Abstract

Automated classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. We have investigated this possibility experimentally and numerically using a diffraction imaging approach. A fast image analysis software based on the gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images. The results of GLCM analysis and subsequent classification demonstrate the potential for rapid classification among six types of cultured cells. Combined with numerical results we show that the method of diffraction imaging flow cytometry has the capacity as a platform for high-throughput and label-free classification of biological cells.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Folkman and A. Moscona, “Role of cell shape in growth control,” Nature 273(5661), 345–349 (1978).
    [CrossRef] [PubMed]
  2. K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, “Geometric cues for directing the differentiation of mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 4872–4877 (2010).
    [CrossRef] [PubMed]
  3. M. R. Melamed, T. Lindmo, and M. L. Mendelsohn, Flow Cytometry and Sorting (Wiley-Liss, New York, 1990).
  4. E. K. Zuba-Surma, M. Kucia, W. Wu, I. Klich, J. W. Lillard, J. Ratajczak, and M. Z. Ratajczak, “Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies,” Cytometry A 73A(12), 1116–1127 (2008).
    [CrossRef] [PubMed]
  5. V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum. 71(1), 243–255 (2000).
    [CrossRef]
  6. D. I. Strokotov, M. A. Yurkin, K. V. Gilev, D. R. van Bockstaele, A. G. Hoekstra, N. B. Rubtsov, and V. P. Maltsev, “Is there a difference between T- and B-lymphocyte morphology?” J. Biomed. Opt. 14(6), 064036 (2009).
    [CrossRef] [PubMed]
  7. A. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2(3), 262–266 (1997).
    [CrossRef]
  8. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998).
    [CrossRef] [PubMed]
  9. R. S. Brock, X. H. Hu, P. Yang, and J. Q. Lu, “Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells,” Opt. Express 13(14), 5279–5292 (2005).
    [CrossRef] [PubMed]
  10. J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).
    [CrossRef] [PubMed]
  11. R. S. Brock, X. H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 25–36 (2006).
    [CrossRef]
  12. H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnell, J. F. Ojeda, K. M. Jacobs, and X. H. Hu, “Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm,” J. Biomed. Opt. 12(3), 034032 (2007).
    [CrossRef] [PubMed]
  13. K. M. Jacobs, J. Q. Lu, and X. H. Hu, “Development of a diffraction imaging flow cytometer,” Opt. Lett. 34(19), 2985–2987 (2009).
    [CrossRef] [PubMed]
  14. K. M. Jacobs, L. V. Yang, J. Ding, A. E. Ekpenyong, R. Castellone, J. Q. Lu, and X. H. Hu, “Diffraction imaging of spheres and melanoma cells with a microscope objective,” J Biophotonics 2(8-9), 521–527 (2009).
    [CrossRef] [PubMed]
  15. R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973).
    [CrossRef]
  16. R. M. Haralick, “Statistical and structural approaches to texture,” Proc. IEEE 67(5), 786–804 (1979).
    [CrossRef]
  17. K. Dong, K. M. Jacobs, Y. Sa, Y. Feng, J. Q. Lu, and X. H. Hu, “Study of cell classification with a diffraction imaging flow cytometer method,” Proc. SPIE 7902, 7902–7939 (2011).
  18. C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector machines,” (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm .
  19. X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
    [CrossRef] [PubMed]

2011 (1)

K. Dong, K. M. Jacobs, Y. Sa, Y. Feng, J. Q. Lu, and X. H. Hu, “Study of cell classification with a diffraction imaging flow cytometer method,” Proc. SPIE 7902, 7902–7939 (2011).

2010 (1)

K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, “Geometric cues for directing the differentiation of mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 4872–4877 (2010).
[CrossRef] [PubMed]

2009 (4)

D. I. Strokotov, M. A. Yurkin, K. V. Gilev, D. R. van Bockstaele, A. G. Hoekstra, N. B. Rubtsov, and V. P. Maltsev, “Is there a difference between T- and B-lymphocyte morphology?” J. Biomed. Opt. 14(6), 064036 (2009).
[CrossRef] [PubMed]

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

K. M. Jacobs, J. Q. Lu, and X. H. Hu, “Development of a diffraction imaging flow cytometer,” Opt. Lett. 34(19), 2985–2987 (2009).
[CrossRef] [PubMed]

K. M. Jacobs, L. V. Yang, J. Ding, A. E. Ekpenyong, R. Castellone, J. Q. Lu, and X. H. Hu, “Diffraction imaging of spheres and melanoma cells with a microscope objective,” J Biophotonics 2(8-9), 521–527 (2009).
[CrossRef] [PubMed]

2008 (1)

E. K. Zuba-Surma, M. Kucia, W. Wu, I. Klich, J. W. Lillard, J. Ratajczak, and M. Z. Ratajczak, “Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies,” Cytometry A 73A(12), 1116–1127 (2008).
[CrossRef] [PubMed]

2007 (1)

H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnell, J. F. Ojeda, K. M. Jacobs, and X. H. Hu, “Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm,” J. Biomed. Opt. 12(3), 034032 (2007).
[CrossRef] [PubMed]

2006 (1)

R. S. Brock, X. H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 25–36 (2006).
[CrossRef]

2005 (2)

R. S. Brock, X. H. Hu, P. Yang, and J. Q. Lu, “Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells,” Opt. Express 13(14), 5279–5292 (2005).
[CrossRef] [PubMed]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).
[CrossRef] [PubMed]

2000 (1)

V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum. 71(1), 243–255 (2000).
[CrossRef]

1998 (1)

1997 (1)

A. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2(3), 262–266 (1997).
[CrossRef]

1979 (1)

R. M. Haralick, “Statistical and structural approaches to texture,” Proc. IEEE 67(5), 786–804 (1979).
[CrossRef]

1978 (1)

J. Folkman and A. Moscona, “Role of cell shape in growth control,” Nature 273(5661), 345–349 (1978).
[CrossRef] [PubMed]

1973 (1)

R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973).
[CrossRef]

Brock, R. S.

H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnell, J. F. Ojeda, K. M. Jacobs, and X. H. Hu, “Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm,” J. Biomed. Opt. 12(3), 034032 (2007).
[CrossRef] [PubMed]

R. S. Brock, X. H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 25–36 (2006).
[CrossRef]

R. S. Brock, X. H. Hu, P. Yang, and J. Q. Lu, “Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells,” Opt. Express 13(14), 5279–5292 (2005).
[CrossRef] [PubMed]

Bugarija, B.

K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, “Geometric cues for directing the differentiation of mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 4872–4877 (2010).
[CrossRef] [PubMed]

Castellone, R.

K. M. Jacobs, L. V. Yang, J. Ding, A. E. Ekpenyong, R. Castellone, J. Q. Lu, and X. H. Hu, “Diffraction imaging of spheres and melanoma cells with a microscope objective,” J Biophotonics 2(8-9), 521–527 (2009).
[CrossRef] [PubMed]

Ding, H.

H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnell, J. F. Ojeda, K. M. Jacobs, and X. H. Hu, “Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm,” J. Biomed. Opt. 12(3), 034032 (2007).
[CrossRef] [PubMed]

Ding, J.

K. M. Jacobs, L. V. Yang, J. Ding, A. E. Ekpenyong, R. Castellone, J. Q. Lu, and X. H. Hu, “Diffraction imaging of spheres and melanoma cells with a microscope objective,” J Biophotonics 2(8-9), 521–527 (2009).
[CrossRef] [PubMed]

Dinstein, I.

R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973).
[CrossRef]

Dong, K.

K. Dong, K. M. Jacobs, Y. Sa, Y. Feng, J. Q. Lu, and X. H. Hu, “Study of cell classification with a diffraction imaging flow cytometer method,” Proc. SPIE 7902, 7902–7939 (2011).

Dunn, A.

A. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2(3), 262–266 (1997).
[CrossRef]

Eick, A. A.

Ekpenyong, A. E.

K. M. Jacobs, L. V. Yang, J. Ding, A. E. Ekpenyong, R. Castellone, J. Q. Lu, and X. H. Hu, “Diffraction imaging of spheres and melanoma cells with a microscope objective,” J Biophotonics 2(8-9), 521–527 (2009).
[CrossRef] [PubMed]

Feng, Y.

K. Dong, K. M. Jacobs, Y. Sa, Y. Feng, J. Q. Lu, and X. H. Hu, “Study of cell classification with a diffraction imaging flow cytometer method,” Proc. SPIE 7902, 7902–7939 (2011).

Folkman, J.

J. Folkman and A. Moscona, “Role of cell shape in growth control,” Nature 273(5661), 345–349 (1978).
[CrossRef] [PubMed]

Freyer, J. P.

Gilev, K. V.

D. I. Strokotov, M. A. Yurkin, K. V. Gilev, D. R. van Bockstaele, A. G. Hoekstra, N. B. Rubtsov, and V. P. Maltsev, “Is there a difference between T- and B-lymphocyte morphology?” J. Biomed. Opt. 14(6), 064036 (2009).
[CrossRef] [PubMed]

Haralick, R. M.

R. M. Haralick, “Statistical and structural approaches to texture,” Proc. IEEE 67(5), 786–804 (1979).
[CrossRef]

R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973).
[CrossRef]

Hielscher, A. H.

Hoekstra, A. G.

D. I. Strokotov, M. A. Yurkin, K. V. Gilev, D. R. van Bockstaele, A. G. Hoekstra, N. B. Rubtsov, and V. P. Maltsev, “Is there a difference between T- and B-lymphocyte morphology?” J. Biomed. Opt. 14(6), 064036 (2009).
[CrossRef] [PubMed]

Hu, X. H.

K. Dong, K. M. Jacobs, Y. Sa, Y. Feng, J. Q. Lu, and X. H. Hu, “Study of cell classification with a diffraction imaging flow cytometer method,” Proc. SPIE 7902, 7902–7939 (2011).

K. M. Jacobs, L. V. Yang, J. Ding, A. E. Ekpenyong, R. Castellone, J. Q. Lu, and X. H. Hu, “Diffraction imaging of spheres and melanoma cells with a microscope objective,” J Biophotonics 2(8-9), 521–527 (2009).
[CrossRef] [PubMed]

K. M. Jacobs, J. Q. Lu, and X. H. Hu, “Development of a diffraction imaging flow cytometer,” Opt. Lett. 34(19), 2985–2987 (2009).
[CrossRef] [PubMed]

H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnell, J. F. Ojeda, K. M. Jacobs, and X. H. Hu, “Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm,” J. Biomed. Opt. 12(3), 034032 (2007).
[CrossRef] [PubMed]

R. S. Brock, X. H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 25–36 (2006).
[CrossRef]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).
[CrossRef] [PubMed]

R. S. Brock, X. H. Hu, P. Yang, and J. Q. Lu, “Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells,” Opt. Express 13(14), 5279–5292 (2005).
[CrossRef] [PubMed]

Huang, X.

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

Jacobs, K. M.

K. Dong, K. M. Jacobs, Y. Sa, Y. Feng, J. Q. Lu, and X. H. Hu, “Study of cell classification with a diffraction imaging flow cytometer method,” Proc. SPIE 7902, 7902–7939 (2011).

K. M. Jacobs, J. Q. Lu, and X. H. Hu, “Development of a diffraction imaging flow cytometer,” Opt. Lett. 34(19), 2985–2987 (2009).
[CrossRef] [PubMed]

K. M. Jacobs, L. V. Yang, J. Ding, A. E. Ekpenyong, R. Castellone, J. Q. Lu, and X. H. Hu, “Diffraction imaging of spheres and melanoma cells with a microscope objective,” J Biophotonics 2(8-9), 521–527 (2009).
[CrossRef] [PubMed]

H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnell, J. F. Ojeda, K. M. Jacobs, and X. H. Hu, “Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm,” J. Biomed. Opt. 12(3), 034032 (2007).
[CrossRef] [PubMed]

Jacobsen, C.

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

Johnson, T. M.

Kilian, K. A.

K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, “Geometric cues for directing the differentiation of mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 4872–4877 (2010).
[CrossRef] [PubMed]

Kirz, J.

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

Klich, I.

E. K. Zuba-Surma, M. Kucia, W. Wu, I. Klich, J. W. Lillard, J. Ratajczak, and M. Z. Ratajczak, “Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies,” Cytometry A 73A(12), 1116–1127 (2008).
[CrossRef] [PubMed]

Kucia, M.

E. K. Zuba-Surma, M. Kucia, W. Wu, I. Klich, J. W. Lillard, J. Ratajczak, and M. Z. Ratajczak, “Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies,” Cytometry A 73A(12), 1116–1127 (2008).
[CrossRef] [PubMed]

Lahn, B. T.

K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, “Geometric cues for directing the differentiation of mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 4872–4877 (2010).
[CrossRef] [PubMed]

Lillard, J. W.

E. K. Zuba-Surma, M. Kucia, W. Wu, I. Klich, J. W. Lillard, J. Ratajczak, and M. Z. Ratajczak, “Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies,” Cytometry A 73A(12), 1116–1127 (2008).
[CrossRef] [PubMed]

Lima, E.

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

Lu, J. Q.

K. Dong, K. M. Jacobs, Y. Sa, Y. Feng, J. Q. Lu, and X. H. Hu, “Study of cell classification with a diffraction imaging flow cytometer method,” Proc. SPIE 7902, 7902–7939 (2011).

K. M. Jacobs, L. V. Yang, J. Ding, A. E. Ekpenyong, R. Castellone, J. Q. Lu, and X. H. Hu, “Diffraction imaging of spheres and melanoma cells with a microscope objective,” J Biophotonics 2(8-9), 521–527 (2009).
[CrossRef] [PubMed]

K. M. Jacobs, J. Q. Lu, and X. H. Hu, “Development of a diffraction imaging flow cytometer,” Opt. Lett. 34(19), 2985–2987 (2009).
[CrossRef] [PubMed]

H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnell, J. F. Ojeda, K. M. Jacobs, and X. H. Hu, “Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm,” J. Biomed. Opt. 12(3), 034032 (2007).
[CrossRef] [PubMed]

R. S. Brock, X. H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 25–36 (2006).
[CrossRef]

R. S. Brock, X. H. Hu, P. Yang, and J. Q. Lu, “Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells,” Opt. Express 13(14), 5279–5292 (2005).
[CrossRef] [PubMed]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).
[CrossRef] [PubMed]

Maltsev, V. P.

D. I. Strokotov, M. A. Yurkin, K. V. Gilev, D. R. van Bockstaele, A. G. Hoekstra, N. B. Rubtsov, and V. P. Maltsev, “Is there a difference between T- and B-lymphocyte morphology?” J. Biomed. Opt. 14(6), 064036 (2009).
[CrossRef] [PubMed]

V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum. 71(1), 243–255 (2000).
[CrossRef]

Marchesini, S.

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

McConnell, T. J.

H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnell, J. F. Ojeda, K. M. Jacobs, and X. H. Hu, “Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm,” J. Biomed. Opt. 12(3), 034032 (2007).
[CrossRef] [PubMed]

Miao, H.

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

Moscona, A.

J. Folkman and A. Moscona, “Role of cell shape in growth control,” Nature 273(5661), 345–349 (1978).
[CrossRef] [PubMed]

Mourant, J. R.

R. S. Brock, X. H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 25–36 (2006).
[CrossRef]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998).
[CrossRef] [PubMed]

Mrksich, M.

K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, “Geometric cues for directing the differentiation of mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 4872–4877 (2010).
[CrossRef] [PubMed]

Neiman, A. M.

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

Nelson, J.

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

Ojeda, J. F.

H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnell, J. F. Ojeda, K. M. Jacobs, and X. H. Hu, “Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm,” J. Biomed. Opt. 12(3), 034032 (2007).
[CrossRef] [PubMed]

Ratajczak, J.

E. K. Zuba-Surma, M. Kucia, W. Wu, I. Klich, J. W. Lillard, J. Ratajczak, and M. Z. Ratajczak, “Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies,” Cytometry A 73A(12), 1116–1127 (2008).
[CrossRef] [PubMed]

Ratajczak, M. Z.

E. K. Zuba-Surma, M. Kucia, W. Wu, I. Klich, J. W. Lillard, J. Ratajczak, and M. Z. Ratajczak, “Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies,” Cytometry A 73A(12), 1116–1127 (2008).
[CrossRef] [PubMed]

Richards-Kortum, R.

A. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2(3), 262–266 (1997).
[CrossRef]

Rubtsov, N. B.

D. I. Strokotov, M. A. Yurkin, K. V. Gilev, D. R. van Bockstaele, A. G. Hoekstra, N. B. Rubtsov, and V. P. Maltsev, “Is there a difference between T- and B-lymphocyte morphology?” J. Biomed. Opt. 14(6), 064036 (2009).
[CrossRef] [PubMed]

Sa, Y.

K. Dong, K. M. Jacobs, Y. Sa, Y. Feng, J. Q. Lu, and X. H. Hu, “Study of cell classification with a diffraction imaging flow cytometer method,” Proc. SPIE 7902, 7902–7939 (2011).

Shanmugam, K.

R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973).
[CrossRef]

Shapiro, D.

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

Shen, D.

Smithpeter, C.

A. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2(3), 262–266 (1997).
[CrossRef]

Steinbrener, J.

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

Stewart, A.

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

Strokotov, D. I.

D. I. Strokotov, M. A. Yurkin, K. V. Gilev, D. R. van Bockstaele, A. G. Hoekstra, N. B. Rubtsov, and V. P. Maltsev, “Is there a difference between T- and B-lymphocyte morphology?” J. Biomed. Opt. 14(6), 064036 (2009).
[CrossRef] [PubMed]

Turner, J. J.

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

van Bockstaele, D. R.

D. I. Strokotov, M. A. Yurkin, K. V. Gilev, D. R. van Bockstaele, A. G. Hoekstra, N. B. Rubtsov, and V. P. Maltsev, “Is there a difference between T- and B-lymphocyte morphology?” J. Biomed. Opt. 14(6), 064036 (2009).
[CrossRef] [PubMed]

Weidner, D. A.

R. S. Brock, X. H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 25–36 (2006).
[CrossRef]

Welch, A. J.

A. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2(3), 262–266 (1997).
[CrossRef]

Wu, W.

E. K. Zuba-Surma, M. Kucia, W. Wu, I. Klich, J. W. Lillard, J. Ratajczak, and M. Z. Ratajczak, “Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies,” Cytometry A 73A(12), 1116–1127 (2008).
[CrossRef] [PubMed]

Yang, L. V.

K. M. Jacobs, L. V. Yang, J. Ding, A. E. Ekpenyong, R. Castellone, J. Q. Lu, and X. H. Hu, “Diffraction imaging of spheres and melanoma cells with a microscope objective,” J Biophotonics 2(8-9), 521–527 (2009).
[CrossRef] [PubMed]

Yang, P.

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).
[CrossRef] [PubMed]

R. S. Brock, X. H. Hu, P. Yang, and J. Q. Lu, “Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells,” Opt. Express 13(14), 5279–5292 (2005).
[CrossRef] [PubMed]

Yurkin, M. A.

D. I. Strokotov, M. A. Yurkin, K. V. Gilev, D. R. van Bockstaele, A. G. Hoekstra, N. B. Rubtsov, and V. P. Maltsev, “Is there a difference between T- and B-lymphocyte morphology?” J. Biomed. Opt. 14(6), 064036 (2009).
[CrossRef] [PubMed]

Zuba-Surma, E. K.

E. K. Zuba-Surma, M. Kucia, W. Wu, I. Klich, J. W. Lillard, J. Ratajczak, and M. Z. Ratajczak, “Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies,” Cytometry A 73A(12), 1116–1127 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Cytometry A (1)

E. K. Zuba-Surma, M. Kucia, W. Wu, I. Klich, J. W. Lillard, J. Ratajczak, and M. Z. Ratajczak, “Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies,” Cytometry A 73A(12), 1116–1127 (2008).
[CrossRef] [PubMed]

IEEE Trans. Syst. Man Cybern. (1)

R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973).
[CrossRef]

J Biophotonics (1)

K. M. Jacobs, L. V. Yang, J. Ding, A. E. Ekpenyong, R. Castellone, J. Q. Lu, and X. H. Hu, “Diffraction imaging of spheres and melanoma cells with a microscope objective,” J Biophotonics 2(8-9), 521–527 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).
[CrossRef] [PubMed]

H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnell, J. F. Ojeda, K. M. Jacobs, and X. H. Hu, “Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm,” J. Biomed. Opt. 12(3), 034032 (2007).
[CrossRef] [PubMed]

D. I. Strokotov, M. A. Yurkin, K. V. Gilev, D. R. van Bockstaele, A. G. Hoekstra, N. B. Rubtsov, and V. P. Maltsev, “Is there a difference between T- and B-lymphocyte morphology?” J. Biomed. Opt. 14(6), 064036 (2009).
[CrossRef] [PubMed]

A. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2(3), 262–266 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

R. S. Brock, X. H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 25–36 (2006).
[CrossRef]

Nature (1)

J. Folkman and A. Moscona, “Role of cell shape in growth control,” Nature 273(5661), 345–349 (1978).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

X. Huang, J. Nelson, J. Kirz, E. Lima, S. Marchesini, H. Miao, A. M. Neiman, D. Shapiro, J. Steinbrener, A. Stewart, J. J. Turner, and C. Jacobsen, “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103(19), 198101 (2009).
[CrossRef] [PubMed]

Proc. IEEE (1)

R. M. Haralick, “Statistical and structural approaches to texture,” Proc. IEEE 67(5), 786–804 (1979).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, “Geometric cues for directing the differentiation of mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 4872–4877 (2010).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. Dong, K. M. Jacobs, Y. Sa, Y. Feng, J. Q. Lu, and X. H. Hu, “Study of cell classification with a diffraction imaging flow cytometer method,” Proc. SPIE 7902, 7902–7939 (2011).

Rev. Sci. Instrum. (1)

V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum. 71(1), 243–255 (2000).
[CrossRef]

Other (2)

M. R. Melamed, T. Lindmo, and M. L. Mendelsohn, Flow Cytometry and Sorting (Wiley-Liss, New York, 1990).

C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector machines,” (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configuration of FDTD simulation of light scattering at wavelength λ in terms of the Mueller matrix elements using imported 3D cell morphology at an orientation given by C(θ00) and diffraction images by projecting the element S11ss) to the sensor plane centered at the negative x-axis.

Fig. 2
Fig. 2

Typical pairs of measured diffraction images (1) and intensified GLCM images (2) of single flowing cells acquired at λ = 532nm: (a1/a2) Jurkat; (b1/b2) NALM-6; (c1/c2) U937; (d1/d2) MCF-7; (e1/e2) B16F10; (f1/f2) TRAMP-C1. The GLCM images are placed to the right of the diffraction images respectively. The scale bar on the left indicates the pixel values of the normalized diffraction images after conversion to 8-bit pixel values and the one on the right indicates the values of GLCM elements with pmax = (a2) 0.0172; (b2) 0.0204; (c2) 0.0160; (d2) 0.00302; (e2) 0.00175; (f2) 0.00297.

Fig. 3
Fig. 3

Typical confocal image slices acquired from cells with double fluorescent stains for nucleus and mitochondria: (a) Jurkat; (b) NALM-6; (c) U937; (d) MCF-7; (e) B16F10; (f) TRAMP-C1. Bar = 5μm.

Fig. 4
Fig. 4

Simulated diffraction images with 3 reconstructed NALM-6 cell models: top row from (a) to (d): Cell #1; middle row from (e) to (h): Cell #8; bottom row from (i) to (l): Cell #9. All cells have the same index of refraction as nh = 1.33 for host medium and nc = 1.368 for cytoplasm. The column of (a), (e) and (i) are for cells of orientation along the z-axis or C(θ0 = 0, ϕ0 = 0) and nc = 1.45 for the nucleus; the column of (b), (f) and (j) are for cells of C(θ0 = 109°, ϕ0 = 118°) and nc = 1.45; the column of (c), (g) and (k) are for cells of C(θ0 = 0, ϕ0 = 0) and nc = 1.50; the column of (d), (h) and (l) are for cells of C(θ0 = 0, ϕ0 = 0) and nc = 1.50 with cell and nuclear volumes proportionally reduced to half. The left most column shows the projection images of #1, #8 and #9 cell models from top to bottom with the two numbers denoting the total cell volume in μm3 and volume ratio of nucleus to cell respectively.

Tables (3)

Tables Icon

Table 1 GLCM feature parameters for 6 types of cells (n)*

Tables Icon

Table 2 Results of cell classification

Tables Icon

Table 3 GLCM parameters of simulated diffraction images

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( y , z ) = | cos ϕ s sin θ s | x 0 2 ( 1 + tan 2 ϕ s + 1 + tan 2 ϕ s tan 2 θ s ) S 11 ( θ s , ϕ s )

Metrics