Abstract

We demonstrate the use of a double-beam optical tweezers system to stabilize red blood cell (RBC) orientation in the optical tweezers during measurements of elastic light scattering from the trapped cells in an angle range of 5-30 degrees. Another laser (He-Ne) was used to illuminate the cell and elastic light scattering distribution from the single cell was measured with a goniometer and a photomultiplier tube. Moreover, CCD camera images of RBCs with and without laser illumination are presented as complementary information. Light scattering from a RBC was measured in different fixed orientations. Light scattering from cells was also measured when the length of the cell was changed in two different orientations. Light scattering measurements from spherical and crenate RBCs are described and the results are compared with other cell orientations. Analysis shows that the measured elastic light scattering distributions reveal changes in the RBC’s orientation and shape. The effect of stretching on the changes in scattering is larger in the case of face-on incidence of He-Ne laser light than in rim-on incidence. The scattering patterns from RBCs in different orientations as well as from a spherical RBC were compared with numerical results found in literature. Good correlation was found.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
    [CrossRef] [PubMed]
  2. K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010).
    [CrossRef] [PubMed]
  3. M. Friebel, J. Helfmann, and M. C. Meinke, “Influence of osmolarity on the optical properties of human erythrocytes,” J. Biomed. Opt. 15(5), 055005 (2010).
    [CrossRef] [PubMed]
  4. Ö. Ergül, A. Arslan-Ergül, and L. Gürel, “Computational study of scattering from healthy and diseased red blood cells,” J. Biomed. Opt. 15(4), 045004 (2010).
    [CrossRef] [PubMed]
  5. S. V. Tsinopoulos and D. Polyzos, “Scattering of he-ne laser light by an average-sized red blood cell,” Appl. Opt. 38(25), 5499–5510 (1999).
    [CrossRef] [PubMed]
  6. D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. Opt. 24(9), 1355–1365 (1985).
    [CrossRef] [PubMed]
  7. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37(13), 2735–2748 (1998).
    [CrossRef] [PubMed]
  8. J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21(10), 1953–1961 (2004).
    [CrossRef] [PubMed]
  9. A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52(1), 13–18 (2005).
    [CrossRef] [PubMed]
  10. Y. R. Kim and L. Ornstein, “Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry,” Cytometry 3(6), 419–427 (1983).
    [CrossRef] [PubMed]
  11. A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999).
    [CrossRef] [PubMed]
  12. A. G. Borovoi, E. I. Naats, and U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998).
    [CrossRef]
  13. K. A. Sem’yanov, P. A. Tarasov, J. T. Soini, A. K. Petrov, and V. P. Maltsev, “Calibration-free method to determine the size and hemoglobin concentration of individual red blood cells from light scattering,” Appl. Opt. 39(31), 5884–5889 (2000).
    [CrossRef] [PubMed]
  14. M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).
    [CrossRef] [PubMed]
  15. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
    [CrossRef] [PubMed]
  16. M. Bartholdi, G. C. Salzman, R. D. Hiebert, and M. Kerker, “Differential light scattering photometer for rapid analysis of single particles in flow,” Appl. Opt. 19(10), 1573–1581 (1980).
    [CrossRef] [PubMed]
  17. A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
    [CrossRef] [PubMed]
  18. K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophotonics 3(4), 187–206 (2010).
    [CrossRef] [PubMed]
  19. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
    [CrossRef] [PubMed]
  20. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996).
    [CrossRef] [PubMed]
  21. J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mech. Chem. Biosyst. 1(3), 169–180 (2004).
    [PubMed]
  22. R. C. Gauthier, M. Ashman, and C. P. Grover, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38(22), 4861–4869 (1999).
    [CrossRef] [PubMed]
  23. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express 7(13), 533–539 (2000).
    [CrossRef] [PubMed]
  24. S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd: YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
    [CrossRef]
  25. G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008).
    [CrossRef] [PubMed]
  26. A. Kauppila, M. Kinnunen, A. Karmenyan and R. Myllylä are preparing a manuscript to be called “Design and implementation of a system for cell manipulation using various methods in free suspension.”
  27. W. H. Wright, G. J. Sonek, Y. Numajiri, and M. W. Berns, “Measurement of light scattering from cells using an inverted infrared optical trap,” Proc. SPIE 1427, 279–287 (1991).
    [CrossRef]
  28. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
    [CrossRef] [PubMed]
  29. R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. Grooth, and J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35(4), 729–734 (1996).
    [CrossRef] [PubMed]
  30. M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619, 737619-8 (2010).
    [CrossRef]
  31. K. Ramser, K. Logg, M. Goksör, J. Enger, M. Käll, and D. Hanstorp, “Resonance Raman spectroscopy of optically trapped functional erythrocytes,” J. Biomed. Opt. 9(3), 593–600 (2004).
    [CrossRef] [PubMed]
  32. L. Peng, D. Chen, P. Setlow, and Y. Q. Li, “Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics,” Anal. Chem. 81(10), 4035–4042 (2009).
    [CrossRef] [PubMed]
  33. Z. J. Smith and A. J. Berger, “Validation of an integrated Raman- and angular-scattering microscopy system on heterogeneous bead mixtures and single human immune cells,” Appl. Opt. 48(10), D109–D120 (2009).
    [CrossRef] [PubMed]
  34. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
    [CrossRef]
  35. P. Mazeron, S. Muller, and H. el Azouzi, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34(2), 99–110 (1997).
    [CrossRef] [PubMed]
  36. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
    [CrossRef] [PubMed]
  37. S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005).
    [CrossRef] [PubMed]
  38. P. Laven, “MiePlot: a computer program for scattering of light from a sphere using Mie theory & the Debye series,” http://www.philiplaven.com/mieplot.htm
  39. G. J. Streekstra, A. G. Hoekstra, E.-J. Nijhof, and R. M. Heethaar, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt. 32(13), 2266–2272 (1993).
    [CrossRef] [PubMed]
  40. E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36(10), 2107–2113 (1997).
    [CrossRef] [PubMed]
  41. V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).
  42. A. A. Bednov, E. V. Savateeva, and A. A. Oraevsky, “Glucose monitoring in whole blood by measuring laser-induced acoustic profiles,” Proc. SPIE 4960, 21–29 (2003).
    [CrossRef]
  43. S. Rao, S. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
    [CrossRef] [PubMed]
  44. A. W. Jay and P. B. Canham, “Viscoelastic properties of the human red blood cell membrane. II. Area and volume of individual red cells entering a micropipette,” Biophys. J. 17(2), 169–178 (1977).
    [CrossRef] [PubMed]
  45. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
    [CrossRef] [PubMed]
  46. A. N. Bashkatov, D. M. Zhestkov, É. A. Genina, and V. V. Tuchin, “Immersion clearing of human blood in the visible and near infrared spectral regions,” Opt. Spectrosc. 98(4), 638–646 (2005).
    [CrossRef]
  47. B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
    [CrossRef] [PubMed]

2010

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010).
[CrossRef] [PubMed]

M. Friebel, J. Helfmann, and M. C. Meinke, “Influence of osmolarity on the optical properties of human erythrocytes,” J. Biomed. Opt. 15(5), 055005 (2010).
[CrossRef] [PubMed]

Ö. Ergül, A. Arslan-Ergül, and L. Gürel, “Computational study of scattering from healthy and diseased red blood cells,” J. Biomed. Opt. 15(4), 045004 (2010).
[CrossRef] [PubMed]

K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophotonics 3(4), 187–206 (2010).
[CrossRef] [PubMed]

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619, 737619-8 (2010).
[CrossRef]

2009

L. Peng, D. Chen, P. Setlow, and Y. Q. Li, “Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics,” Anal. Chem. 81(10), 4035–4042 (2009).
[CrossRef] [PubMed]

Z. J. Smith and A. J. Berger, “Validation of an integrated Raman- and angular-scattering microscopy system on heterogeneous bead mixtures and single human immune cells,” Appl. Opt. 48(10), D109–D120 (2009).
[CrossRef] [PubMed]

S. Rao, S. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef] [PubMed]

2008

G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008).
[CrossRef] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

2005

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).
[CrossRef] [PubMed]

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52(1), 13–18 (2005).
[CrossRef] [PubMed]

S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005).
[CrossRef] [PubMed]

V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).

A. N. Bashkatov, D. M. Zhestkov, É. A. Genina, and V. V. Tuchin, “Immersion clearing of human blood in the visible and near infrared spectral regions,” Opt. Spectrosc. 98(4), 638–646 (2005).
[CrossRef]

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
[CrossRef] [PubMed]

2004

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[CrossRef] [PubMed]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21(10), 1953–1961 (2004).
[CrossRef] [PubMed]

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mech. Chem. Biosyst. 1(3), 169–180 (2004).
[PubMed]

K. Ramser, K. Logg, M. Goksör, J. Enger, M. Käll, and D. Hanstorp, “Resonance Raman spectroscopy of optically trapped functional erythrocytes,” J. Biomed. Opt. 9(3), 593–600 (2004).
[CrossRef] [PubMed]

2003

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
[CrossRef] [PubMed]

A. A. Bednov, E. V. Savateeva, and A. A. Oraevsky, “Glucose monitoring in whole blood by measuring laser-induced acoustic profiles,” Proc. SPIE 4960, 21–29 (2003).
[CrossRef]

2000

1999

1998

1997

P. Mazeron, S. Muller, and H. el Azouzi, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34(2), 99–110 (1997).
[CrossRef] [PubMed]

E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36(10), 2107–2113 (1997).
[CrossRef] [PubMed]

1996

1995

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
[CrossRef] [PubMed]

1993

1991

W. H. Wright, G. J. Sonek, Y. Numajiri, and M. W. Berns, “Measurement of light scattering from cells using an inverted infrared optical trap,” Proc. SPIE 1427, 279–287 (1991).
[CrossRef]

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd: YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

1985

1983

Y. R. Kim and L. Ornstein, “Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry,” Cytometry 3(6), 419–427 (1983).
[CrossRef] [PubMed]

1980

1977

A. W. Jay and P. B. Canham, “Viscoelastic properties of the human red blood cell membrane. II. Area and volume of individual red cells entering a micropipette,” Biophys. J. 17(2), 169–178 (1977).
[CrossRef] [PubMed]

1974

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
[CrossRef] [PubMed]

Aalders, M. C. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[CrossRef] [PubMed]

Alsholm, P.

Andersson-Engels, S.

Arslan-Ergül, A.

Ö. Ergül, A. Arslan-Ergül, and L. Gürel, “Computational study of scattering from healthy and diseased red blood cells,” J. Biomed. Opt. 15(4), 045004 (2010).
[CrossRef] [PubMed]

Ashman, M.

Axner, O.

Bálint, S.

S. Rao, S. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef] [PubMed]

Bambardekar, K.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010).
[CrossRef] [PubMed]

Bareil, P. B.

Barman, I.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Bartholdi, M.

Bashkatov, A. N.

A. N. Bashkatov, D. M. Zhestkov, É. A. Genina, and V. V. Tuchin, “Immersion clearing of human blood in the visible and near infrared spectral regions,” Opt. Spectrosc. 98(4), 638–646 (2005).
[CrossRef]

Bednov, A. A.

A. A. Bednov, E. V. Savateeva, and A. A. Oraevsky, “Glucose monitoring in whole blood by measuring laser-induced acoustic profiles,” Proc. SPIE 4960, 21–29 (2003).
[CrossRef]

Berger, A. J.

Berns, M. W.

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996).
[CrossRef] [PubMed]

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
[CrossRef] [PubMed]

W. H. Wright, G. J. Sonek, Y. Numajiri, and M. W. Berns, “Measurement of light scattering from cells using an inverted infrared optical trap,” Proc. SPIE 1427, 279–287 (1991).
[CrossRef]

Boppart, S. A.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

Borovoi, A. G.

A. G. Borovoi, E. I. Naats, and U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998).
[CrossRef]

Brunsting, A.

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
[CrossRef] [PubMed]

Canham, P. B.

A. W. Jay and P. B. Canham, “Viscoelastic properties of the human red blood cell membrane. II. Area and volume of individual red cells entering a micropipette,” Biophys. J. 17(2), 169–178 (1977).
[CrossRef] [PubMed]

Chachisvilis, M.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

Chen, D.

L. Peng, D. Chen, P. Setlow, and Y. Q. Li, “Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics,” Anal. Chem. 81(10), 4035–4042 (2009).
[CrossRef] [PubMed]

Chernyshev, A. V.

Chiou, A.

Choi, W.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Collins, M.

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619, 737619-8 (2010).
[CrossRef]

Cossins, B.

S. Rao, S. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef] [PubMed]

Dao, M.

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mech. Chem. Biosyst. 1(3), 169–180 (2004).
[PubMed]

Davis, L.

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
[CrossRef] [PubMed]

Dharmadhikari, A. K.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010).
[CrossRef] [PubMed]

Dharmadhikari, J. A.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010).
[CrossRef] [PubMed]

Diez-Silva, M.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Ding, H.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

Diver, J.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

Doornbos, R. M. P.

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[CrossRef]

el Azouzi, H.

P. Mazeron, S. Muller, and H. el Azouzi, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34(2), 99–110 (1997).
[CrossRef] [PubMed]

Enger, J.

K. Ramser, K. Logg, M. Goksör, J. Enger, M. Käll, and D. Hanstorp, “Resonance Raman spectroscopy of optically trapped functional erythrocytes,” J. Biomed. Opt. 9(3), 593–600 (2004).
[CrossRef] [PubMed]

Epstein, E. A.

Ergül, Ö.

Ö. Ergül, A. Arslan-Ergül, and L. Gürel, “Computational study of scattering from healthy and diseased red blood cells,” J. Biomed. Opt. 15(4), 045004 (2010).
[CrossRef] [PubMed]

Faber, D. J.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[CrossRef] [PubMed]

Fällman, E.

Feld, M. S.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Friebel, M.

M. Friebel, J. Helfmann, and M. C. Meinke, “Influence of osmolarity on the optical properties of human erythrocytes,” J. Biomed. Opt. 15(5), 055005 (2010).
[CrossRef] [PubMed]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[CrossRef]

Fu, D.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Fujimura, Y.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010).
[CrossRef] [PubMed]

Gajewski, L.

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619, 737619-8 (2010).
[CrossRef]

Galajda, P.

Gauthier, R. C.

Genina, É. A.

A. N. Bashkatov, D. M. Zhestkov, É. A. Genina, and V. V. Tuchin, “Immersion clearing of human blood in the visible and near infrared spectral regions,” Opt. Spectrosc. 98(4), 638–646 (2005).
[CrossRef]

Goksör, M.

K. Ramser, K. Logg, M. Goksör, J. Enger, M. Käll, and D. Hanstorp, “Resonance Raman spectroscopy of optically trapped functional erythrocytes,” J. Biomed. Opt. 9(3), 593–600 (2004).
[CrossRef] [PubMed]

Greve, J.

Grinbaum, A.

Grooth, B. G.

Grover, C. P.

Grover, S. C.

Guallar, V.

S. Rao, S. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef] [PubMed]

Gupta, P. K.

Gürel, L.

Ö. Ergül, A. Arslan-Ergül, and L. Gürel, “Computational study of scattering from healthy and diseased red blood cells,” J. Biomed. Opt. 15(4), 045004 (2010).
[CrossRef] [PubMed]

Hagen, N.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[CrossRef]

Hammer, L.

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
[CrossRef] [PubMed]

Hanstorp, D.

K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophotonics 3(4), 187–206 (2010).
[CrossRef] [PubMed]

K. Ramser, K. Logg, M. Goksör, J. Enger, M. Käll, and D. Hanstorp, “Resonance Raman spectroscopy of optically trapped functional erythrocytes,” J. Biomed. Opt. 9(3), 593–600 (2004).
[CrossRef] [PubMed]

He, J.

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52(1), 13–18 (2005).
[CrossRef] [PubMed]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21(10), 1953–1961 (2004).
[CrossRef] [PubMed]

Heethaar, R. M.

Helfmann, J.

M. Friebel, J. Helfmann, and M. C. Meinke, “Influence of osmolarity on the optical properties of human erythrocytes,” J. Biomed. Opt. 15(5), 055005 (2010).
[CrossRef] [PubMed]

Hiebert, R. D.

Hoekstra, A. G.

Hooper, B. A.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[CrossRef] [PubMed]

Inaba, H.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd: YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Ishigure, M.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd: YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Jay, A. W.

A. W. Jay and P. B. Canham, “Viscoelastic properties of the human red blood cell membrane. II. Area and volume of individual red cells entering a micropipette,” Biophys. J. 17(2), 169–178 (1977).
[CrossRef] [PubMed]

Käll, M.

K. Ramser, K. Logg, M. Goksör, J. Enger, M. Käll, and D. Hanstorp, “Resonance Raman spectroscopy of optically trapped functional erythrocytes,” J. Biomed. Opt. 9(3), 593–600 (2004).
[CrossRef] [PubMed]

Karlsson, A.

Karmenyan, A.

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619, 737619-8 (2010).
[CrossRef]

Kato, T.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010).
[CrossRef] [PubMed]

Kauppila, A.

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619, 737619-8 (2010).
[CrossRef]

Kerker, M.

Kim, Y. R.

Y. R. Kim and L. Ornstein, “Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry,” Cytometry 3(6), 419–427 (1983).
[CrossRef] [PubMed]

Kinnunen, M.

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619, 737619-8 (2010).
[CrossRef]

König, K.

Kono, H.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010).
[CrossRef] [PubMed]

Li, Y. Q.

L. Peng, D. Chen, P. Setlow, and Y. Q. Li, “Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics,” Anal. Chem. 81(10), 4035–4042 (2009).
[CrossRef] [PubMed]

Liang, H.

Liao, G. B.

Lim, C. T.

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mech. Chem. Biosyst. 1(3), 169–180 (2004).
[PubMed]

Logg, K.

K. Ramser, K. Logg, M. Goksör, J. Enger, M. Käll, and D. Hanstorp, “Resonance Raman spectroscopy of optically trapped functional erythrocytes,” J. Biomed. Opt. 9(3), 593–600 (2004).
[CrossRef] [PubMed]

Maltsev, V. P.

Marchand, P.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

Mathur, D.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010).
[CrossRef] [PubMed]

Mazeron, P.

P. Mazeron, S. Muller, and H. el Azouzi, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34(2), 99–110 (1997).
[CrossRef] [PubMed]

McNaughton, D.

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
[CrossRef] [PubMed]

Meinke, M. C.

M. Friebel, J. Helfmann, and M. C. Meinke, “Influence of osmolarity on the optical properties of human erythrocytes,” J. Biomed. Opt. 15(5), 055005 (2010).
[CrossRef] [PubMed]

Metz, M. H.

Mik, E. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[CrossRef] [PubMed]

Mills, J. P.

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mech. Chem. Biosyst. 1(3), 169–180 (2004).
[PubMed]

Mohanty, K. S.

Mohanty, S. K.

Mullaney, P. F.

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
[CrossRef] [PubMed]

Muller, S.

P. Mazeron, S. Muller, and H. el Azouzi, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34(2), 99–110 (1997).
[CrossRef] [PubMed]

Müller, G.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[CrossRef]

Myllylä, R.

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619, 737619-8 (2010).
[CrossRef]

Naats, E. I.

A. G. Borovoi, E. I. Naats, and U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998).
[CrossRef]

Nguyen, F.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

Nijhof, E.-J.

Nilsson, A. M. K.

Numajiri, Y.

W. H. Wright, G. J. Sonek, Y. Numajiri, and M. W. Berns, “Measurement of light scattering from cells using an inverted infrared optical trap,” Proc. SPIE 1427, 279–287 (1991).
[CrossRef]

Oppel, U. G.

A. G. Borovoi, E. I. Naats, and U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998).
[CrossRef]

Oraevsky, A. A.

A. A. Bednov, E. V. Savateeva, and A. A. Oraevsky, “Glucose monitoring in whole blood by measuring laser-induced acoustic profiles,” Proc. SPIE 4960, 21–29 (2003).
[CrossRef]

Ormos, P.

Ornstein, L.

Y. R. Kim and L. Ornstein, “Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry,” Cytometry 3(6), 419–427 (1983).
[CrossRef] [PubMed]

Park, Y.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Peng, L.

L. Peng, D. Chen, P. Setlow, and Y. Q. Li, “Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics,” Anal. Chem. 81(10), 4035–4042 (2009).
[CrossRef] [PubMed]

Petrov, A. K.

Petrov, D.

S. Rao, S. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef] [PubMed]

Polyzos, D.

Popescu, G.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

Qie, L.

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mech. Chem. Biosyst. 1(3), 169–180 (2004).
[PubMed]

Ramser, K.

K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophotonics 3(4), 187–206 (2010).
[CrossRef] [PubMed]

K. Ramser, K. Logg, M. Goksör, J. Enger, M. Käll, and D. Hanstorp, “Resonance Raman spectroscopy of optically trapped functional erythrocytes,” J. Biomed. Opt. 9(3), 593–600 (2004).
[CrossRef] [PubMed]

Rao, S.

S. Rao, S. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef] [PubMed]

Roggan, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[CrossRef]

Salzman, G. C.

Sato, S.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd: YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Savateeva, E. V.

A. A. Bednov, E. V. Savateeva, and A. A. Oraevsky, “Glucose monitoring in whole blood by measuring laser-induced acoustic profiles,” Proc. SPIE 4960, 21–29 (2003).
[CrossRef]

Schaeffer, M.

Sem’yanov, K. A.

Semyanov, K. A.

Setlow, P.

L. Peng, D. Chen, P. Setlow, and Y. Q. Li, “Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics,” Anal. Chem. 81(10), 4035–4042 (2009).
[CrossRef] [PubMed]

Sharma, S.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010).
[CrossRef] [PubMed]

Sheng, Y.

Shvalov, A. N.

Skirtach, A. G.

Sloot, P. M. A.

Smith, Z. J.

Soini, E.

Soini, J. T.

Sonek, G. J.

W. H. Wright, G. J. Sonek, Y. Numajiri, and M. W. Berns, “Measurement of light scattering from cells using an inverted infrared optical trap,” Proc. SPIE 1427, 279–287 (1991).
[CrossRef]

Streekstra, G. J.

Suresh, S.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mech. Chem. Biosyst. 1(3), 169–180 (2004).
[PubMed]

Swartling, J.

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52(1), 13–18 (2005).
[CrossRef] [PubMed]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21(10), 1953–1961 (2004).
[CrossRef] [PubMed]

Szewczyk, K.

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619, 737619-8 (2010).
[CrossRef]

Tarasov, P. A.

Tromberg, B. J.

Tsinopoulos, S. V.

Tuchin, V. V.

V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).

A. N. Bashkatov, D. M. Zhestkov, É. A. Genina, and V. V. Tuchin, “Immersion clearing of human blood in the visible and near infrared spectral regions,” Opt. Spectrosc. 98(4), 638–646 (2005).
[CrossRef]

Tycko, D. H.

van Gemert, M. J. C.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[CrossRef] [PubMed]

van Leeuwen, T. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[CrossRef] [PubMed]

Wang, Z.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

Watson, D.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

Wood, B. R.

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
[CrossRef] [PubMed]

Wright, W. H.

W. H. Wright, G. J. Sonek, Y. Numajiri, and M. W. Berns, “Measurement of light scattering from cells using an inverted infrared optical trap,” Proc. SPIE 1427, 279–287 (1991).
[CrossRef]

Yamada, T.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010).
[CrossRef] [PubMed]

Yurkin, M. A.

Zhestkov, D. M.

A. N. Bashkatov, D. M. Zhestkov, É. A. Genina, and V. V. Tuchin, “Immersion clearing of human blood in the visible and near infrared spectral regions,” Opt. Spectrosc. 98(4), 638–646 (2005).
[CrossRef]

Anal. Chem.

L. Peng, D. Chen, P. Setlow, and Y. Q. Li, “Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics,” Anal. Chem. 81(10), 4035–4042 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Z. J. Smith and A. J. Berger, “Validation of an integrated Raman- and angular-scattering microscopy system on heterogeneous bead mixtures and single human immune cells,” Appl. Opt. 48(10), D109–D120 (2009).
[CrossRef] [PubMed]

G. J. Streekstra, A. G. Hoekstra, E.-J. Nijhof, and R. M. Heethaar, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt. 32(13), 2266–2272 (1993).
[CrossRef] [PubMed]

E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36(10), 2107–2113 (1997).
[CrossRef] [PubMed]

S. V. Tsinopoulos and D. Polyzos, “Scattering of he-ne laser light by an average-sized red blood cell,” Appl. Opt. 38(25), 5499–5510 (1999).
[CrossRef] [PubMed]

D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. Opt. 24(9), 1355–1365 (1985).
[CrossRef] [PubMed]

A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37(13), 2735–2748 (1998).
[CrossRef] [PubMed]

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999).
[CrossRef] [PubMed]

M. Bartholdi, G. C. Salzman, R. D. Hiebert, and M. Kerker, “Differential light scattering photometer for rapid analysis of single particles in flow,” Appl. Opt. 19(10), 1573–1581 (1980).
[CrossRef] [PubMed]

K. A. Sem’yanov, P. A. Tarasov, J. T. Soini, A. K. Petrov, and V. P. Maltsev, “Calibration-free method to determine the size and hemoglobin concentration of individual red blood cells from light scattering,” Appl. Opt. 39(31), 5884–5889 (2000).
[CrossRef] [PubMed]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).
[CrossRef] [PubMed]

R. C. Gauthier, M. Ashman, and C. P. Grover, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38(22), 4861–4869 (1999).
[CrossRef] [PubMed]

R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. Grooth, and J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35(4), 729–734 (1996).
[CrossRef] [PubMed]

Biophys. J.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
[CrossRef] [PubMed]

S. Rao, S. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef] [PubMed]

A. W. Jay and P. B. Canham, “Viscoelastic properties of the human red blood cell membrane. II. Area and volume of individual red cells entering a micropipette,” Biophys. J. 17(2), 169–178 (1977).
[CrossRef] [PubMed]

Biorheology

P. Mazeron, S. Muller, and H. el Azouzi, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34(2), 99–110 (1997).
[CrossRef] [PubMed]

Cytometry

Y. R. Kim and L. Ornstein, “Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry,” Cytometry 3(6), 419–427 (1983).
[CrossRef] [PubMed]

Electron. Lett.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd: YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

IEEE Trans. Biomed. Eng.

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52(1), 13–18 (2005).
[CrossRef] [PubMed]

J Biophotonics

K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophotonics 3(4), 187–206 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. G. Borovoi, E. I. Naats, and U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998).
[CrossRef]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010).
[CrossRef] [PubMed]

M. Friebel, J. Helfmann, and M. C. Meinke, “Influence of osmolarity on the optical properties of human erythrocytes,” J. Biomed. Opt. 15(5), 055005 (2010).
[CrossRef] [PubMed]

Ö. Ergül, A. Arslan-Ergül, and L. Gürel, “Computational study of scattering from healthy and diseased red blood cells,” J. Biomed. Opt. 15(4), 045004 (2010).
[CrossRef] [PubMed]

K. Ramser, K. Logg, M. Goksör, J. Enger, M. Käll, and D. Hanstorp, “Resonance Raman spectroscopy of optically trapped functional erythrocytes,” J. Biomed. Opt. 9(3), 593–600 (2004).
[CrossRef] [PubMed]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[CrossRef]

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Laser Phys.

V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).

Mech. Chem. Biosyst.

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mech. Chem. Biosyst. 1(3), 169–180 (2004).
[PubMed]

Nature

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

A. N. Bashkatov, D. M. Zhestkov, É. A. Genina, and V. V. Tuchin, “Immersion clearing of human blood in the visible and near infrared spectral regions,” Opt. Spectrosc. 98(4), 638–646 (2005).
[CrossRef]

Phys. Rev. Lett.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[CrossRef] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

Proc. SPIE

W. H. Wright, G. J. Sonek, Y. Numajiri, and M. W. Berns, “Measurement of light scattering from cells using an inverted infrared optical trap,” Proc. SPIE 1427, 279–287 (1991).
[CrossRef]

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619, 737619-8 (2010).
[CrossRef]

A. A. Bednov, E. V. Savateeva, and A. A. Oraevsky, “Glucose monitoring in whole blood by measuring laser-induced acoustic profiles,” Proc. SPIE 4960, 21–29 (2003).
[CrossRef]

Other

P. Laven, “MiePlot: a computer program for scattering of light from a sphere using Mie theory & the Debye series,” http://www.philiplaven.com/mieplot.htm

A. Kauppila, M. Kinnunen, A. Karmenyan and R. Myllylä are preparing a manuscript to be called “Design and implementation of a system for cell manipulation using various methods in free suspension.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Double-beam optical tweezers.

Fig. 2
Fig. 2

Light scattering measurement system.

Fig. 3
Fig. 3

CCD camera images from different trapped objects: (a) light scattering from a 6.0 µm sphere, (b) image of a swollen RBC, (c) light scattering distribution from a spheroid cell (in figure (b)), (d) image of an RBC in a hypertonic environment, and light scattering from the same cell (e). The arrow shows the direction of the incident laser light. Scale bar is 10 µm.

Fig. 4
Fig. 4

Light scattering signal from a polystyrene sphere and a spherical red blood cell. The polarization directions of the incident He-Ne laser beam are shown in brackets. The thick black line depicts scattering from the RBC in a hypertonic suspension. Mie theory modelings of the polystyrene sphere and spherical RBC are included in the figure. The small inset shows the repeatability of the measurements during three different measurements.

Fig. 5
Fig. 5

Light scattering distributions from red blood cells in different orientations. Differential image of a cell in a rim-on case (a), and differential image of the cell in a face-on case (b). Arrows show the direction of the incident laser beam. Scale bar is 10 µm.

Fig. 6
Fig. 6

Measurement results from a single RBC. He-Ne polarization was 22 degrees from the vertical position.

Fig. 7
Fig. 7

Stretching of a RBC in a rim-on case (a,b,e,f) and a face-on case (c,d,g,h). Scale bar is 10 µm.

Fig. 8
Fig. 8

Measured light scattering pattern from a stretched cell related to Fig. 7 (a,b,e,f) in a rim-on illumination case. The polarization direction of the He-Ne laser is 22°.

Fig. 9
Fig. 9

Light scattering distribution from the stretched cell related to Fig. 7 (c,d,g,h) in a face-on illumination case. The polarization direction of the He-Ne laser is 22 °.

Metrics