Abstract

A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
    [CrossRef] [PubMed]
  2. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  3. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006).
    [CrossRef] [PubMed]
  4. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [CrossRef] [PubMed]
  5. Y. Zhang, J. T. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
    [CrossRef] [PubMed]
  6. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
    [CrossRef] [PubMed]
  7. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
    [CrossRef] [PubMed]
  8. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [PubMed]
  9. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006).
    [CrossRef] [PubMed]
  10. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
    [CrossRef] [PubMed]
  11. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007).
    [CrossRef] [PubMed]
  12. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
    [CrossRef] [PubMed]
  13. A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009).
    [CrossRef] [PubMed]
  14. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
    [CrossRef] [PubMed]
  15. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
    [CrossRef] [PubMed]
  16. C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
    [CrossRef] [PubMed]
  17. B. Alamouti and J. Funk, “Retinal thickness decreases with age: an OCT study,” Br. J. Ophthalmol. 87(7), 899–901 (2003).
    [CrossRef] [PubMed]
  18. G. Smith and D. A. Atchison, The Eye and Visual Optical Instrumentation (Cambridge University Press, Cambridge, UK, 1997).
  19. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [CrossRef] [PubMed]
  20. E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005).
    [CrossRef] [PubMed]
  21. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
    [CrossRef] [PubMed]
  22. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
    [CrossRef] [PubMed]
  23. C. W. Oyster, The Human Eye: Structure and Function (Sinauer Associates Inc, Sunderland, Massachusetts, USA, 1999).
  24. ANSI, “American National Standard for safe use of lasers (ANSI 136.1),” ANSI 136.1–2007 (The Laser Institute of America, 2007).
  25. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [CrossRef] [PubMed]
  26. A. Dubra and Z. Harvey, “Registration of 2D images from fast scanning ophthalmic instruments,” Lect. Notes Comput. Sci. 6204, 60–71 (2010).
    [CrossRef]
  27. A. Dubra, A. Gómez-Vieyra, L. Díaz-Santana and Y. Sulai, “Optical design of clinical adaptive optics instruments for retinal imaging,” in Frontiers in Optics, OSA Technical Digest, paper FTuB3.

2011

2010

A. Dubra and Z. Harvey, “Registration of 2D images from fast scanning ophthalmic instruments,” Lect. Notes Comput. Sci. 6204, 60–71 (2010).
[CrossRef]

2009

2008

2007

2006

2005

2004

2003

B. Alamouti and J. Funk, “Retinal thickness decreases with age: an OCT study,” Br. J. Ophthalmol. 87(7), 899–901 (2003).
[CrossRef] [PubMed]

2002

1997

1992

Ahamd, K.

Ahnelt, P. K.

Alamouti, B.

B. Alamouti and J. Funk, “Retinal thickness decreases with age: an OCT study,” Br. J. Ophthalmol. 87(7), 899–901 (2003).
[CrossRef] [PubMed]

Artal, P.

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

Bedggood, P.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

Bigelow, C. E.

Bower, B. A.

Bradley, A.

Bradu, A.

Burns, S. A.

Campbell, M. C. W.

Carroll, J.

Cense, B.

Chen, D. C.

Cheng, X.

Choi, S.

Choi, S. S.

Chung, M.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

Dainty, C.

Delori, F. C.

Donnelly Iii, W.

Drexler, W.

Dubra, A.

Fercher, A. F.

Ferguson, R. D.

Fernández, E.

Fernández, E. J.

Funk, J.

B. Alamouti and J. Funk, “Retinal thickness decreases with age: an OCT study,” Br. J. Ophthalmol. 87(7), 899–901 (2003).
[CrossRef] [PubMed]

Gee, B. P.

Gómez-Vieyra, A.

Gray, D. C.

Hammer, D. X.

Harvey, Z.

A. Dubra and Z. Harvey, “Registration of 2D images from fast scanning ophthalmic instruments,” Lect. Notes Comput. Sci. 6204, 60–71 (2010).
[CrossRef]

Hebert, T. J.

Hermann, B.

Hofer, B.

Hong, X.

Hunter, J. J.

Iftimia, N. V.

Izatt, J. A.

Jones, S. M.

Jonnal, R. S.

Laut, S.

Liang, J.

Malacara-Hernández, D.

Masella, B.

Merigan, W.

Merigan, W. H.

Merino, D.

Metha, A.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

Miller, D. T.

Olivier, S. S.

Palczewska, G.

Palczewski, K.

Podoleanu, A. G.

Porter, J.

Považay, B.

Prieto, P.

Prieto, P. M.

Qu, J.

Queener, H.

Reinholz, F.

Rha, J.

Rha, J. T.

Romero-Borja, F.

Roorda, A.

Rossi, E. A.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

Sattmann, H.

Sharma, R.

Silva, D. A.

Sliney, D. H.

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

Thibos, L. N.

Thorn, K. E.

Torti, C.

Tumbar, R.

Twietmeyer, T. H.

Unterhuber, A.

Ustun, T. E.

Webb, R. H.

Werner, J. S.

Williams, D. R.

Wolfing, J. I.

Ye, M.

Yin, L.

Zawadzki, R. J.

Zhang, X.

Zhang, Y.

Zhao, M. T.

Appl. Opt.

Biomed. Opt. Express

Br. J. Ophthalmol.

B. Alamouti and J. Funk, “Retinal thickness decreases with age: an OCT study,” Br. J. Ophthalmol. 87(7), 899–901 (2003).
[CrossRef] [PubMed]

Eye (Lond.)

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Lect. Notes Comput. Sci.

A. Dubra and Z. Harvey, “Registration of 2D images from fast scanning ophthalmic instruments,” Lect. Notes Comput. Sci. 6204, 60–71 (2010).
[CrossRef]

Opt. Express

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006).
[CrossRef] [PubMed]

Y. Zhang, J. T. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[CrossRef] [PubMed]

E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005).
[CrossRef] [PubMed]

A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009).
[CrossRef] [PubMed]

E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Other

G. Smith and D. A. Atchison, The Eye and Visual Optical Instrumentation (Cambridge University Press, Cambridge, UK, 1997).

A. Dubra, A. Gómez-Vieyra, L. Díaz-Santana and Y. Sulai, “Optical design of clinical adaptive optics instruments for retinal imaging,” in Frontiers in Optics, OSA Technical Digest, paper FTuB3.

C. W. Oyster, The Human Eye: Structure and Function (Sinauer Associates Inc, Sunderland, Massachusetts, USA, 1999).

ANSI, “American National Standard for safe use of lasers (ANSI 136.1),” ANSI 136.1–2007 (The Laser Institute of America, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Spot diagrams corresponding to the image plane of a 1:1 off-axis reflective afocal telescope that consists of two spherical mirrors with 800 mm radii of curvature in a planar configuration (left) and orthogonal configuration (right). The black circles correspond to the first minimum of the Airy disk.

Fig. 2
Fig. 2

Spot diagrams corresponding to the pupil plane of a 1:1 off-axis reflective telescope that consists of two spherical mirrors in a planar configuration (left) and orthogonal configuration (right). The black circles correspond to the first minimum of the Airy disk.

Fig. 3
Fig. 3

Afocal 1:1 telescope in which f denotes the focal length of the lenses. The three beams entering the telescope with negative, null and positive vergences are indicated with dotted, solid and dashed lines respectively.

Fig. 4
Fig. 4

Retinal depth dependence with the vergence of the beam entering the eye (left), according to two simple model eyes. The plot on the right shows two longitudinal chromatic aberration models for the human eye.

Fig. 5
Fig. 5

Broadband adaptive optics scanning ophthalmoscope setup flattened for clarity. PMT stands for photomultiplier, TZ for transimpedance amplifier, LD for laser diode, SLD for superluminescent diode, SH-WS for Shack-Hartmann wavefront sensor, sph for spherical mirror and F for interferometric band pass filter. The letter P indicates the pupil conjugate planes, in addition to the ones corresponding to the deformable mirror, the optical scanners and the SH-WS.

Fig. 6
Fig. 6

Spot diagram for all 27 BAOSO configurations evaluated, grouped according to the vergence. Note that all configurations are diffraction limited for 450 nm wavelength over a 1.5° FOV. The radius of the Airy disk indicated by the black circles is 1.3 μm.

Fig. 7
Fig. 7

Spot diagrams for all 4 pupil planes of the BAOSO for 450 nm wavelength over a 1.5° FOV, assuming a point source at the pupil plane in front of the Shack-Hartman wavefront sensor telescope. The black circles represent the Airy disk.

Fig. 8
Fig. 8

Human photoreceptor mosaic at the foveal center, recorded with the BAOSO. The top images were recorded with a 796 nm SLD and a 0.6 Airy disk confocal pinhole size, while the bottom ones were obtained using a 680 nm SLD and a 0.4 Airy disk confocal pinhole. The images on the left display the image intensity using a linear gray scale mapping, while the images on the right are displayed using a logarithmic gray scale transformation. The scale bars are 20 μm across.

Fig. 9
Fig. 9

Enlarged version of the photoreceptor mosaic shown in Fig. 8, showing the smallest foveal cones. The scale bars are 10 μm across.

Fig. 10
Fig. 10

Cross section of an Airy disk and its logarithm, which is 80% wider.

Tables (2)

Tables Icon

Table 1 Focal length and angles of incidence onto the reflective optical elements of the BAOSO

Tables Icon

Table 2 Wavefront RMS (λ = 450 nm) for different BAOSO FOV and vergences. Positive values in the subject’s prescription column correspond to myopic subjects.

Metrics