Abstract

We implemented a Lagrange-multiplier (LM)-based damped least-squares (DLS) control algorithm in a woofer-tweeter dual deformable-mirror (DM) adaptive optics scanning laser ophthalmoscope (AOSLO). The algorithm uses data from a single Shack-Hartmann wavefront sensor to simultaneously correct large-amplitude low-order aberrations by a woofer DM and small-amplitude higher-order aberrations by a tweeter DM. We measured the in vivo performance of high resolution retinal imaging with the dual DM AOSLO. We compared the simultaneous LM-based DLS dual DM controller with both single DM controller, and a successive dual DM controller. We evaluated performance using both wavefront (RMS) and image quality metrics including brightness and power spectrum. The simultaneous LM-based dual DM AO can consistently provide near diffraction-limited in vivo routine imaging of human retina.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  2. A. Roorda, F. Romero-Borja, W. Donnelly III, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [PubMed]
  3. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [CrossRef] [PubMed]
  4. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
    [CrossRef] [PubMed]
  5. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006).
    [CrossRef] [PubMed]
  6. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
    [CrossRef] [PubMed]
  7. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
    [CrossRef] [PubMed]
  8. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
    [CrossRef] [PubMed]
  9. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).
    [CrossRef] [PubMed]
  10. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2001), p528
  11. K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010).
    [CrossRef] [PubMed]
  12. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27(7), 1223–1225 (1988).
    [CrossRef] [PubMed]
  13. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A 27(11), A265–A277 (2010).
    [CrossRef] [PubMed]
  14. D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
    [CrossRef] [PubMed]
  15. A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33(8), 863–865 (2008).
    [CrossRef] [PubMed]
  16. X. Wei and L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16(25), 20490–20502 (2008).
    [CrossRef] [PubMed]
  17. L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17 (2009).
    [CrossRef] [PubMed]
  18. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
    [CrossRef] [PubMed]
  19. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
    [CrossRef] [PubMed]
  20. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007).
    [CrossRef] [PubMed]
  21. B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17(5), 4095–4111 (2009).
    [CrossRef] [PubMed]
  22. W. Zou and S. A. Burns, “High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics,” Opt. Express 17(22), 20167–20177 (2009).
    [CrossRef] [PubMed]
  23. C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010).
    [CrossRef] [PubMed]
  24. S. Hu, B. Xu, X. Zhang, J. Hou, J. Wu, and W. Jiang, “Double-deformable-mirror adaptive optics system for phase compensation,” Appl. Opt. 45(12), 2638–2642 (2006).
    [CrossRef] [PubMed]
  25. T. J. Brennan and T. A. Rhoadarmer, “Performance of a woofer-tweeter deformable mirror control architecture for high-bandwidth, high-spatial resolution adaptive optics,” Proc. SPIE 6306, 63060B, 63060B-12 (2006).
    [CrossRef]
  26. O. Keskin, P. Hampton, R. Conan, C. Bradley, A. Hilton, and C. Blain, “Woofer-tweeter adaptive optics test bench,” in First NASA/ESA Conference on Adaptive Hardware and Systems (2006), pp.74–80,
  27. R. Conan, C. Bradley, P. Hampton, O. Keskin, A. Hilton, and C. Blain, “Distributed modal command for a two-deformable-mirror adaptive optics system,” Appl. Opt. 46(20), 4329–4340 (2007).
    [CrossRef] [PubMed]
  28. R. Conan, “Mean-square residual error of a wavefront after propagation through atmospheric turbulence and after correction with Zernike polynomials,” J. Opt. Soc. Am. A 25(2), 526–536 (2008).
    [CrossRef] [PubMed]
  29. K. Morzinski, B. Macintosh, D. Gavel, and D. Dillon, “Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics,” Opt. Express 17(7), 5829–5844 (2009).
    [CrossRef] [PubMed]
  30. J.-F. Lavigne and J.-P. Véran, “Woofer-tweeter control in an adaptive optics system using a Fourier reconstructor,” J. Opt. Soc. Am. A 25(9), 2271–2279 (2008).
    [CrossRef] [PubMed]
  31. W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33(22), 2602–2604 (2008).
    [CrossRef] [PubMed]
  32. Model No. Mirao 52-e, Imagine Eyes, Orsay,France, http://www.imagine-eyes.com .
  33. Model No. µDM140–450-E-AgMgF, Boston MicroMachines Corp., MA, USA, http://www.bostonmicromachines.com .
  34. N. O. Product 0300–7.6-S: Adaptive Optics Associates, Inc., MA, USA, http://www.as.northropgrumman.com/businessventures/aoa/index.html .
  35. N. O. Product UP-1830CL-12B, Uniq Vision, Inc., CA, USA. http://www.uniqvision.com
  36. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).
  37. J. Meiron, “Damped least-squares method for automatic lens design,” J. Opt. Soc. Am. 55(9), 1105–1107 (1965).
    [CrossRef]
  38. D. Q. Su and Y. N. Wang, “Automatic correction of aberration in astro-optical system,” Acta Astron. Sin. 15(1), 51–60 (1974).
  39. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
    [CrossRef] [PubMed]
  40. J. I. Yellott., “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vision Res. 22(9), 1205–1210 (1982).
    [CrossRef] [PubMed]
  41. P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45(8), 1681–1698 (1998).
    [CrossRef]
  42. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12(4), 227–229 (1987).
    [CrossRef] [PubMed]
  43. A. H. Tunnacliffe, Introduction to Visual Optics (Association of British Dispensing Opticians, 1989).
  44. G. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, 2001)., Eq. (1.28).
  45. J. B. Pawley, “Fundamental limits in confocal microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  46. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
    [CrossRef]
  47. Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006).
    [CrossRef] [PubMed]
  48. V. N. Mahajan, “Strehl ratio for primary aberrations in terms of their aberration variance,” J. Opt. Soc. Am. 73(6), 860–861 (1983).
    [CrossRef]

2010

2009

2008

2007

2006

S. Hu, B. Xu, X. Zhang, J. Hou, J. Wu, and W. Jiang, “Double-deformable-mirror adaptive optics system for phase compensation,” Appl. Opt. 45(12), 2638–2642 (2006).
[CrossRef] [PubMed]

T. J. Brennan and T. A. Rhoadarmer, “Performance of a woofer-tweeter deformable mirror control architecture for high-bandwidth, high-spatial resolution adaptive optics,” Proc. SPIE 6306, 63060B, 63060B-12 (2006).
[CrossRef]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[CrossRef] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
[CrossRef] [PubMed]

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
[CrossRef] [PubMed]

Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006).
[CrossRef] [PubMed]

2005

2004

2002

1998

P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45(8), 1681–1698 (1998).
[CrossRef]

1997

1996

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[CrossRef]

1990

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

1988

1987

1983

1982

J. I. Yellott., “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vision Res. 22(9), 1205–1210 (1982).
[CrossRef] [PubMed]

1974

D. Q. Su and Y. N. Wang, “Automatic correction of aberration in astro-optical system,” Acta Astron. Sin. 15(1), 51–60 (1974).

1965

1944

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).

Ahamd, K.

Artal, P.

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17 (2009).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[CrossRef] [PubMed]

Atchison, D. A.

A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33(8), 863–865 (2008).
[CrossRef] [PubMed]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[CrossRef] [PubMed]

Bigelow, C. E.

Blain, C.

Bower, B. A.

Bradley, C.

Bradu, A.

Brennan, T. J.

T. J. Brennan and T. A. Rhoadarmer, “Performance of a woofer-tweeter deformable mirror control architecture for high-bandwidth, high-spatial resolution adaptive optics,” Proc. SPIE 6306, 63060B, 63060B-12 (2006).
[CrossRef]

Brown, J. M.

Burns, S. A.

Campbell, M.

Carlini, A. R.

Cense, B.

Chen, D. C.

Choi, S.

Choi, S. S.

Conan, R.

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

Dainty, C.

Deng, C.

Dillon, D.

Donnelly III, W.

Drexler, W.

Dubra, A.

Elsner, A. E.

Fercher, A. F.

Ferguson, D.

Ferguson, R. D.

Fernández, E. J.

Gao, W.

Gavel, D.

Gee, B. P.

Gray, D. C.

Hammer, D. X.

Hampton, P.

Hebert, T.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

Hermann, B.

Higdon, P. D.

P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45(8), 1681–1698 (1998).
[CrossRef]

Hilton, A.

Hou, J.

Hu, S.

Iftimia, N. V.

Ivers, K. M.

Izatt, J. A.

Jiang, W.

Jones, S. M.

Jonnal, R.

Jonnal, R. S.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

Keskin, O.

Kocaoglu, O. P.

Koperda, E.

Laut, S.

Lavigne, J.-F.

Levenberg, K.

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).

Li, C.

Li, K. Y.

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

Liang, J.

Lundström, L.

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17 (2009).
[CrossRef] [PubMed]

Macintosh, B.

Mahajan, V. N.

Mathur, A.

Meiron, J.

Merigan, W.

Merino, D.

Miller, D.

Miller, D. T.

Mira-Agudelo, A.

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17 (2009).
[CrossRef] [PubMed]

Morzinski, K.

Mujat, M.

Oliver, S. S.

Olivier, S. S.

Patel, A. H.

Podoleanu, A. G.

Poonja, S.

Porter, J.

Prieto, P. M.

Pritchard, N.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[CrossRef] [PubMed]

Qi, X.

Queener, H.

Reinholz, F.

Rha, J.

Rhoadarmer, T. A.

T. J. Brennan and T. A. Rhoadarmer, “Performance of a woofer-tweeter deformable mirror control architecture for high-bandwidth, high-spatial resolution adaptive optics,” Proc. SPIE 6306, 63060B, 63060B-12 (2006).
[CrossRef]

Roddier, F.

Romero-Borja, F.

Roorda, A.

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
[CrossRef] [PubMed]

Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly III, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

Sattmann, H.

Schmid, K. L.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[CrossRef] [PubMed]

Scott, D. H.

Silva, D. A.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

Sredar, N.

Su, D. Q.

D. Q. Su and Y. N. Wang, “Automatic correction of aberration in astro-optical system,” Acta Astron. Sin. 15(1), 51–60 (1974).

Thibos, L.

Tiruveedhula, P.

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

Török, P.

P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45(8), 1681–1698 (1998).
[CrossRef]

Tumbar, R.

Twietmeyer, T. H.

Unterhuber, A.

Ustun, T. E.

Véran, J.-P.

Wang, Y. N.

D. Q. Su and Y. N. Wang, “Automatic correction of aberration in astro-optical system,” Acta Astron. Sin. 15(1), 51–60 (1974).

Webb, R. H.

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[CrossRef]

Wei, X.

Werner, J. S.

Williams, D. R.

Wilson, T.

P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45(8), 1681–1698 (1998).
[CrossRef]

T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12(4), 227–229 (1987).
[CrossRef] [PubMed]

Wolfing, J. I.

Wu, J.

Xu, B.

Yellott, J. I.

J. I. Yellott., “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vision Res. 22(9), 1205–1210 (1982).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zhang, X.

Zhang, Y.

Zhao, M.

Zhong, Z.

Zou, W.

Acta Astron. Sin.

D. Q. Su and Y. N. Wang, “Automatic correction of aberration in astro-optical system,” Acta Astron. Sin. 15(1), 51–60 (1974).

Appl. Opt.

Invest. Ophthalmol. Vis. Sci.

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt.

Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006).
[CrossRef] [PubMed]

J. Comp. Neurol.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

J. Mod. Opt.

P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45(8), 1681–1698 (1998).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

R. Conan, “Mean-square residual error of a wavefront after propagation through atmospheric turbulence and after correction with Zernike polynomials,” J. Opt. Soc. Am. A 25(2), 526–536 (2008).
[CrossRef] [PubMed]

J.-F. Lavigne and J.-P. Véran, “Woofer-tweeter control in an adaptive optics system using a Fourier reconstructor,” J. Opt. Soc. Am. A 25(9), 2271–2279 (2008).
[CrossRef] [PubMed]

R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A 27(11), A265–A277 (2010).
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
[CrossRef] [PubMed]

D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[CrossRef] [PubMed]

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).
[CrossRef] [PubMed]

J. Vis.

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17 (2009).
[CrossRef] [PubMed]

Opt. Express

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

K. Morzinski, B. Macintosh, D. Gavel, and D. Dillon, “Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics,” Opt. Express 17(7), 5829–5844 (2009).
[CrossRef] [PubMed]

X. Wei and L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16(25), 20490–20502 (2008).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly III, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[CrossRef] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
[CrossRef] [PubMed]

B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17(5), 4095–4111 (2009).
[CrossRef] [PubMed]

W. Zou and S. A. Burns, “High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics,” Opt. Express 17(22), 20167–20177 (2009).
[CrossRef] [PubMed]

C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

T. J. Brennan and T. A. Rhoadarmer, “Performance of a woofer-tweeter deformable mirror control architecture for high-bandwidth, high-spatial resolution adaptive optics,” Proc. SPIE 6306, 63060B, 63060B-12 (2006).
[CrossRef]

Q. Appl. Math.

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).

Rep. Prog. Phys.

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[CrossRef]

Vision Res.

J. I. Yellott., “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vision Res. 22(9), 1205–1210 (1982).
[CrossRef] [PubMed]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2001), p528

A. H. Tunnacliffe, Introduction to Visual Optics (Association of British Dispensing Opticians, 1989).

G. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, 2001)., Eq. (1.28).

J. B. Pawley, “Fundamental limits in confocal microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

O. Keskin, P. Hampton, R. Conan, C. Bradley, A. Hilton, and C. Blain, “Woofer-tweeter adaptive optics test bench,” in First NASA/ESA Conference on Adaptive Hardware and Systems (2006), pp.74–80,

Model No. Mirao 52-e, Imagine Eyes, Orsay,France, http://www.imagine-eyes.com .

Model No. µDM140–450-E-AgMgF, Boston MicroMachines Corp., MA, USA, http://www.bostonmicromachines.com .

N. O. Product 0300–7.6-S: Adaptive Optics Associates, Inc., MA, USA, http://www.as.northropgrumman.com/businessventures/aoa/index.html .

N. O. Product UP-1830CL-12B, Uniq Vision, Inc., CA, USA. http://www.uniqvision.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Indiana wide-field W-T dual DM AOSLO system

Fig. 2
Fig. 2

Eigenvalue spectrum conditioning for the normal control matrices Top panel: Eigenvalues of the Mirao DM. Bottom panel: Eigenvalues of the BMC DM.

Fig. 3
Fig. 3

Wavefront error reductions of (a) large and (b) small aberrations over a Φ7.56mm pupil

Fig. 4
Fig. 4

Comparison of wavefront control between different AO modes. (a) Wavefront RMS comparison (Pupil Φ7.22 mm). (b) Averaged image intensity comparison. The LM DLS controller always provided the smallest wavefront RMS error and the brightest image.

Fig. 5
Fig. 5

Comparison of wavefront control accuracies of a single DM AO (Mirao, and BMC) with the LM DLS dual DM AO (Mirao + BMC): (a) “Well-calibrated” Mirao DM + “Badly-calibrated” BMC DM. (b) “Badly-calibrated” Mirao DM + “Badly-calibrated” BMC DM.

Fig. 6
Fig. 6

Stability performance of the LM DLS dual DM AO system

Fig. 7
Fig. 7

Retinal images obtained with (a) successive dual DM AO and (b) simultaneous LM DLS dual DM AO. (c) Wavefront error reduction with the DLS AO routine correction (Pupil size Ф6.48mm)

Fig. 8
Fig. 8

Comparison of noise (no eye in system), foveal images with and without AO. The image inserts are each 256 × 256 pixels, and the AO-Off image display has been scaled in intensity by 2 × relative to the AO-On image. The right panel is the Fourier spectral power plot for each of the image conditions. The vertical black line represents the ideal MTF cutoff frequency of this system, and the green dot-dash lines were added for showing the trends of the power spectral curves.

Fig. 9
Fig. 9

Foveal cone photoreceptor images. (a)-(b) are the foveal images of S1 and S2 obtained both with Scan Size 2 (1.19° × 1.86°). (c) is foveal image of S2 obtained with Scan size 1(0.59° × 0.93°), which was the same region as shown in yellow square window in (b). All images were trimmed to maintain pixels as square.

Fig. 10
Fig. 10

Left: Image of Subject S4. Right: Power spectrum of the two windows indicated on the left. Curves are the total power at a given frequency over all orientations. For reference the diffraction-limited MTF of a system with the same numerical aperture is shown in green curve and the vertical black line shows Rayleigh diffraction limit, which is 0.42 cycle/µm in this figure for pupil size of Φ7.2 mm.

Fig. 13
Fig. 13

Similar to Fig. 10, but for subject S2 and with a smaller scan size. The Raleigh diffraction limit is 0.44 cycle/µm for subject pupil size of Φ 7.6 mm.

Fig. 11
Fig. 11

Power spectrum of foveal retinal image of Subject S1. Details are as described in Fig. 10.

Fig. 12
Fig. 12

Similar to Fig. 10, but for Subject S5 (pupil size Ф 6.5 mm).

Fig. 14
Fig. 14

(a) Cone photoreceptor images of Subject S2 with Φ25 µm confocal pinhole and (b) their averaged intensity profiles. These are the image brightness cross-section profiles of cones at three distances from the fovea, which are the estimated PSFs for a Φ7.56 mm pupil as the sample window is moved from about 120 µm eccentricity (red box and curve) to the foveal center (blue box and curve).

Tables (1)

Tables Icon

Table 1 Comparison between Rayleigh diffraction limit, confocal limit and the resolution achieved with human eyes a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ X Y ] = [ A T A + λ 1 I 1 β A T B β B T A β 2 B T B + λ 2 I 2 ] 1 [ A T β B T ] S ,
M T F ( ξ / ξ c u t o f f ) = 2 π { cos 1 ( ξ / ξ c u t o f f ) ( ξ / ξ c u t o f f ) [ 1 ( ξ / ξ c u t o f f ) 2 ] 1 / 2 } ,

Metrics