Abstract

We present a Fourier domain mode locking (FDML) fiber laser with a feedback loop allowing automatic startup without a priori knowledge of the fundamental drive frequency. The feedback can also regulate the drive frequency making the source robust against environmental variations. A control system samples the energy of the light traversing the FDML cavity and uses a voltage controlled oscillator (VCO) to drive the tunable fiber Fabry-Perot filter in order to maximize that energy. We demonstrate a prototype self-starting, self-regulating FDML operating at 40 kHz with a full width tuning range of 140 nm around 1305 nm and a power output of ~40 mW. The laser starts up with no operator intervention in less than 5 seconds and exhibits improved spectral stability over a conventional FDML source. In OCT applications the source achieved over 120 dB detection sensitivity and an ~8.9-µm axial resolution.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  2. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  3. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  4. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  5. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett. 22(22), 1704–1706 (1997).
    [CrossRef] [PubMed]
  6. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  7. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [CrossRef] [PubMed]
  8. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  9. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
    [CrossRef] [PubMed]
  10. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  11. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  12. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]
  13. J. F. Xi, L. Huo, J. S. Li, and X. D. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express 18(9), 9511–9517 (2010).
    [CrossRef] [PubMed]
  14. S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K. H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express 18(15), 15820–15831 (2010).
    [CrossRef] [PubMed]

2011 (1)

2010 (4)

2009 (1)

2006 (1)

2003 (5)

1997 (2)

Andersen, P. E.

Barry, S.

Baumann, B.

Biedermann, B. R.

Boudoux, C.

Bouma, B.

Bouma, B. E.

Cable, A. E.

Cense, B.

Chinn, S. R.

Choma, M.

de Boer, J.

de Boer, J. F.

Duker, J. S.

Eigenwillig, C. M.

Erbert, G.

Fercher, A.

Fujimoto, J. G.

Golubovic, B.

Gora, M.

Hansen, K. P.

Hasler, K. H.

Hitzenberger, C.

Hsu, K.

Huang, D.

Huber, R.

Huo, L.

Iftimia, N.

Izatt, J.

Jensen, O. B.

Kaluzny, B. J.

Karnowski, K.

Klein, T.

Kowalczyk, A.

Leitgeb, R.

Li, J. S.

Li, X. D.

Marschall, S.

Park, B. H.

Pedersen, C.

Pierce, M. C.

Potsaid, B.

Sarunic, M.

Schuman, J. S.

Sumpf, B.

Swanson, E. A.

Szkulmowski, M.

Tearney, G.

Tearney, G. J.

Wieser, W.

Wojtkowski, M.

Xi, J. F.

Yang, C.

Yun, S.

Yun, S. H.

Opt. Express (10)

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

J. F. Xi, L. Huo, J. S. Li, and X. D. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express 18(9), 9511–9517 (2010).
[CrossRef] [PubMed]

S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K. H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express 18(15), 15820–15831 (2010).
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

Opt. Lett. (4)

Supplementary Material (1)

» Media 1: MOV (2183 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagrams of (a) the self-starting, self-regulating FDML laser and (b) swept source OCT system. PC: polarization controller, ISO: isolator, SOA: semiconductor optical amplifier, OC: optical coupler, PD: photodiode, M: mirror, CIR: circulator, GV: galvanometer mirror, CL: collimating lens, FL: focusing lens, PC: polarization controller, BD: balanced detector, DAQ: data acquisition card

Fig. 2
Fig. 2

Spectra of filter output for 35, 40 and 45 kHz square wave inputs indicating low distortion square-sine conversion.

Fig. 3
Fig. 3

(a) Oscilloscope snapshots (Media 1) at points marked in (b) showing VCO drive voltage (green), photodiode output (cyan) and MZI output (magenta); (b) Evolution of optical energy with VCO drive voltage (lower horizontal axis) and the corresponding output frequency (upper horizontal axis).

Fig. 4
Fig. 4

(a) Four consecutive sweeps showing recursive search; (b) Convergence of peak energy.

Fig. 5
Fig. 5

(a) Self-starting, self-regulating FDML (SS-FDML) spectra measured every ten minutes over two hours; (b) Spectral fluctuations with and without feedback over two hours; (c)Effect of temperature variation on conventional and SS-FDML.

Fig. 6
Fig. 6

Point spread function (PSF) measured for a range of imaging depths indicating a 7.5 dB roll-off over 2.3 mm (b) Detail of the PSF showing an 8.9 µm axial resolution.

Fig. 7
Fig. 7

One frame from a 40 fps video sequence acquired using a swept-source OCT system with the self-starting, self-regulating FDML source. Skin layers comprising the epidermis (stratum corneum - SC, stratum lucidum - SL, stratum granulosum - SG, stratum spinosum - SS, stratum germinativum - SG), the dermis and sweat ducts (SD) can be observed.

Metrics