Abstract

Conventional Förster resonance energy transfer (FRET) processes involving a pair of fluorophore and organic quencher are restricted to an upper distance limit of ~10 nm. The application of a metal nanoparticle as a quencher can overcome the distance barrier of the traditional FRET technique. However, no standard distance dependence of this resonance energy transfer (RET) process has been firmly established. We have investigated the nonradiative energy transfer process between an organic donor (fluorescein) and gold nanoparticle quencher connected by double stranded (ds) DNA. The quenching efficiency of the gold nanoparticle as a function of distance between the donor and acceptor was determined by time-resolved lifetime analyses of the donor. Our results showed a 1/d 4 distance dependence for the RET process for longer distances (>10 nm) and 1/d 6 distance dependence for shorter distances (<10 nm). Our results clearly indicate the applicability of metal nanoparticle based quenchers for studying systems that exceed the 10 nm FRET barrier.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. E. Sapsford, L. Berti, and I. L. Medintz, “Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations,” Angew. Chem. Int. Ed. Engl. 45(28), 4562–4589 (2006).
    [CrossRef] [PubMed]
  2. C. A. Royer, “Probing protein folding and conformational transitions with fluorescence,” Chem. Rev. 106(5), 1769–1784 (2006).
    [CrossRef] [PubMed]
  3. J. R. Lakowicz, “Principles of Fluorescence Spectroscopy,” 3rd ed. (Plenum, 2006).
  4. S. T. Hess, S. H. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: a review,” Biochemistry 41(3), 697–705 (2002).
    [CrossRef] [PubMed]
  5. Q. H. Xu, B. S. Gaylord, S. Wang, G. C. Bazan, D. Moses, and A. J. Heeger, “Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions,” Proc. Natl. Acad. Sci. U.S.A. 101(32), 11634–11639 (2004).
    [CrossRef] [PubMed]
  6. N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
    [CrossRef] [PubMed]
  7. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
    [CrossRef] [PubMed]
  8. T. L. Jennings, M. P. Singh, and G. F. Strouse, “Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity,” J. Am. Chem. Soc. 128(16), 5462–5467 (2006).
    [CrossRef] [PubMed]
  9. Y.-P. Kim, Y.-H. Oh, E. Oh, S. Ko, M.-K. Han, and H.-S. Kim, “Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface,” Anal. Chem. 80(12), 4634–4641 (2008).
    [CrossRef] [PubMed]
  10. P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2(4), 173–183 (2007).
    [CrossRef]
  11. S. Bhowmick, S. Saini, V. B. Shenoy, and B. Bagchi, “Resonance energy transfer from a fluorescent dye to a metal nanoparticle,” J. Chem. Phys. 125(18), 181102 (2006).
    [CrossRef] [PubMed]
  12. S. Saini, H. Singh, and B. Bagchi, “Fluorescence resonance energy transfer (FRET) in chemistry and biology: non-Forster distance dependence of the FRET rate,” J. Chem. Sci. 118(1), 23–35 (2006).
    [CrossRef]
  13. S. Saini, G. Srinivas, and B. Bagchi, “Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles,” J. Phys. Chem. B 113(7), 1817–1832 (2009).
    [CrossRef] [PubMed]
  14. S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283(5408), 1676–1683 (1999).
    [CrossRef] [PubMed]
  15. T. Ha, “Single-molecule FRET,” Single Molecules 2(4), 283–284 (2001).
    [CrossRef]
  16. R. S. Swathi and K. L. Sebastian, “Resonance energy transfer from a fluorescent dye molecule to plasmon and electron-hole excitations of a metal nanoparticle,” J. Chem. Phys. 126(23), 234701 (2007).
    [CrossRef] [PubMed]
  17. S. Jang, “Generalization of the Forster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling,” J. Chem. Phys. 127(17), 174710 (2007).
    [CrossRef] [PubMed]
  18. B. N. J. Persson and N. D. Lang, “Electron-hole-pair quenching of excited-states near a metal,” Phys. Rev. B 26(10), 5409–5415 (1982).
    [CrossRef]
  19. M. P. Singh, T. L. Jennings, and G. F. Strouse, “Tracking spatial disorder in an optical ruler by time-resolved NSET,” J. Phys. Chem. B 113(2), 552–558 (2009).
    [CrossRef] [PubMed]
  20. G. H. Patterson, D. W. Piston, and B. G. Barisas, “Förster distances between green fluorescent protein pairs,” Anal. Biochem. 284(2), 438–440 (2000).
    [CrossRef] [PubMed]
  21. J. M. Beechem and L. Brand, “Time-resolved fluorescence of proteins,” Annu. Rev. Biochem. 54(1), 43–71 (1985).
    [CrossRef] [PubMed]
  22. J. Szöllosi, S. Damjanovich, and L. Mátyus, “Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research,” Cytometry 34(4), 159–179 (1998).
    [CrossRef] [PubMed]
  23. Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. McEuen, and D. Luo, “Controlled assembly of dendrimer-like DNA,” Nat. Mater. 3(1), 38–42 (2004).
    [CrossRef] [PubMed]
  24. C. X. Lin, Y. Liu, S. Rinker, and H. Yan, “DNA tile based self-assembly: building complex nanoarchitectures,” ChemPhysChem 7(8), 1641–1647 (2006).
    [CrossRef] [PubMed]

2009 (2)

S. Saini, G. Srinivas, and B. Bagchi, “Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles,” J. Phys. Chem. B 113(7), 1817–1832 (2009).
[CrossRef] [PubMed]

M. P. Singh, T. L. Jennings, and G. F. Strouse, “Tracking spatial disorder in an optical ruler by time-resolved NSET,” J. Phys. Chem. B 113(2), 552–558 (2009).
[CrossRef] [PubMed]

2008 (1)

Y.-P. Kim, Y.-H. Oh, E. Oh, S. Ko, M.-K. Han, and H.-S. Kim, “Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface,” Anal. Chem. 80(12), 4634–4641 (2008).
[CrossRef] [PubMed]

2007 (3)

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2(4), 173–183 (2007).
[CrossRef]

R. S. Swathi and K. L. Sebastian, “Resonance energy transfer from a fluorescent dye molecule to plasmon and electron-hole excitations of a metal nanoparticle,” J. Chem. Phys. 126(23), 234701 (2007).
[CrossRef] [PubMed]

S. Jang, “Generalization of the Forster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling,” J. Chem. Phys. 127(17), 174710 (2007).
[CrossRef] [PubMed]

2006 (6)

T. L. Jennings, M. P. Singh, and G. F. Strouse, “Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity,” J. Am. Chem. Soc. 128(16), 5462–5467 (2006).
[CrossRef] [PubMed]

S. Bhowmick, S. Saini, V. B. Shenoy, and B. Bagchi, “Resonance energy transfer from a fluorescent dye to a metal nanoparticle,” J. Chem. Phys. 125(18), 181102 (2006).
[CrossRef] [PubMed]

S. Saini, H. Singh, and B. Bagchi, “Fluorescence resonance energy transfer (FRET) in chemistry and biology: non-Forster distance dependence of the FRET rate,” J. Chem. Sci. 118(1), 23–35 (2006).
[CrossRef]

K. E. Sapsford, L. Berti, and I. L. Medintz, “Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations,” Angew. Chem. Int. Ed. Engl. 45(28), 4562–4589 (2006).
[CrossRef] [PubMed]

C. A. Royer, “Probing protein folding and conformational transitions with fluorescence,” Chem. Rev. 106(5), 1769–1784 (2006).
[CrossRef] [PubMed]

C. X. Lin, Y. Liu, S. Rinker, and H. Yan, “DNA tile based self-assembly: building complex nanoarchitectures,” ChemPhysChem 7(8), 1641–1647 (2006).
[CrossRef] [PubMed]

2005 (2)

N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
[CrossRef] [PubMed]

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

2004 (2)

Q. H. Xu, B. S. Gaylord, S. Wang, G. C. Bazan, D. Moses, and A. J. Heeger, “Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions,” Proc. Natl. Acad. Sci. U.S.A. 101(32), 11634–11639 (2004).
[CrossRef] [PubMed]

Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. McEuen, and D. Luo, “Controlled assembly of dendrimer-like DNA,” Nat. Mater. 3(1), 38–42 (2004).
[CrossRef] [PubMed]

2002 (1)

S. T. Hess, S. H. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: a review,” Biochemistry 41(3), 697–705 (2002).
[CrossRef] [PubMed]

2001 (1)

T. Ha, “Single-molecule FRET,” Single Molecules 2(4), 283–284 (2001).
[CrossRef]

2000 (1)

G. H. Patterson, D. W. Piston, and B. G. Barisas, “Förster distances between green fluorescent protein pairs,” Anal. Biochem. 284(2), 438–440 (2000).
[CrossRef] [PubMed]

1999 (1)

S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283(5408), 1676–1683 (1999).
[CrossRef] [PubMed]

1998 (1)

J. Szöllosi, S. Damjanovich, and L. Mátyus, “Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research,” Cytometry 34(4), 159–179 (1998).
[CrossRef] [PubMed]

1985 (1)

J. M. Beechem and L. Brand, “Time-resolved fluorescence of proteins,” Annu. Rev. Biochem. 54(1), 43–71 (1985).
[CrossRef] [PubMed]

1982 (1)

B. N. J. Persson and N. D. Lang, “Electron-hole-pair quenching of excited-states near a metal,” Phys. Rev. B 26(10), 5409–5415 (1982).
[CrossRef]

Bagchi, B.

S. Saini, G. Srinivas, and B. Bagchi, “Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles,” J. Phys. Chem. B 113(7), 1817–1832 (2009).
[CrossRef] [PubMed]

S. Bhowmick, S. Saini, V. B. Shenoy, and B. Bagchi, “Resonance energy transfer from a fluorescent dye to a metal nanoparticle,” J. Chem. Phys. 125(18), 181102 (2006).
[CrossRef] [PubMed]

S. Saini, H. Singh, and B. Bagchi, “Fluorescence resonance energy transfer (FRET) in chemistry and biology: non-Forster distance dependence of the FRET rate,” J. Chem. Sci. 118(1), 23–35 (2006).
[CrossRef]

Barisas, B. G.

G. H. Patterson, D. W. Piston, and B. G. Barisas, “Förster distances between green fluorescent protein pairs,” Anal. Biochem. 284(2), 438–440 (2000).
[CrossRef] [PubMed]

Bazan, G. C.

Q. H. Xu, B. S. Gaylord, S. Wang, G. C. Bazan, D. Moses, and A. J. Heeger, “Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions,” Proc. Natl. Acad. Sci. U.S.A. 101(32), 11634–11639 (2004).
[CrossRef] [PubMed]

Beechem, J. M.

J. M. Beechem and L. Brand, “Time-resolved fluorescence of proteins,” Annu. Rev. Biochem. 54(1), 43–71 (1985).
[CrossRef] [PubMed]

Berti, L.

K. E. Sapsford, L. Berti, and I. L. Medintz, “Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations,” Angew. Chem. Int. Ed. Engl. 45(28), 4562–4589 (2006).
[CrossRef] [PubMed]

Bhowmick, S.

S. Bhowmick, S. Saini, V. B. Shenoy, and B. Bagchi, “Resonance energy transfer from a fluorescent dye to a metal nanoparticle,” J. Chem. Phys. 125(18), 181102 (2006).
[CrossRef] [PubMed]

Brand, L.

J. M. Beechem and L. Brand, “Time-resolved fluorescence of proteins,” Annu. Rev. Biochem. 54(1), 43–71 (1985).
[CrossRef] [PubMed]

Bunch, J. S.

Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. McEuen, and D. Luo, “Controlled assembly of dendrimer-like DNA,” Nat. Mater. 3(1), 38–42 (2004).
[CrossRef] [PubMed]

D’Espaux, L.

Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. McEuen, and D. Luo, “Controlled assembly of dendrimer-like DNA,” Nat. Mater. 3(1), 38–42 (2004).
[CrossRef] [PubMed]

Damjanovich, S.

J. Szöllosi, S. Damjanovich, and L. Mátyus, “Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research,” Cytometry 34(4), 159–179 (1998).
[CrossRef] [PubMed]

Darbha, G. K.

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2(4), 173–183 (2007).
[CrossRef]

Fisher, M.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Gaylord, B. S.

Q. H. Xu, B. S. Gaylord, S. Wang, G. C. Bazan, D. Moses, and A. J. Heeger, “Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions,” Proc. Natl. Acad. Sci. U.S.A. 101(32), 11634–11639 (2004).
[CrossRef] [PubMed]

Ha, T.

T. Ha, “Single-molecule FRET,” Single Molecules 2(4), 283–284 (2001).
[CrossRef]

Han, M.-K.

Y.-P. Kim, Y.-H. Oh, E. Oh, S. Ko, M.-K. Han, and H.-S. Kim, “Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface,” Anal. Chem. 80(12), 4634–4641 (2008).
[CrossRef] [PubMed]

Hardy, W.

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2(4), 173–183 (2007).
[CrossRef]

Heeger, A. J.

Q. H. Xu, B. S. Gaylord, S. Wang, G. C. Bazan, D. Moses, and A. J. Heeger, “Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions,” Proc. Natl. Acad. Sci. U.S.A. 101(32), 11634–11639 (2004).
[CrossRef] [PubMed]

Heikal, A. A.

S. T. Hess, S. H. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: a review,” Biochemistry 41(3), 697–705 (2002).
[CrossRef] [PubMed]

Hess, S. T.

S. T. Hess, S. H. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: a review,” Biochemistry 41(3), 697–705 (2002).
[CrossRef] [PubMed]

Hira, S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Hopkins, B.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Huang, S. H.

S. T. Hess, S. H. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: a review,” Biochemistry 41(3), 697–705 (2002).
[CrossRef] [PubMed]

Jang, S.

S. Jang, “Generalization of the Forster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling,” J. Chem. Phys. 127(17), 174710 (2007).
[CrossRef] [PubMed]

Javier, A.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Jennings, T.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Jennings, T. L.

M. P. Singh, T. L. Jennings, and G. F. Strouse, “Tracking spatial disorder in an optical ruler by time-resolved NSET,” J. Phys. Chem. B 113(2), 552–558 (2009).
[CrossRef] [PubMed]

T. L. Jennings, M. P. Singh, and G. F. Strouse, “Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity,” J. Am. Chem. Soc. 128(16), 5462–5467 (2006).
[CrossRef] [PubMed]

Kim, H.-S.

Y.-P. Kim, Y.-H. Oh, E. Oh, S. Ko, M.-K. Han, and H.-S. Kim, “Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface,” Anal. Chem. 80(12), 4634–4641 (2008).
[CrossRef] [PubMed]

Kim, Y.-P.

Y.-P. Kim, Y.-H. Oh, E. Oh, S. Ko, M.-K. Han, and H.-S. Kim, “Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface,” Anal. Chem. 80(12), 4634–4641 (2008).
[CrossRef] [PubMed]

Ko, S.

Y.-P. Kim, Y.-H. Oh, E. Oh, S. Ko, M.-K. Han, and H.-S. Kim, “Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface,” Anal. Chem. 80(12), 4634–4641 (2008).
[CrossRef] [PubMed]

Kwon, S. Y.

Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. McEuen, and D. Luo, “Controlled assembly of dendrimer-like DNA,” Nat. Mater. 3(1), 38–42 (2004).
[CrossRef] [PubMed]

Lang, N. D.

B. N. J. Persson and N. D. Lang, “Electron-hole-pair quenching of excited-states near a metal,” Phys. Rev. B 26(10), 5409–5415 (1982).
[CrossRef]

Li, Y. G.

Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. McEuen, and D. Luo, “Controlled assembly of dendrimer-like DNA,” Nat. Mater. 3(1), 38–42 (2004).
[CrossRef] [PubMed]

Lin, C. X.

C. X. Lin, Y. Liu, S. Rinker, and H. Yan, “DNA tile based self-assembly: building complex nanoarchitectures,” ChemPhysChem 7(8), 1641–1647 (2006).
[CrossRef] [PubMed]

Liu, Y.

C. X. Lin, Y. Liu, S. Rinker, and H. Yan, “DNA tile based self-assembly: building complex nanoarchitectures,” ChemPhysChem 7(8), 1641–1647 (2006).
[CrossRef] [PubMed]

Luo, D.

Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. McEuen, and D. Luo, “Controlled assembly of dendrimer-like DNA,” Nat. Mater. 3(1), 38–42 (2004).
[CrossRef] [PubMed]

Mátyus, L.

J. Szöllosi, S. Damjanovich, and L. Mátyus, “Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research,” Cytometry 34(4), 159–179 (1998).
[CrossRef] [PubMed]

McEuen, P. L.

Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. McEuen, and D. Luo, “Controlled assembly of dendrimer-like DNA,” Nat. Mater. 3(1), 38–42 (2004).
[CrossRef] [PubMed]

Medintz, I. L.

K. E. Sapsford, L. Berti, and I. L. Medintz, “Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations,” Angew. Chem. Int. Ed. Engl. 45(28), 4562–4589 (2006).
[CrossRef] [PubMed]

Mirkin, C. A.

N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
[CrossRef] [PubMed]

Moses, D.

Q. H. Xu, B. S. Gaylord, S. Wang, G. C. Bazan, D. Moses, and A. J. Heeger, “Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions,” Proc. Natl. Acad. Sci. U.S.A. 101(32), 11634–11639 (2004).
[CrossRef] [PubMed]

Oh, E.

Y.-P. Kim, Y.-H. Oh, E. Oh, S. Ko, M.-K. Han, and H.-S. Kim, “Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface,” Anal. Chem. 80(12), 4634–4641 (2008).
[CrossRef] [PubMed]

Oh, Y.-H.

Y.-P. Kim, Y.-H. Oh, E. Oh, S. Ko, M.-K. Han, and H.-S. Kim, “Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface,” Anal. Chem. 80(12), 4634–4641 (2008).
[CrossRef] [PubMed]

Patterson, G. H.

G. H. Patterson, D. W. Piston, and B. G. Barisas, “Förster distances between green fluorescent protein pairs,” Anal. Biochem. 284(2), 438–440 (2000).
[CrossRef] [PubMed]

Persson, B. N. J.

B. N. J. Persson and N. D. Lang, “Electron-hole-pair quenching of excited-states near a metal,” Phys. Rev. B 26(10), 5409–5415 (1982).
[CrossRef]

Peterson, S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Piston, D. W.

G. H. Patterson, D. W. Piston, and B. G. Barisas, “Förster distances between green fluorescent protein pairs,” Anal. Biochem. 284(2), 438–440 (2000).
[CrossRef] [PubMed]

Ray, A.

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2(4), 173–183 (2007).
[CrossRef]

Ray, P. C.

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2(4), 173–183 (2007).
[CrossRef]

Reich, N. O.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Rinker, S.

C. X. Lin, Y. Liu, S. Rinker, and H. Yan, “DNA tile based self-assembly: building complex nanoarchitectures,” ChemPhysChem 7(8), 1641–1647 (2006).
[CrossRef] [PubMed]

Rosi, N. L.

N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
[CrossRef] [PubMed]

Royer, C. A.

C. A. Royer, “Probing protein folding and conformational transitions with fluorescence,” Chem. Rev. 106(5), 1769–1784 (2006).
[CrossRef] [PubMed]

Saini, S.

S. Saini, G. Srinivas, and B. Bagchi, “Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles,” J. Phys. Chem. B 113(7), 1817–1832 (2009).
[CrossRef] [PubMed]

S. Bhowmick, S. Saini, V. B. Shenoy, and B. Bagchi, “Resonance energy transfer from a fluorescent dye to a metal nanoparticle,” J. Chem. Phys. 125(18), 181102 (2006).
[CrossRef] [PubMed]

S. Saini, H. Singh, and B. Bagchi, “Fluorescence resonance energy transfer (FRET) in chemistry and biology: non-Forster distance dependence of the FRET rate,” J. Chem. Sci. 118(1), 23–35 (2006).
[CrossRef]

Sapsford, K. E.

K. E. Sapsford, L. Berti, and I. L. Medintz, “Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations,” Angew. Chem. Int. Ed. Engl. 45(28), 4562–4589 (2006).
[CrossRef] [PubMed]

Sebastian, K. L.

R. S. Swathi and K. L. Sebastian, “Resonance energy transfer from a fluorescent dye molecule to plasmon and electron-hole excitations of a metal nanoparticle,” J. Chem. Phys. 126(23), 234701 (2007).
[CrossRef] [PubMed]

Shenoy, V. B.

S. Bhowmick, S. Saini, V. B. Shenoy, and B. Bagchi, “Resonance energy transfer from a fluorescent dye to a metal nanoparticle,” J. Chem. Phys. 125(18), 181102 (2006).
[CrossRef] [PubMed]

Singh, H.

S. Saini, H. Singh, and B. Bagchi, “Fluorescence resonance energy transfer (FRET) in chemistry and biology: non-Forster distance dependence of the FRET rate,” J. Chem. Sci. 118(1), 23–35 (2006).
[CrossRef]

Singh, M. P.

M. P. Singh, T. L. Jennings, and G. F. Strouse, “Tracking spatial disorder in an optical ruler by time-resolved NSET,” J. Phys. Chem. B 113(2), 552–558 (2009).
[CrossRef] [PubMed]

T. L. Jennings, M. P. Singh, and G. F. Strouse, “Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity,” J. Am. Chem. Soc. 128(16), 5462–5467 (2006).
[CrossRef] [PubMed]

Srinivas, G.

S. Saini, G. Srinivas, and B. Bagchi, “Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles,” J. Phys. Chem. B 113(7), 1817–1832 (2009).
[CrossRef] [PubMed]

Strouse, G. F.

M. P. Singh, T. L. Jennings, and G. F. Strouse, “Tracking spatial disorder in an optical ruler by time-resolved NSET,” J. Phys. Chem. B 113(2), 552–558 (2009).
[CrossRef] [PubMed]

T. L. Jennings, M. P. Singh, and G. F. Strouse, “Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity,” J. Am. Chem. Soc. 128(16), 5462–5467 (2006).
[CrossRef] [PubMed]

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Swathi, R. S.

R. S. Swathi and K. L. Sebastian, “Resonance energy transfer from a fluorescent dye molecule to plasmon and electron-hole excitations of a metal nanoparticle,” J. Chem. Phys. 126(23), 234701 (2007).
[CrossRef] [PubMed]

Szöllosi, J.

J. Szöllosi, S. Damjanovich, and L. Mátyus, “Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research,” Cytometry 34(4), 159–179 (1998).
[CrossRef] [PubMed]

Tseng, Y. D.

Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. McEuen, and D. Luo, “Controlled assembly of dendrimer-like DNA,” Nat. Mater. 3(1), 38–42 (2004).
[CrossRef] [PubMed]

Walker, J.

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2(4), 173–183 (2007).
[CrossRef]

Wang, S.

Q. H. Xu, B. S. Gaylord, S. Wang, G. C. Bazan, D. Moses, and A. J. Heeger, “Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions,” Proc. Natl. Acad. Sci. U.S.A. 101(32), 11634–11639 (2004).
[CrossRef] [PubMed]

Webb, W. W.

S. T. Hess, S. H. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: a review,” Biochemistry 41(3), 697–705 (2002).
[CrossRef] [PubMed]

Weiss, S.

S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283(5408), 1676–1683 (1999).
[CrossRef] [PubMed]

Xu, Q. H.

Q. H. Xu, B. S. Gaylord, S. Wang, G. C. Bazan, D. Moses, and A. J. Heeger, “Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions,” Proc. Natl. Acad. Sci. U.S.A. 101(32), 11634–11639 (2004).
[CrossRef] [PubMed]

Yan, H.

C. X. Lin, Y. Liu, S. Rinker, and H. Yan, “DNA tile based self-assembly: building complex nanoarchitectures,” ChemPhysChem 7(8), 1641–1647 (2006).
[CrossRef] [PubMed]

Yun, C. S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Anal. Biochem. (1)

G. H. Patterson, D. W. Piston, and B. G. Barisas, “Förster distances between green fluorescent protein pairs,” Anal. Biochem. 284(2), 438–440 (2000).
[CrossRef] [PubMed]

Anal. Chem. (1)

Y.-P. Kim, Y.-H. Oh, E. Oh, S. Ko, M.-K. Han, and H.-S. Kim, “Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface,” Anal. Chem. 80(12), 4634–4641 (2008).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

K. E. Sapsford, L. Berti, and I. L. Medintz, “Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations,” Angew. Chem. Int. Ed. Engl. 45(28), 4562–4589 (2006).
[CrossRef] [PubMed]

Annu. Rev. Biochem. (1)

J. M. Beechem and L. Brand, “Time-resolved fluorescence of proteins,” Annu. Rev. Biochem. 54(1), 43–71 (1985).
[CrossRef] [PubMed]

Biochemistry (1)

S. T. Hess, S. H. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: a review,” Biochemistry 41(3), 697–705 (2002).
[CrossRef] [PubMed]

Chem. Rev. (2)

C. A. Royer, “Probing protein folding and conformational transitions with fluorescence,” Chem. Rev. 106(5), 1769–1784 (2006).
[CrossRef] [PubMed]

N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
[CrossRef] [PubMed]

ChemPhysChem (1)

C. X. Lin, Y. Liu, S. Rinker, and H. Yan, “DNA tile based self-assembly: building complex nanoarchitectures,” ChemPhysChem 7(8), 1641–1647 (2006).
[CrossRef] [PubMed]

Cytometry (1)

J. Szöllosi, S. Damjanovich, and L. Mátyus, “Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research,” Cytometry 34(4), 159–179 (1998).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (2)

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

T. L. Jennings, M. P. Singh, and G. F. Strouse, “Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity,” J. Am. Chem. Soc. 128(16), 5462–5467 (2006).
[CrossRef] [PubMed]

J. Chem. Phys. (3)

S. Bhowmick, S. Saini, V. B. Shenoy, and B. Bagchi, “Resonance energy transfer from a fluorescent dye to a metal nanoparticle,” J. Chem. Phys. 125(18), 181102 (2006).
[CrossRef] [PubMed]

R. S. Swathi and K. L. Sebastian, “Resonance energy transfer from a fluorescent dye molecule to plasmon and electron-hole excitations of a metal nanoparticle,” J. Chem. Phys. 126(23), 234701 (2007).
[CrossRef] [PubMed]

S. Jang, “Generalization of the Forster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling,” J. Chem. Phys. 127(17), 174710 (2007).
[CrossRef] [PubMed]

J. Chem. Sci. (1)

S. Saini, H. Singh, and B. Bagchi, “Fluorescence resonance energy transfer (FRET) in chemistry and biology: non-Forster distance dependence of the FRET rate,” J. Chem. Sci. 118(1), 23–35 (2006).
[CrossRef]

J. Phys. Chem. B (2)

S. Saini, G. Srinivas, and B. Bagchi, “Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles,” J. Phys. Chem. B 113(7), 1817–1832 (2009).
[CrossRef] [PubMed]

M. P. Singh, T. L. Jennings, and G. F. Strouse, “Tracking spatial disorder in an optical ruler by time-resolved NSET,” J. Phys. Chem. B 113(2), 552–558 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. McEuen, and D. Luo, “Controlled assembly of dendrimer-like DNA,” Nat. Mater. 3(1), 38–42 (2004).
[CrossRef] [PubMed]

Phys. Rev. B (1)

B. N. J. Persson and N. D. Lang, “Electron-hole-pair quenching of excited-states near a metal,” Phys. Rev. B 26(10), 5409–5415 (1982).
[CrossRef]

Plasmonics (1)

P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2(4), 173–183 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. H. Xu, B. S. Gaylord, S. Wang, G. C. Bazan, D. Moses, and A. J. Heeger, “Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions,” Proc. Natl. Acad. Sci. U.S.A. 101(32), 11634–11639 (2004).
[CrossRef] [PubMed]

Science (1)

S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283(5408), 1676–1683 (1999).
[CrossRef] [PubMed]

Single Molecules (1)

T. Ha, “Single-molecule FRET,” Single Molecules 2(4), 283–284 (2001).
[CrossRef]

Other (1)

J. R. Lakowicz, “Principles of Fluorescence Spectroscopy,” 3rd ed. (Plenum, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Time-resolved emission dynamics of FAM exhibiting a single exponential decay with lifetime of 4.18 ns . Steady-state PL spectrum of FAM conjugated with DNA showing the emission maximum at 518 nm (Inset).

Fig. 2
Fig. 2

A schematic drawing of the system under investigation. A 1.4 nm gold nanoparticle and a FAM donor are attached to the two ends of a double stranded DNA via linkers. Four different lengths investigated in the present study are also indicated.

Fig. 3
Fig. 3

Results of time-resolved luminescence measurements indicating the change in lifetime observed for the four different distances studied (16 bp, 20 bp, 26 bp and 36 bp).

Fig. 4
Fig. 4

The quenching efficiency plotted as a function of distance for 1/d 4 and 1/d 6 models. At distances greater than 10 nm, the system shows quenching efficiencies closer to the 1/d 4 model. A d o value of 70 Å has been used in the above calculations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q e f f = 1 τ τ 0
k E T = 1 τ ' 1 τ 0
Q e f f = 1 1 + ( d d 0 ) n

Metrics