates: a decade’s worth of bright spies for saccharides in review,” J. Fluoresc. 14(5), 569–584 (2004).
[Crossref] [PubMed]

H. Fang, G. Kaur, and B. Wang, “Progress in boronic acid-based fluorescent glucose sensors,” J. Fluoresc. 14(5), 481–489 (2004).
[Crossref] [PubMed]

2003 (2)

E. Garcia, T. J. Abramo, P. Okada, D. D. Guzman, J. S. Reisch, and R. A. Wiebe, “Capnometry for noninvasive continuous monitoring of metabolic status in pediatric diabetic ketoacidosis,” Crit. Care Med. 31(10), 2539–2543 (2003).
[Crossref] [PubMed]

M. Hamidi and H. Tajerzadeh, “Carrier erythrocytes: an overview,” Drug Deliv. 10(1), 9–20 (2003).
[Crossref] [PubMed]

2002 (2)

M. Magnani, L. Rossi, A. Fraternale, M. Bianchi, A. Antonelli, R. Crinelli, and L. Chiarantini, “Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides,” Gene Ther. 9(11), 749–751 (2002).
[Crossref] [PubMed]

R. B. Easley, T. R. Johnson, and J. D. Tobias, “Continuous pH monitoring using the Paratrend 7 inserted into a peripheral vein in a patient with shock and congenital lactic acidosis,” Clin. Pediatr. (Phila.) 41(5), 351–355 (2002).
[Crossref] [PubMed]

2000 (2)

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[Crossref] [PubMed]

N. Wisniewski, F. Moussy, and W. M. Reichert, ““Characterization of implantable biosensor membrane biofouling,” Fresenius',” J. Anal. Chem. 366, 611–621 (2000).

1999 (1)

B. E. Bax, M. D. Bain, P. J. Talbot, E. J. Parker-Williams, and R. A. Chalmers, “Survival of human carrier erythrocytes in vivo,” Clin. Sci. 96(2), 171–178 (1999).
[Crossref] [PubMed]

1998 (1)

UK Prospective Diabetes Study (UKPDS) Group, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” Lancet 352(9131), 837–853 (1998).
[Crossref] [PubMed]

1996 (2)

R. Azoui, J. L. Cuche, J. F. Renaud, M. Safar, and G. Dagher, “A dopamine transporter in human erythrocytes: modulation by insulin,” Exp. Physiol. 81(3), 421–434 (1996).
[PubMed]

P. K. Gasbjerg, P. A. Knauf, and J. Brahm, “Kinetics of bicarbonate transport in human red blood cell membranes at body temperature,” J. Gen. Physiol. 108(6), 565–575 (1996).
[Crossref] [PubMed]

1995 (1)

Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
[Crossref] [PubMed]

1993 (1)

The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” N. Engl. J. Med. 329(14), 977–986 (1993).
[Crossref] [PubMed]

1992 (1)

R. A. Schlegel, K. Lumley-Sapanski, and P. Williamson, “Single cell analysis of factors increasing the survival of resealed erythrocytes in the circulation of mice,” Adv. Exp. Med. Biol. 326, 133–138 (1992).
[PubMed]

1990 (1)

A. Carruthers, “Facilitated diffusion of glucose,” Physiol. Rev. 70(4), 1135–1176 (1990).
[PubMed]

1987 (1)

G. M. Ihler and H. C.-W. Tsang, “Hypotonic hemolysis methods for entrapment of agents in resealed erythrocytes,” Methods Enzymol. 149, 221–229 (1987).
[Crossref] [PubMed]

1986 (2)

J. R. Deloach, “Carrier erythrocytes,” Med. Res. Rev. 6(4), 487–504 (1986).
[Crossref] [PubMed]

O. Fröhlich and R. B. Gunn, “Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system,” Biochim Biophys Acta.  864, 169–194 (1986).

1976 (1)

J. Funder and J. O. Wieth, “Chloride transport in human erythrocytes and ghosts: a quantitative comparison,” J. Physiol. 262(3), 679–698 (1976).
[PubMed]

1973 (2)

G. Schwoch and H. Passow, “Preparation and properties of human erythrocyte ghosts,” Mol. Cell. Biochem. 2(2), 197–218 (1973).
[Crossref] [PubMed]

G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973).
[Crossref] [PubMed]

1972 (1)

H. Bodemann and H. Passow, “Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis,” J. Membr. Biol. 8(1), 1–26 (1972).
[Crossref] [PubMed]

1967 (1)

P. Seeman, “Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin,” J. Cell Biol. 32(1), 55–70 (1967).
[Crossref] [PubMed]

1959 (1)

N. V. B. Marsden and S. G. Ostling, “Accumulation of dextran in human red cells after haemolysis,” Nature 184(4687Suppl 10), 723–724 (1959).
[Crossref] [PubMed]

1953 (1)

G. Gardos, “Akkumulation de kalium onen durch menschiche Blutkorperchen,” Acta Physiol. Acad. Sci. Hung. 6, 191–196 (1953).

1948 (1)

P. G. LeFevre, “Evidence of active transfer of certain non-electrolytes across the human red cell membrane,” J. Gen. Physiol. 31(6), 505–527 (1948).
[Crossref] [PubMed]

Abbott, G.

J. Wagner, C. Malchoff, and G. Abbott, “Invasiveness as a barrier to self-monitoring of blood glucose in diabetes,” Diabetes Technol. Ther. 7(4), 612–619 (2005).
[Crossref] [PubMed]

Abramo, T. J.

E. Garcia, T. J. Abramo, P. Okada, D. D. Guzman, J. S. Reisch, and R. A. Wiebe, “Capnometry for noninvasive continuous monitoring of metabolic status in pediatric diabetic ketoacidosis,” Crit. Care Med. 31(10), 2539–2543 (2003).
[Crossref] [PubMed]

Acerini, C. L.

C. Wei, D. J. Lunn, C. L. Acerini, J. M. Allen, A. M. Larsen, M. E. Wilinska, D. B. Dunger, and R. Hovorka, “Measurement delay associated with the Guardian RT continuous glucose monitoring system,” Diabet. Med. 27(1), 117–122 (2010).
[Crossref] [PubMed]

Aguilar-Diosdado, M.

I. Torres, M. G. Baena, M. Cayon, J. Ortego-Rojo, and M. Aguilar-Diosdado, “Use of sensors in the treatment and follow-up of patients with diabetes mellitus,” Sensors (Basel Switzerland) 10(8), 7404–7420 (2010).
[Crossref]

Agus, M. S. D.

M. S. D. Agus, J. L. Alexander, and P. A. Mantell, “Continuous non-invasive end-tidal CO2 monitoring in pediatric inpatients with diabetic ketoacidosis,” Pediatr. Diabetes 7(4), 196–200 (2006).
[Crossref] [PubMed]

Alexander, J. L.

M. S. D. Agus, J. L. Alexander, and P. A. Mantell, “Continuous non-invasive end-tidal CO2 monitoring in pediatric inpatients with diabetic ketoacidosis,” Pediatr. Diabetes 7(4), 196–200 (2006).
[Crossref] [PubMed]

Allen, J. M.

C. Wei, D. J. Lunn, C. L. Acerini, J. M. Allen, A. M. Larsen, M. E. Wilinska, D. B. Dunger, and R. Hovorka, “Measurement delay associated with the Guardian RT continuous glucose monitoring system,” Diabet. Med. 27(1), 117–122 (2010).
[Crossref] [PubMed]

Antonelli, A.

L. Rossi, S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini, and M. Magnani, “Erythrocyte-based drug delivery,” Expert Opin. Drug Deliv. 2(2), 311–322 (2005).
[Crossref] [PubMed]

M. Magnani, L. Rossi, A. Fraternale, M. Bianchi, A. Antonelli, R. Crinelli, and L. Chiarantini, “Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides,” Gene Ther. 9(11), 749–751 (2002).
[Crossref] [PubMed]

Araki, E.

Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
[Crossref] [PubMed]

Aye, T.

T. Aye, J. Block, and B. Buckingham, “Toward closing the loop: an update on insulin pumps and continuous glucose monitoring systems,” Endocrinol. Metab. Clin. North Am. 39(3), 609–624 (2010).
[Crossref] [PubMed]

Azoui, R.

R. Azoui, J. L. Cuche, J. F. Renaud, M. Safar, and G. Dagher, “A dopamine transporter in human erythrocytes: modulation by insulin,” Exp. Physiol. 81(3), 421–434 (1996).
[PubMed]

Baena, M. G.

I. Torres, M. G. Baena, M. Cayon, J. Ortego-Rojo, and M. Aguilar-Diosdado, “Use of sensors in the treatment and follow-up of patients with diabetes mellitus,” Sensors (Basel Switzerland) 10(8), 7404–7420 (2010).
[Crossref]

Bain, M. D.

B. E. Bax, M. D. Bain, P. J. Talbot, E. J. Parker-Williams, and R. A. Chalmers, “Survival of human carrier erythrocytes in vivo,” Clin. Sci. 96(2), 171–178 (1999).
[Crossref] [PubMed]

Barker, L. E.

J. P. Boyle, T. J. Thompson, E. W. Gregg, L. E. Barker, and D. F. Williamson, “Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence,” Popul. Health Metr. 8(1), 29 (2010).
[Crossref] [PubMed]

Bax, B. E.

B. E. Bax, M. D. Bain, P. J. Talbot, E. J. Parker-Williams, and R. A. Chalmers, “Survival of human carrier erythrocytes in vivo,” Clin. Sci. 96(2), 171–178 (1999).
[Crossref] [PubMed]

Berkenbosch, J. W.

M. E. McBride, J. W. Berkenbosch, and J. D. Tobias, “Transcutaneous carbon dioxide monitoring during diabetic ketoacidosis in children and adolescents,” Paediatr. Anaesth. 14(2), 167–171 (2004).
[Crossref] [PubMed]

Bianchi, M.

M. Magnani, L. Rossi, A. Fraternale, M. Bianchi, A. Antonelli, R. Crinelli, and L. Chiarantini, “Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides,” Gene Ther. 9(11), 749–751 (2002).
[Crossref] [PubMed]

Block, J.

T. Aye, J. Block, and B. Buckingham, “Toward closing the loop: an update on insulin pumps and continuous glucose monitoring systems,” Endocrinol. Metab. Clin. North Am. 39(3), 609–624 (2010).
[Crossref] [PubMed]

Bodemann, H.

H. Bodemann and H. Passow, “Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis,” J. Membr. Biol. 8(1), 1–26 (1972).
[Crossref] [PubMed]

Boyle, J. P.

J. P. Boyle, T. J. Thompson, E. W. Gregg, L. E. Barker, and D. F. Williamson, “Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence,” Popul. Health Metr. 8(1), 29 (2010).
[Crossref] [PubMed]

Brahm, J.

P. K. Gasbjerg, P. A. Knauf, and J. Brahm, “Kinetics of bicarbonate transport in human red blood cell membranes at body temperature,” J. Gen. Physiol. 108(6), 565–575 (1996).
[Crossref] [PubMed]

Buckingham, B.

T. Aye, J. Block, and B. Buckingham, “Toward closing the loop: an update on insulin pumps and continuous glucose monitoring systems,” Endocrinol. Metab. Clin. North Am. 39(3), 609–624 (2010).
[Crossref] [PubMed]

Burge, M. R.

M. R. Burge, S. Mitchell, A. Sawyer, and D. S. Schade, “Continuous glucose monitoring: the future of diabetes management,” Diabetes Spectrum 21(2), 112–119 (2008).
[Crossref]

Cao, H.

H. Cao and M. D. Heagy, “Fluorescent chemosensors for carbohydrates: a decade’s worth of bright spies for saccharides in review,” J. Fluoresc. 14(5), 569–584 (2004).
[Crossref] [PubMed]

Carruthers, A.

A. Carruthers, “Facilitated diffusion of glucose,” Physiol. Rev. 70(4), 1135–1176 (1990).
[PubMed]

Castañeda, A. Z.

C. G. Millán, M. L. Marinero, A. Z. Castañeda, and J. M. Lanao, “Drug, enzyme and peptide delivery using erythrocytes as carriers,” J. Control. Release 95(1), 27–49 (2004).
[Crossref] [PubMed]

Cayon, M.

I. Torres, M. G. Baena, M. Cayon, J. Ortego-Rojo, and M. Aguilar-Diosdado, “Use of sensors in the treatment and follow-up of patients with diabetes mellitus,” Sensors (Basel Switzerland) 10(8), 7404–7420 (2010).
[Crossref]

Cerasi, A.

L. Rossi, S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini, and M. Magnani, “Erythrocyte-based drug delivery,” Expert Opin. Drug Deliv. 2(2), 311–322 (2005).
[Crossref] [PubMed]

Chalmers, R. A.

B. E. Bax, M. D. Bain, P. J. Talbot, E. J. Parker-Williams, and R. A. Chalmers, “Survival of human carrier erythrocytes in vivo,” Clin. Sci. 96(2), 171–178 (1999).
[Crossref] [PubMed]

Chiarantini, L.

L. Rossi, S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini, and M. Magnani, “Erythrocyte-based drug delivery,” Expert Opin. Drug Deliv. 2(2), 311–322 (2005).
[Crossref] [PubMed]

M. Magnani, L. Rossi, A. Fraternale, M. Bianchi, A. Antonelli, R. Crinelli, and L. Chiarantini, “Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides,” Gene Ther. 9(11), 749–751 (2002).
[Crossref] [PubMed]

Coté, G. L.

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[Crossref] [PubMed]

Crinelli, R.

M. Magnani, L. Rossi, A. Fraternale, M. Bianchi, A. Antonelli, R. Crinelli, and L. Chiarantini, “Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides,” Gene Ther. 9(11), 749–751 (2002).
[Crossref] [PubMed]

Cuche, J. L.

R. Azoui, J. L. Cuche, J. F. Renaud, M. Safar, and G. Dagher, “A dopamine transporter in human erythrocytes: modulation by insulin,” Exp. Physiol. 81(3), 421–434 (1996).
[PubMed]

Dagher, G.

R. Azoui, J. L. Cuche, J. F. Renaud, M. Safar, and G. Dagher, “A dopamine transporter in human erythrocytes: modulation by insulin,” Exp. Physiol. 81(3), 421–434 (1996).
[PubMed]

Deloach, J. R.

J. R. Deloach, “Carrier erythrocytes,” Med. Res. Rev. 6(4), 487–504 (1986).
[Crossref] [PubMed]

Dunger, D. B.

C. Wei, D. J. Lunn, C. L. Acerini, J. M. Allen, A. M. Larsen, M. E. Wilinska, D. B. Dunger, and R. Hovorka, “Measurement delay associated with the Guardian RT continuous glucose monitoring system,” Diabet. Med. 27(1), 117–122 (2010).
[Crossref] [PubMed]

Easley, R. B.

R. B. Easley, T. R. Johnson, and J. D. Tobias, “Continuous pH monitoring using the Paratrend 7 inserted into a peripheral vein in a patient with shock and congenital lactic acidosis,” Clin. Pediatr. (Phila.) 41(5), 351–355 (2002).
[Crossref] [PubMed]

Fang, H.

H. Fang, G. Kaur, and B. Wang, “Progress in boronic acid-based fluorescent glucose sensors,” J. Fluoresc. 14(5), 481–489 (2004).
[Crossref] [PubMed]

Flower, R.

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

Foroozesh, M.

M. Hamidi, A. Zarrin, M. Foroozesh, and S. Mohammadi-Samani, “Applications of carrier erythrocytes in delivery of biopharmaceuticals,” J. Control. Release 118(2), 145–160 (2007).
[Crossref] [PubMed]

Fraternale, A.

L. Rossi, S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini, and M. Magnani, “Erythrocyte-based drug delivery,” Expert Opin. Drug Deliv. 2(2), 311–322 (2005).
[Crossref] [PubMed]

M. Magnani, L. Rossi, A. Fraternale, M. Bianchi, A. Antonelli, R. Crinelli, and L. Chiarantini, “Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides,” Gene Ther. 9(11), 749–751 (2002).
[Crossref] [PubMed]

Fröhlich, O.

O. Fröhlich and R. B. Gunn, “Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system,” Biochim Biophys Acta.  864, 169–194 (1986).

Funder, J.

J. Funder and J. O. Wieth, “Chloride transport in human erythrocytes and ghosts: a quantitative comparison,” J. Physiol. 262(3), 679–698 (1976).
[PubMed]

Furuyoshi, N.

Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
[Crossref] [PubMed]

Garcia, E.

E. Garcia, T. J. Abramo, P. Okada, D. D. Guzman, J. S. Reisch, and R. A. Wiebe, “Capnometry for noninvasive continuous monitoring of metabolic status in pediatric diabetic ketoacidosis,” Crit. Care Med. 31(10), 2539–2543 (2003).
[Crossref] [PubMed]

Gardos, G.

G. Gardos, “Akkumulation de kalium onen durch menschiche Blutkorperchen,” Acta Physiol. Acad. Sci. Hung. 6, 191–196 (1953).

Gasbjerg, P. K.

P. K. Gasbjerg, P. A. Knauf, and J. Brahm, “Kinetics of bicarbonate transport in human red blood cell membranes at body temperature,” J. Gen. Physiol. 108(6), 565–575 (1996).
[Crossref] [PubMed]

Glew, R. H.

G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973).
[Crossref] [PubMed]

Gregg, E. W.

J. P. Boyle, T. J. Thompson, E. W. Gregg, L. E. Barker, and D. F. Williamson, “Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence,” Popul. Health Metr. 8(1), 29 (2010).
[Crossref] [PubMed]

Gryczynski, I.

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

Gryczynski, Z.

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

Gunn, R. B.

O. Fröhlich and R. B. Gunn, “Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system,” Biochim Biophys Acta.  864, 169–194 (1986).

Guzman, D. D.

E. Garcia, T. J. Abramo, P. Okada, D. D. Guzman, J. S. Reisch, and R. A. Wiebe, “Capnometry for noninvasive continuous monitoring of metabolic status in pediatric diabetic ketoacidosis,” Crit. Care Med. 31(10), 2539–2543 (2003).
[Crossref] [PubMed]

Hamidi, M.

M. Hamidi, A. Zarrin, M. Foroozesh, and S. Mohammadi-Samani, “Applications of carrier erythrocytes in delivery of biopharmaceuticals,” J. Control. Release 118(2), 145–160 (2007).
[Crossref] [PubMed]

M. Hamidi and H. Tajerzadeh, “Carrier erythrocytes: an overview,” Drug Deliv. 10(1), 9–20 (2003).
[Crossref] [PubMed]

Hanaire, H.

H. Hanaire, “Continuous glucose monitoring and external insulin pump: towards a subcutaneous closed loop,” Diabetes Metab. 32(5), 534–538 (2006).
[Crossref] [PubMed]

Heagy, M. D.

H. Cao and M. D. Heagy, “Fluorescent chemosensors for carbohydrates: a decade’s worth of bright spies for saccharides in review,” J. Fluoresc. 14(5), 569–584 (2004).
[Crossref] [PubMed]

Hovorka, R.

C. Wei, D. J. Lunn, C. L. Acerini, J. M. Allen, A. M. Larsen, M. E. Wilinska, D. B. Dunger, and R. Hovorka, “Measurement delay associated with the Guardian RT continuous glucose monitoring system,” Diabet. Med. 27(1), 117–122 (2010).
[Crossref] [PubMed]

Ihler, G. M.

G. M. Ihler and H. C.-W. Tsang, “Hypotonic hemolysis methods for entrapment of agents in resealed erythrocytes,” Methods Enzymol. 149, 221–229 (1987).
[Crossref] [PubMed]

G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973).
[Crossref] [PubMed]

Isami, S.

Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
[Crossref] [PubMed]

Johnson, T. R.

R. B. Easley, T. R. Johnson, and J. D. Tobias, “Continuous pH monitoring using the Paratrend 7 inserted into a peripheral vein in a patient with shock and congenital lactic acidosis,” Clin. Pediatr. (Phila.) 41(5), 351–355 (2002).
[Crossref] [PubMed]

Kaur, G.

H. Fang, G. Kaur, and B. Wang, “Progress in boronic acid-based fluorescent glucose sensors,” J. Fluoresc. 14(5), 481–489 (2004).
[Crossref] [PubMed]

Kishikawa, H.

Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
[Crossref] [PubMed]

Knauf, P. A.

P. K. Gasbjerg, P. A. Knauf, and J. Brahm, “Kinetics of bicarbonate transport in human red blood cell membranes at body temperature,” J. Gen. Physiol. 108(6), 565–575 (1996).
[Crossref] [PubMed]

Kojima, Y.

Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
[Crossref] [PubMed]

Lanao, J. M.

C. G. Millán, M. L. Marinero, A. Z. Castañeda, and J. M. Lanao, “Drug, enzyme and peptide delivery using erythrocytes as carriers,” J. Control. Release 95(1), 27–49 (2004).
[Crossref] [PubMed]

Larsen, A. M.

C. Wei, D. J. Lunn, C. L. Acerini, J. M. Allen, A. M. Larsen, M. E. Wilinska, D. B. Dunger, and R. Hovorka, “Measurement delay associated with the Guardian RT continuous glucose monitoring system,” Diabet. Med. 27(1), 117–122 (2010).
[Crossref] [PubMed]

LeFevre, P. G.

P. G. LeFevre, “Evidence of active transfer of certain non-electrolytes across the human red cell membrane,” J. Gen. Physiol. 31(6), 505–527 (1948).
[Crossref] [PubMed]

Lumley-Sapanski, K.

R. A. Schlegel, K. Lumley-Sapanski, and P. Williamson, “Single cell analysis of factors increasing the survival of resealed erythrocytes in the circulation of mice,” Adv. Exp. Med. Biol. 326, 133–138 (1992).
[PubMed]

Lunn, D. J.

C. Wei, D. J. Lunn, C. L. Acerini, J. M. Allen, A. M. Larsen, M. E. Wilinska, D. B. Dunger, and R. Hovorka, “Measurement delay associated with the Guardian RT continuous glucose monitoring system,” Diabet. Med. 27(1), 117–122 (2010).
[Crossref] [PubMed]

Magnani, M.

F. Pierigè, S. Serafini, L. Rossi, and M. Magnani, “Cell-based drug delivery,” Adv. Drug Deliv. Rev. 60(2), 286–295 (2008).
[Crossref] [PubMed]

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

L. Rossi, S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini, and M. Magnani, “Erythrocyte-based drug delivery,” Expert Opin. Drug Deliv. 2(2), 311–322 (2005).
[Crossref] [PubMed]

M. Magnani, L. Rossi, A. Fraternale, M. Bianchi, A. Antonelli, R. Crinelli, and L. Chiarantini, “Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides,” Gene Ther. 9(11), 749–751 (2002).
[Crossref] [PubMed]

Malchoff, C.

J. Wagner, C. Malchoff, and G. Abbott, “Invasiveness as a barrier to self-monitoring of blood glucose in diabetes,” Diabetes Technol. Ther. 7(4), 612–619 (2005).
[Crossref] [PubMed]

Mantell, P. A.

M. S. D. Agus, J. L. Alexander, and P. A. Mantell, “Continuous non-invasive end-tidal CO2 monitoring in pediatric inpatients with diabetic ketoacidosis,” Pediatr. Diabetes 7(4), 196–200 (2006).
[Crossref] [PubMed]

Marinero, M. L.

C. G. Millán, M. L. Marinero, A. Z. Castañeda, and J. M. Lanao, “Drug, enzyme and peptide delivery using erythrocytes as carriers,” J. Control. Release 95(1), 27–49 (2004).
[Crossref] [PubMed]

Marsden, N. V. B.

N. V. B. Marsden and S. G. Ostling, “Accumulation of dextran in human red cells after haemolysis,” Nature 184(4687Suppl 10), 723–724 (1959).
[Crossref] [PubMed]

McBride, M. E.

M. E. McBride, J. W. Berkenbosch, and J. D. Tobias, “Transcutaneous carbon dioxide monitoring during diabetic ketoacidosis in children and adolescents,” Paediatr. Anaesth. 14(2), 167–171 (2004).
[Crossref] [PubMed]

McGarraugh, G.

G. McGarraugh, “The chemistry of commercial continuous glucose monitors,” Diabetes Technol. Ther. 11(s1Suppl 1), S17–S24 (2009).
[Crossref] [PubMed]

McNichols, R. J.

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[Crossref] [PubMed]

Millán, C. G.

C. G. Millán, M. L. Marinero, A. Z. Castañeda, and J. M. Lanao, “Drug, enzyme and peptide delivery using erythrocytes as carriers,” J. Control. Release 95(1), 27–49 (2004).
[Crossref] [PubMed]

Mitchell, S.

M. R. Burge, S. Mitchell, A. Sawyer, and D. S. Schade, “Continuous glucose monitoring: the future of diabetes management,” Diabetes Spectrum 21(2), 112–119 (2008).
[Crossref]

Miyata, T.

Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
[Crossref] [PubMed]

Mohammadi-Samani, S.

M. Hamidi, A. Zarrin, M. Foroozesh, and S. Mohammadi-Samani, “Applications of carrier erythrocytes in delivery of biopharmaceuticals,” J. Control. Release 118(2), 145–160 (2007).
[Crossref] [PubMed]

Motoyoshi, S.

Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
[Crossref] [PubMed]

Moussy, F.

N. Wisniewski, F. Moussy, and W. M. Reichert, ““Characterization of implantable biosensor membrane biofouling,” Fresenius',” J. Anal. Chem. 366, 611–621 (2000).

Ohkubo, Y.

Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
[Crossref] [PubMed]

Okada, P.

E. Garcia, T. J. Abramo, P. Okada, D. D. Guzman, J. S. Reisch, and R. A. Wiebe, “Capnometry for noninvasive continuous monitoring of metabolic status in pediatric diabetic ketoacidosis,” Crit. Care Med. 31(10), 2539–2543 (2003).
[Crossref] [PubMed]

Ortego-Rojo, J.

I. Torres, M. G. Baena, M. Cayon, J. Ortego-Rojo, and M. Aguilar-Diosdado, “Use of sensors in the treatment and follow-up of patients with diabetes mellitus,” Sensors (Basel Switzerland) 10(8), 7404–7420 (2010).
[Crossref]

Ostling, S. G.

N. V. B. Marsden and S. G. Ostling, “Accumulation of dextran in human red cells after haemolysis,” Nature 184(4687Suppl 10), 723–724 (1959).
[Crossref] [PubMed]

Parker-Williams, E. J.

B. E. Bax, M. D. Bain, P. J. Talbot, E. J. Parker-Williams, and R. A. Chalmers, “Survival of human carrier erythrocytes in vivo,” Clin. Sci. 96(2), 171–178 (1999).
[Crossref] [PubMed]

Passow, H.

G. Schwoch and H. Passow, “Preparation and properties of human erythrocyte ghosts,” Mol. Cell. Biochem. 2(2), 197–218 (1973).
[Crossref] [PubMed]

H. Bodemann and H. Passow, “Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis,” J. Membr. Biol. 8(1), 1–26 (1972).
[Crossref] [PubMed]

Peiretti, E.

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

Pierigé, F.

L. Rossi, S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini, and M. Magnani, “Erythrocyte-based drug delivery,” Expert Opin. Drug Deliv. 2(2), 311–322 (2005).
[Crossref] [PubMed]

Pierigè, F.

F. Pierigè, S. Serafini, L. Rossi, and M. Magnani, “Cell-based drug delivery,” Adv. Drug Deliv. Rev. 60(2), 286–295 (2008).
[Crossref] [PubMed]

Reichert, W. M.

N. Wisniewski, F. Moussy, and W. M. Reichert, ““Characterization of implantable biosensor membrane biofouling,” Fresenius',” J. Anal. Chem. 366, 611–621 (2000).

Reisch, J. S.

E. Garcia, T. J. Abramo, P. Okada, D. D. Guzman, J. S. Reisch, and R. A. Wiebe, “Capnometry for noninvasive continuous monitoring of metabolic status in pediatric diabetic ketoacidosis,” Crit. Care Med. 31(10), 2539–2543 (2003).
[Crossref] [PubMed]

Renaud, J. F.

R. Azoui, J. L. Cuche, J. F. Renaud, M. Safar, and G. Dagher, “A dopamine transporter in human erythrocytes: modulation by insulin,” Exp. Physiol. 81(3), 421–434 (1996).
[PubMed]

Rossi, L.

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

F. Pierigè, S. Serafini, L. Rossi, and M. Magnani, “Cell-based drug delivery,” Adv. Drug Deliv. Rev. 60(2), 286–295 (2008).
[Crossref] [PubMed]

L. Rossi, S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini, and M. Magnani, “Erythrocyte-based drug delivery,” Expert Opin. Drug Deliv. 2(2), 311–322 (2005).
[Crossref] [PubMed]

M. Magnani, L. Rossi, A. Fraternale, M. Bianchi, A. Antonelli, R. Crinelli, and L. Chiarantini, “Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides,” Gene Ther. 9(11), 749–751 (2002).
[Crossref] [PubMed]

Safar, M.

R. Azoui, J. L. Cuche, J. F. Renaud, M. Safar, and G. Dagher, “A dopamine transporter in human erythrocytes: modulation by insulin,” Exp. Physiol. 81(3), 421–434 (1996).
[PubMed]

Sawyer, A.

M. R. Burge, S. Mitchell, A. Sawyer, and D. S. Schade, “Continuous glucose monitoring: the future of diabetes management,” Diabetes Spectrum 21(2), 112–119 (2008).
[Crossref]

Schade, D. S.

M. R. Burge, S. Mitchell, A. Sawyer, and D. S. Schade, “Continuous glucose monitoring: the future of diabetes management,” Diabetes Spectrum 21(2), 112–119 (2008).
[Crossref]

Schlegel, R. A.

R. A. Schlegel, K. Lumley-Sapanski, and P. Williamson, “Single cell analysis of factors increasing the survival of resealed erythrocytes in the circulation of mice,” Adv. Exp. Med. Biol. 326, 133–138 (1992).
[PubMed]

Schnure, F. W.

G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973).
[Crossref] [PubMed]

Schwoch, G.

G. Schwoch and H. Passow, “Preparation and properties of human erythrocyte ghosts,” Mol. Cell. Biochem. 2(2), 197–218 (1973).
[Crossref] [PubMed]

Seeman, P.

P. Seeman, “Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin,” J. Cell Biol. 32(1), 55–70 (1967).
[Crossref] [PubMed]

Serafini, S.

F. Pierigè, S. Serafini, L. Rossi, and M. Magnani, “Cell-based drug delivery,” Adv. Drug Deliv. Rev. 60(2), 286–295 (2008).
[Crossref] [PubMed]

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

L. Rossi, S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini, and M. Magnani, “Erythrocyte-based drug delivery,” Expert Opin. Drug Deliv. 2(2), 311–322 (2005).
[Crossref] [PubMed]

Shichiri, M.

Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
[Crossref] [PubMed]

Tajerzadeh, H.

M. Hamidi and H. Tajerzadeh, “Carrier erythrocytes: an overview,” Drug Deliv. 10(1), 9–20 (2003).
[Crossref] [PubMed]

Talbot, P. J.

B. E. Bax, M. D. Bain, P. J. Talbot, E. J. Parker-Williams, and R. A. Chalmers, “Survival of human carrier erythrocytes in vivo,” Clin. Sci. 96(2), 171–178 (1999).
[Crossref] [PubMed]

Thompson, T. J.

J. P. Boyle, T. J. Thompson, E. W. Gregg, L. E. Barker, and D. F. Williamson, “Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence,” Popul. Health Metr. 8(1), 29 (2010).
[Crossref] [PubMed]

Tobias, J. D.

J. D. Tobias, “Transcutaneous carbon dioxide monitoring in infants and children,” Paediatr. Anaesth. 19(5), 434–444 (2009).
[Crossref] [PubMed]

M. E. McBride, J. W. Berkenbosch, and J. D. Tobias, “Transcutaneous carbon dioxide monitoring during diabetic ketoacidosis in children and adolescents,” Paediatr. Anaesth. 14(2), 167–171 (2004).
[Crossref] [PubMed]

R. B. Easley, T. R. Johnson, and J. D. Tobias, “Continuous pH monitoring using the Paratrend 7 inserted into a peripheral vein in a patient with shock and congenital lactic acidosis,” Clin. Pediatr. (Phila.) 41(5), 351–355 (2002).
[Crossref] [PubMed]

Torres, I.

I. Torres, M. G. Baena, M. Cayon, J. Ortego-Rojo, and M. Aguilar-Diosdado, “Use of sensors in the treatment and follow-up of patients with diabetes mellitus,” Sensors (Basel Switzerland) 10(8), 7404–7420 (2010).
[Crossref]

Tsang, H. C.-W.

G. M. Ihler and H. C.-W. Tsang, “Hypotonic hemolysis methods for entrapment of agents in resealed erythrocytes,” Methods Enzymol. 149, 221–229 (1987).
[Crossref] [PubMed]

Wagner, J.

J. Wagner, C. Malchoff, and G. Abbott, “Invasiveness as a barrier to self-monitoring of blood glucose in diabetes,” Diabetes Technol. Ther. 7(4), 612–619 (2005).
[Crossref] [PubMed]

Wang, B.

H. Fang, G. Kaur, and B. Wang, “Progress in boronic acid-based fluorescent glucose sensors,” J. Fluoresc. 14(5), 481–489 (2004).
[Crossref] [PubMed]

Wei, C.

C. Wei, D. J. Lunn, C. L. Acerini, J. M. Allen, A. M. Larsen, M. E. Wilinska, D. B. Dunger, and R. Hovorka, “Measurement delay associated with the Guardian RT continuous glucose monitoring system,” Diabet. Med. 27(1), 117–122 (2010).
[Crossref] [PubMed]

Wiebe, R. A.

E. Garcia, T. J. Abramo, P. Okada, D. D. Guzman, J. S. Reisch, and R. A. Wiebe, “Capnometry for noninvasive continuous monitoring of metabolic status in pediatric diabetic ketoacidosis,” Crit. Care Med. 31(10), 2539–2543 (2003).
[Crossref] [PubMed]

Wieth, J. O.

J. Funder and J. O. Wieth, “Chloride transport in human erythrocytes and ghosts: a quantitative comparison,” J. Physiol. 262(3), 679–698 (1976).
[PubMed]

Wilinska, M. E.

C. Wei, D. J. Lunn, C. L. Acerini, J. M. Allen, A. M. Larsen, M. E. Wilinska, D. B. Dunger, and R. Hovorka, “Measurement delay associated with the Guardian RT continuous glucose monitoring system,” Diabet. Med. 27(1), 117–122 (2010).
[Crossref] [PubMed]

Williamson, D. F.

J. P. Boyle, T. J. Thompson, E. W. Gregg, L. E. Barker, and D. F. Williamson, “Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence,” Popul. Health Metr. 8(1), 29 (2010).
[Crossref] [PubMed]

Williamson, P.

R. A. Schlegel, K. Lumley-Sapanski, and P. Williamson, “Single cell analysis of factors increasing the survival of resealed erythrocytes in the circulation of mice,” Adv. Exp. Med. Biol. 326, 133–138 (1992).
[PubMed]

Wisniewski, N.

N. Wisniewski, F. Moussy, and W. M. Reichert, ““Characterization of implantable biosensor membrane biofouling,” Fresenius',” J. Anal. Chem. 366, 611–621 (2000).

Zarrin, A.

M. Hamidi, A. Zarrin, M. Foroozesh, and S. Mohammadi-Samani, “Applications of carrier erythrocytes in delivery of biopharmaceuticals,” J. Control. Release 118(2), 145–160 (2007).
[Crossref] [PubMed]

Acta Physiol. Acad. Sci. Hung. (1)

G. Gardos, “Akkumulation de kalium onen durch menschiche Blutkorperchen,” Acta Physiol. Acad. Sci. Hung. 6, 191–196 (1953).

Adv. Drug Deliv. Rev. (1)

F. Pierigè, S. Serafini, L. Rossi, and M. Magnani, “Cell-based drug delivery,” Adv. Drug Deliv. Rev. 60(2), 286–295 (2008).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (1)

R. A. Schlegel, K. Lumley-Sapanski, and P. Williamson, “Single cell analysis of factors increasing the survival of resealed erythrocytes in the circulation of mice,” Adv. Exp. Med. Biol. 326, 133–138 (1992).
[PubMed]

Clin. Pediatr. (Phila.) (1)

R. B. Easley, T. R. Johnson, and J. D. Tobias, “Continuous pH monitoring using the Paratrend 7 inserted into a peripheral vein in a patient with shock and congenital lactic acidosis,” Clin. Pediatr. (Phila.) 41(5), 351–355 (2002).
[Crossref] [PubMed]

Clin. Sci. (1)

B. E. Bax, M. D. Bain, P. J. Talbot, E. J. Parker-Williams, and R. A. Chalmers, “Survival of human carrier erythrocytes in vivo,” Clin. Sci. 96(2), 171–178 (1999).
[Crossref] [PubMed]

Crit. Care Med. (1)

E. Garcia, T. J. Abramo, P. Okada, D. D. Guzman, J. S. Reisch, and R. A. Wiebe, “Capnometry for noninvasive continuous monitoring of metabolic status in pediatric diabetic ketoacidosis,” Crit. Care Med. 31(10), 2539–2543 (2003).
[Crossref] [PubMed]

Diabet. Med. (1)

C. Wei, D. J. Lunn, C. L. Acerini, J. M. Allen, A. M. Larsen, M. E. Wilinska, D. B. Dunger, and R. Hovorka, “Measurement delay associated with the Guardian RT continuous glucose monitoring system,” Diabet. Med. 27(1), 117–122 (2010).
[Crossref] [PubMed]

Diabetes Care (1)

American Diabetes Association, “Standards of medical care in diabetes--2011,” Diabetes Care 34(Suppl 1), S11–S61 (2011).
[Crossref] [PubMed]

Diabetes Metab. (1)

H. Hanaire, “Continuous glucose monitoring and external insulin pump: towards a subcutaneous closed loop,” Diabetes Metab. 32(5), 534–538 (2006).
[Crossref] [PubMed]

Diabetes Res. Clin. Pract. (1)

Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
[Crossref] [PubMed]

Diabetes Spectrum (1)

M. R. Burge, S. Mitchell, A. Sawyer, and D. S. Schade, “Continuous glucose monitoring: the future of diabetes management,” Diabetes Spectrum 21(2), 112–119 (2008).
[Crossref]

Diabetes Technol. Ther. (2)

J. Wagner, C. Malchoff, and G. Abbott, “Invasiveness as a barrier to self-monitoring of blood glucose in diabetes,” Diabetes Technol. Ther. 7(4), 612–619 (2005).
[Crossref] [PubMed]

G. McGarraugh, “The chemistry of commercial continuous glucose monitors,” Diabetes Technol. Ther. 11(s1Suppl 1), S17–S24 (2009).
[Crossref] [PubMed]

Drug Deliv. (1)

M. Hamidi and H. Tajerzadeh, “Carrier erythrocytes: an overview,” Drug Deliv. 10(1), 9–20 (2003).
[Crossref] [PubMed]

Endocrinol. Metab. Clin. North Am. (1)

T. Aye, J. Block, and B. Buckingham, “Toward closing the loop: an update on insulin pumps and continuous glucose monitoring systems,” Endocrinol. Metab. Clin. North Am. 39(3), 609–624 (2010).
[Crossref] [PubMed]

Exp. Physiol. (1)

R. Azoui, J. L. Cuche, J. F. Renaud, M. Safar, and G. Dagher, “A dopamine transporter in human erythrocytes: modulation by insulin,” Exp. Physiol. 81(3), 421–434 (1996).
[PubMed]

Expert Opin. Drug Deliv. (1)

L. Rossi, S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini, and M. Magnani, “Erythrocyte-based drug delivery,” Expert Opin. Drug Deliv. 2(2), 311–322 (2005).
[Crossref] [PubMed]

Gene Ther. (1)

M. Magnani, L. Rossi, A. Fraternale, M. Bianchi, A. Antonelli, R. Crinelli, and L. Chiarantini, “Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides,” Gene Ther. 9(11), 749–751 (2002).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008).
[Crossref] [PubMed]

J. Anal. Chem. (1)

N. Wisniewski, F. Moussy, and W. M. Reichert, ““Characterization of implantable biosensor membrane biofouling,” Fresenius',” J. Anal. Chem. 366, 611–621 (2000).

J. Biomed. Opt. (1)

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[Crossref] [PubMed]

J. Cell Biol. (1)

P. Seeman, “Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin,” J. Cell Biol. 32(1), 55–70 (1967).
[Crossref] [PubMed]

J. Control. Release (2)

C. G. Millán, M. L. Marinero, A. Z. Castañeda, and J. M. Lanao, “Drug, enzyme and peptide delivery using erythrocytes as carriers,” J. Control. Release 95(1), 27–49 (2004).
[Crossref] [PubMed]

M. Hamidi, A. Zarrin, M. Foroozesh, and S. Mohammadi-Samani, “Applications of carrier erythrocytes in delivery of biopharmaceuticals,” J. Control. Release 118(2), 145–160 (2007).
[Crossref] [PubMed]

J. Fluoresc. (2)

H. Cao and M. D. Heagy, “Fluorescent chemosensors for carbohydrates: a decade’s worth of bright spies for saccharides in review,” J. Fluoresc. 14(5), 569–584 (2004).
[Crossref] [PubMed]

H. Fang, G. Kaur, and B. Wang, “Progress in boronic acid-based fluorescent glucose sensors,” J. Fluoresc. 14(5), 481–489 (2004).
[Crossref] [PubMed]

J. Gen. Physiol. (2)

P. K. Gasbjerg, P. A. Knauf, and J. Brahm, “Kinetics of bicarbonate transport in human red blood cell membranes at body temperature,” J. Gen. Physiol. 108(6), 565–575 (1996).
[Crossref] [PubMed]

P. G. LeFevre, “Evidence of active transfer of certain non-electrolytes across the human red cell membrane,” J. Gen. Physiol. 31(6), 505–527 (1948).
[Crossref] [PubMed]

J. Membr. Biol. (1)

H. Bodemann and H. Passow, “Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis,” J. Membr. Biol. 8(1), 1–26 (1972).
[Crossref] [PubMed]

J. Physiol. (1)

J. Funder and J. O. Wieth, “Chloride transport in human erythrocytes and ghosts: a quantitative comparison,” J. Physiol. 262(3), 679–698 (1976).
[PubMed]

Lancet (1)

UK Prospective Diabetes Study (UKPDS) Group, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” Lancet 352(9131), 837–853 (1998).
[Crossref] [PubMed]

Med. Res. Rev. (1)

J. R. Deloach, “Carrier erythrocytes,” Med. Res. Rev. 6(4), 487–504 (1986).
[Crossref] [PubMed]

Methods Enzymol. (1)

G. M. Ihler and H. C.-W. Tsang, “Hypotonic hemolysis methods for entrapment of agents in resealed erythrocytes,” Methods Enzymol. 149, 221–229 (1987).
[Crossref] [PubMed]

Mol. Cell. Biochem. (1)

G. Schwoch and H. Passow, “Preparation and properties of human erythrocyte ghosts,” Mol. Cell. Biochem. 2(2), 197–218 (1973).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” N. Engl. J. Med. 329(14), 977–986 (1993).
[Crossref] [PubMed]

Nature (1)

N. V. B. Marsden and S. G. Ostling, “Accumulation of dextran in human red cells after haemolysis,” Nature 184(4687Suppl 10), 723–724 (1959).
[Crossref] [PubMed]

Paediatr. Anaesth. (2)

M. E. McBride, J. W. Berkenbosch, and J. D. Tobias, “Transcutaneous carbon dioxide monitoring during diabetic ketoacidosis in children and adolescents,” Paediatr. Anaesth. 14(2), 167–171 (2004).
[Crossref] [PubMed]

J. D. Tobias, “Transcutaneous carbon dioxide monitoring in infants and children,” Paediatr. Anaesth. 19(5), 434–444 (2009).
[Crossref] [PubMed]

Pediatr. Diabetes (1)

M. S. D. Agus, J. L. Alexander, and P. A. Mantell, “Continuous non-invasive end-tidal CO2 monitoring in pediatric inpatients with diabetic ketoacidosis,” Pediatr. Diabetes 7(4), 196–200 (2006).
[Crossref] [PubMed]

Physiol. Rev. (1)

A. Carruthers, “Facilitated diffusion of glucose,” Physiol. Rev. 70(4), 1135–1176 (1990).
[PubMed]

Popul. Health Metr. (1)

J. P. Boyle, T. J. Thompson, E. W. Gregg, L. E. Barker, and D. F. Williamson, “Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence,” Popul. Health Metr. 8(1), 29 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973).
[Crossref] [PubMed]

Sensors (Basel Switzerland) (1)

I. Torres, M. G. Baena, M. Cayon, J. Ortego-Rojo, and M. Aguilar-Diosdado, “Use of sensors in the treatment and follow-up of patients with diabetes mellitus,” Sensors (Basel Switzerland) 10(8), 7404–7420 (2010).
[Crossref]

Other (6)

U.S. Department of Health and Human Services, National Diabetes Education Program (NDEP). “Know your blood sugar numbers,” National Diabetes Education Program publication NDEP-10 (2005).

Centers for Disease Control and Prevention, “2011 National diabetes fact sheet” (U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2011).

U. Zimmerman, “Jahresbericht der kernforschungsanlage Jülich GmbH” (Nuclear Research Center, Jülich, 1973), pp. 55–58.

G. Voskerician and J. Anderson, “Sensor Biocompatibility and Biofouling in Real-Time Monitoring,” in Wiley Encyclopedia of Biomedical Engineering, (John Wiley & Sons, Inc., 2006).

O. Fröhlich and R. B. Gunn, “Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system,” Biochim Biophys Acta.  864, 169–194 (1986).

P. S. B. Center, Donating Platelets, http://www.psbc.org/programs/platelets.htm .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cartoon illustrating the RBC sensing platform concept. A small portion of blood is removed from the patient; the blood is washed, loaded with the analyte-sensitive fluorescent dye, resealed, and then transfused back into the patient. An excitation light source is then directed at the wrist; the emission from the resealed red cell ghosts is collected and converted into an analyte concentration. Clip art used with permission from Microsoft.

Fig. 2
Fig. 2

Comparison of fluorescence spectra of resealed ghosts (black) and free glycylglycine-FITC conjugate (grey) show that emission characteristics of the two solutions are nearly identical.

Fig. 3
Fig. 3

A representative portion of a pH trial performed on the dynamic system. Fluorescence intensity (grey) of the intracellular pH-sensitive dye (FITC) tracks extracellular pH (black).

Fig. 4
Fig. 4

Fluorescence intensity responds to pH changes using the static system in which extracellular glycylglycine-FITC conjugate fluorescence is quenched by the anti-fluorescein antibody. Each segment is the middle 15 seconds of a 30 second fluorescence monitoring period. The grey lines indicate discontinuous data. The average pH is directly above each segment.

Fig. 5
Fig. 5

Normalized fluorescence intensity as a function of pH for the pH trials shown above in Fig. 3 (○) and Fig. 4 (●). The two trials agree well. Error bars represent one standard deviation.

Fig. 6
Fig. 6

Representative (a) bright-field phase and (b) epifluorescence micrographs of resealed ghosts loaded with glycylglycine-FITC conjugate. (Scale bar represents 5 μm.)

Metrics