Abstract

We present an imaging method, dSLIM, that combines a novel deconvolution algorithm with spatial light interference microscopy (SLIM), to achieve 2.3x resolution enhancement with respect to the diffraction limit. By exploiting the sparsity of the phase images, which is prominent in many biological imaging applications, and modeling of the image formation via complex fields, the very fine structures can be recovered which were blurred by the optics. With experiments on SLIM images, we demonstrate that significant improvements in spatial resolution can be obtained by the proposed approach. Moreover, the resolution improvement leads to higher accuracy in monitoring dynamic activity over time. Experiments with primary brain cells, i.e. neurons and glial cells, reveal new subdiffraction structures and motions. This new information can be used for studying vesicle transport in neurons, which may shed light on dynamic cell functioning. Finally, the method is flexible to incorporate a wide range of image models for different applications and can be utilized for all imaging modalities acquiring complex field images.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300, 82–86 (2003).
    [CrossRef] [PubMed]
  2. F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955)
    [CrossRef] [PubMed]
  3. D. Murphy, “Differential interference contrast (DIC) microscopy and modulation contrast microscopy,” in Fundamentals of Light Microscopy and Digital Imaging (Wiley-Liss, 2001) pp. 153–168.
  4. G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” in Methods in Cell Biology , B. Jena, Ed. (Elsevier Inc., 2008) vol. 90, pp. 87–115.
  5. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
    [CrossRef] [PubMed]
  6. S. Van Aert, D. Van Dyck, and A. den Dekker, “Resolution of coherent and incoherent imaging systems reconsidered—classical criteria and a statistical alternative,” Opt. Express 14, 3830–3839 (2006).
    [CrossRef] [PubMed]
  7. J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).
    [CrossRef] [PubMed]
  8. W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076 (2001).
  9. F. Aguet, S. Geissbühler, I. Märki, T. Lasser, and M. Unser, “Super-resolution orientation estimation and localization of fluorescent dipoles using 3D steerable filters,” Opt. Express 17, 6829–6848 (2009).
    [CrossRef] [PubMed]
  10. P. Sarder and A. Nehorai, “Deconvolution methods for 3D fluorescence microscopy images,” IEEE Signal Process. Mag. 23, 32–45 (2006).
    [CrossRef]
  11. Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004) vol. 91.
  12. Y. Cotte, M. F. Toy, N. Pavillon, and C. Depeursinge, “Microscopy image resolution improvement by deconvolution of complex fields,” Opt. Express 18, 19462–19478 (2010)
    [CrossRef] [PubMed]
  13. B. Kemper, P. Langehanenberg, and G. Bally, “Digital holographic microscopy: a new method for surface analysis and marker-free dynamic life cell imaging,” Optik Photonik 2, 41–44 (2007).
    [CrossRef]
  14. J. P. Haldar, Z. Wang, G. Popescu, and Z. P. Liang, “Label-free high-resolution imaging of live cells with deconvolved spatial light interference microscopy,” International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires , 2010, pp. 3382–3385.
  15. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006)
    [CrossRef]
  16. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
    [CrossRef]
  17. S. Gazit, A. Szameit, Y. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17, 23920–23946 (2009).
    [CrossRef]
  18. A sparse modeling is also used in [17], but in contrast to our work, sparsity is enforced directly on the intensity image. This modeling is specifically suited for point-like structures, whereas our formulation can model a wide range of structures via the employment of transforms.
  19. A. L. Cunha, J. Zhou, and M. N. Do, “The nonsubsampled contourlet transform: Theory, design, and applications,” IEEE Trans. Image Process. 15(10), 3089–3101 (2006).
    [CrossRef] [PubMed]
  20. A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Review 51(1), 34–81 (2009).
    [CrossRef]
  21. S. D. Babacan, L. Mancera, R. Molina, and A. K. Katsaggelos “Bayesian compressive sensing using non-convex priors,” in EUSIPCO’09, Glasgow, Scotland, Aug. (2009).
  22. J. Romberg, “Imaging via compressive sensing,” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
    [CrossRef]

2011 (1)

2010 (1)

2009 (3)

2008 (1)

J. Romberg, “Imaging via compressive sensing,” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
[CrossRef]

2007 (1)

B. Kemper, P. Langehanenberg, and G. Bally, “Digital holographic microscopy: a new method for surface analysis and marker-free dynamic life cell imaging,” Optik Photonik 2, 41–44 (2007).
[CrossRef]

2006 (5)

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006)
[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

P. Sarder and A. Nehorai, “Deconvolution methods for 3D fluorescence microscopy images,” IEEE Signal Process. Mag. 23, 32–45 (2006).
[CrossRef]

A. L. Cunha, J. Zhou, and M. N. Do, “The nonsubsampled contourlet transform: Theory, design, and applications,” IEEE Trans. Image Process. 15(10), 3089–3101 (2006).
[CrossRef] [PubMed]

S. Van Aert, D. Van Dyck, and A. den Dekker, “Resolution of coherent and incoherent imaging systems reconsidered—classical criteria and a statistical alternative,” Opt. Express 14, 3830–3839 (2006).
[CrossRef] [PubMed]

2003 (1)

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300, 82–86 (2003).
[CrossRef] [PubMed]

2001 (1)

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076 (2001).

1999 (1)

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).
[CrossRef] [PubMed]

1955 (1)

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955)
[CrossRef] [PubMed]

Aguet, F.

Allan, V. J.

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300, 82–86 (2003).
[CrossRef] [PubMed]

Bally, G.

B. Kemper, P. Langehanenberg, and G. Bally, “Digital holographic microscopy: a new method for surface analysis and marker-free dynamic life cell imaging,” Optik Photonik 2, 41–44 (2007).
[CrossRef]

Bruckstein, A. M.

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Review 51(1), 34–81 (2009).
[CrossRef]

Candes, E. J.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006)
[CrossRef]

Conchello, J. A.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).
[CrossRef] [PubMed]

Cooper, J.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).
[CrossRef] [PubMed]

Cotte, Y.

Cunha, A. L.

A. L. Cunha, J. Zhou, and M. N. Do, “The nonsubsampled contourlet transform: Theory, design, and applications,” IEEE Trans. Image Process. 15(10), 3089–3101 (2006).
[CrossRef] [PubMed]

den Dekker, A.

Depeursinge, C.

Ding, H.

Do, M. N.

A. L. Cunha, J. Zhou, and M. N. Do, “The nonsubsampled contourlet transform: Theory, design, and applications,” IEEE Trans. Image Process. 15(10), 3089–3101 (2006).
[CrossRef] [PubMed]

Donoho, D. L.

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Review 51(1), 34–81 (2009).
[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

Elad, M.

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Review 51(1), 34–81 (2009).
[CrossRef]

Eldar, Y.

Gazit, S.

Geissbühler, S.

Gillette, M.

Karpova, T.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).
[CrossRef] [PubMed]

Kemper, B.

B. Kemper, P. Langehanenberg, and G. Bally, “Digital holographic microscopy: a new method for surface analysis and marker-free dynamic life cell imaging,” Optik Photonik 2, 41–44 (2007).
[CrossRef]

Langehanenberg, P.

B. Kemper, P. Langehanenberg, and G. Bally, “Digital holographic microscopy: a new method for surface analysis and marker-free dynamic life cell imaging,” Optik Photonik 2, 41–44 (2007).
[CrossRef]

Lasser, T.

Märki, I.

McNally, J. G.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).
[CrossRef] [PubMed]

Mendlovic, D.

Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004) vol. 91.

Millet, L.

Mir, M.

Murphy, D.

D. Murphy, “Differential interference contrast (DIC) microscopy and modulation contrast microscopy,” in Fundamentals of Light Microscopy and Digital Imaging (Wiley-Liss, 2001) pp. 153–168.

Nehorai, A.

P. Sarder and A. Nehorai, “Deconvolution methods for 3D fluorescence microscopy images,” IEEE Signal Process. Mag. 23, 32–45 (2006).
[CrossRef]

Pavillon, N.

Popescu, G.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
[CrossRef] [PubMed]

G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” in Methods in Cell Biology , B. Jena, Ed. (Elsevier Inc., 2008) vol. 90, pp. 87–115.

Rogers, J.

Romberg, J.

J. Romberg, “Imaging via compressive sensing,” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
[CrossRef]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006)
[CrossRef]

Sarder, P.

P. Sarder and A. Nehorai, “Deconvolution methods for 3D fluorescence microscopy images,” IEEE Signal Process. Mag. 23, 32–45 (2006).
[CrossRef]

Schaefer, L. H.

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076 (2001).

Segev, M.

Stephens, D. J.

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300, 82–86 (2003).
[CrossRef] [PubMed]

Swedlow, J. R.

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076 (2001).

Szameit, A.

Tao, T.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006)
[CrossRef]

Toy, M. F.

Unarunotai, S.

Unser, M.

Van Aert, S.

Van Dyck, D.

Wallace, W.

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076 (2001).

Wang, Z.

Zalevsky, Z.

Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004) vol. 91.

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955)
[CrossRef] [PubMed]

Zhou, J.

A. L. Cunha, J. Zhou, and M. N. Do, “The nonsubsampled contourlet transform: Theory, design, and applications,” IEEE Trans. Image Process. 15(10), 3089–3101 (2006).
[CrossRef] [PubMed]

Biotechniques (1)

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076 (2001).

IEEE Signal Process. Mag. (2)

P. Sarder and A. Nehorai, “Deconvolution methods for 3D fluorescence microscopy images,” IEEE Signal Process. Mag. 23, 32–45 (2006).
[CrossRef]

J. Romberg, “Imaging via compressive sensing,” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
[CrossRef]

IEEE Trans. Image Process. (1)

A. L. Cunha, J. Zhou, and M. N. Do, “The nonsubsampled contourlet transform: Theory, design, and applications,” IEEE Trans. Image Process. 15(10), 3089–3101 (2006).
[CrossRef] [PubMed]

IEEE Trans. Inf. Theory (2)

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006)
[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

Methods (1)

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).
[CrossRef] [PubMed]

Opt. Express (5)

Optik Photonik (1)

B. Kemper, P. Langehanenberg, and G. Bally, “Digital holographic microscopy: a new method for surface analysis and marker-free dynamic life cell imaging,” Optik Photonik 2, 41–44 (2007).
[CrossRef]

Science (2)

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300, 82–86 (2003).
[CrossRef] [PubMed]

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955)
[CrossRef] [PubMed]

SIAM Review (1)

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Review 51(1), 34–81 (2009).
[CrossRef]

Other (6)

S. D. Babacan, L. Mancera, R. Molina, and A. K. Katsaggelos “Bayesian compressive sensing using non-convex priors,” in EUSIPCO’09, Glasgow, Scotland, Aug. (2009).

A sparse modeling is also used in [17], but in contrast to our work, sparsity is enforced directly on the intensity image. This modeling is specifically suited for point-like structures, whereas our formulation can model a wide range of structures via the employment of transforms.

D. Murphy, “Differential interference contrast (DIC) microscopy and modulation contrast microscopy,” in Fundamentals of Light Microscopy and Digital Imaging (Wiley-Liss, 2001) pp. 153–168.

G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” in Methods in Cell Biology , B. Jena, Ed. (Elsevier Inc., 2008) vol. 90, pp. 87–115.

J. P. Haldar, Z. Wang, G. Popescu, and Z. P. Liang, “Label-free high-resolution imaging of live cells with deconvolved spatial light interference microscopy,” International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires , 2010, pp. 3382–3385.

Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004) vol. 91.

Supplementary Material (3)

» Media 1: MOV (11619 KB)     
» Media 2: MOV (2623 KB)     
» Media 3: MOV (409 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics