Abstract

This paper presents a relationship between the intensity collected by a single fiber reflectance device (RSF) and the fiber diameter (dfib) and the reduced scattering coefficient ( μs) and phase function (p(θ)) of a turbid medium. Monte Carlo simulations are used to identify and model a relationship between RSF and dimensionless scattering ( μsdfib). For μsdfib>10 we find that RSF is insensitive to p(θ). A solid optical phantom is constructed with μs220mm1 and is used to convert RSF of any turbid medium to an absolute scale. This calibrated technique provides accurate estimates of μs over a wide range ([0.05 – 8] mm−1) for a range of dfib ([0.2 – 1] mm).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B 16, 267–269 (1999).
    [CrossRef]
  2. K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002).
    [CrossRef] [PubMed]
  3. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
    [CrossRef] [PubMed]
  4. I. Georgakoudi and J. Van Dam, “Characterization of dysplastic tissue morphology and biochemistry in Barrett’s esophagus using diffuse reflectance and light scattering spectroscopy,” Gastrointest. Endosc. Clin. N. Am. 13(2), 297–308 (2003).
    [CrossRef] [PubMed]
  5. R. L. P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. C. M. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol. 50(11), 2573–2581 (2005).
    [CrossRef] [PubMed]
  6. M. Canpolat, M. Akyuz, G. A. Gokhan, E. I. Gurer, and R. Tuncer, “Intra-operative brain tumor detection using elastic light single-scattering spectroscopy: a feasibility study,” J. Biomed. Opt. 14(5), 054021 (2009).
    [CrossRef] [PubMed]
  7. P. B. Garcia-Allende, V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, O. M. Conde, and B. W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt. 14(3), 034034 (2009).
    [CrossRef] [PubMed]
  8. J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
    [CrossRef] [PubMed]
  9. A. Wax and V. Backman, Biomedical Applications of Light Scattering (McGraw-Hill, 2010).
  10. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [CrossRef] [PubMed]
  11. A. Amelink and H. J. C. M. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43(15), 3048–3054 (2004).
    [CrossRef] [PubMed]
  12. A. Amelink, H. J. C. M. Sterenborg, M. P. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004).
    [CrossRef] [PubMed]
  13. C. Lee, W. M. Whelan, and I. A. Vitkin, “Information content of point radiance measurements in turbid media: implications for interstitial optical property quantification,” Appl. Opt. 45(9), 2101–2114 (2009).
  14. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21(7), 546–548 (1996).
    [CrossRef] [PubMed]
  15. A. Kienle, F. K. Forster, and R. Hibst, “Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance,” Opt. Lett. 26(20), 1571–1573 (2001).
    [CrossRef]
  16. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
    [CrossRef]
  17. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16(12), 2935–2945 (1999).
    [CrossRef]
  18. E. L. Hull and T. H. Foster, “Steady-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A 18(3), 584–599 (2001).
    [CrossRef]
  19. T. P. Moffitt and S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001).
    [CrossRef]
  20. M. Johns, C. Giller, D. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13(13), 4828–4842 (2005).
    [CrossRef] [PubMed]
  21. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46 (29), 7317–7328 (2007).
    [CrossRef] [PubMed]
  22. A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express 18(6), 5580–5594 (2010).
    [CrossRef] [PubMed]
  23. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
    [CrossRef] [PubMed]
  24. S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15(1), 017004 (2010).
    [CrossRef] [PubMed]
  25. S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5(7), 981–987 (2010).
  26. B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37(31), 7429–7436 (1998).
    [CrossRef]
  27. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” J. Opt. Soc. Am. B 7(6), 1077–1012 (2001).
  28. K. R. Diamond, M. S. Patterson, and T. J. Farrell, “Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber,” Appl. Opt. 42(13), 2436–2442 (2003).
    [CrossRef] [PubMed]
  29. H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, (1)23–34 (2007).
    [CrossRef]
  30. M. Canpolat and J. R. Mourant, “Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light,” Appl. Opt. 40(22), 3792–3799 (2001).
    [CrossRef]
  31. A. Amelink, M. P. Bard, S. A. Burgers, and H. J. C. M. Sterenborg, “Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media,” Appl. Opt. 42(19), 4095–4101 (2003).
    [CrossRef] [PubMed]
  32. T. P. Moffitt and S. A. Prahl, “The specular reflection problem with a single fiber for emission and collection,” SPIE Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV , 5068, (2003).
  33. P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42(16), 3187–3197 (2003).
    [CrossRef] [PubMed]
  34. S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “‘Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009).
    [CrossRef] [PubMed]
  35. L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [CrossRef] [PubMed]
  36. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
    [CrossRef] [PubMed]
  37. G. R. Kepner, “Saturation behavior: a general relationship described by a simple second-order differential equation,” Theor. Biol. Med. Model 7, 11 (2010).
    [CrossRef] [PubMed]
  38. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11(2), 431–441 (1963).
    [CrossRef]
  39. A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008).
    [CrossRef] [PubMed]
  40. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
    [CrossRef] [PubMed]
  41. B. K. Horn and R. W. Sjoberg, “Calculating the reflectance map,” Appl. Opt. 18(11), 1770–1779 (1979).
    [CrossRef] [PubMed]
  42. P. Snabre and A. Arhaliass, “Anisotropic scattering of light in random media: incoherent backscattered spotlight,” Appl. Opt. 37(18), 4017–4026 (1998).
    [CrossRef]

2010 (5)

S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15(1), 017004 (2010).
[CrossRef] [PubMed]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5(7), 981–987 (2010).

G. R. Kepner, “Saturation behavior: a general relationship described by a simple second-order differential equation,” Theor. Biol. Med. Model 7, 11 (2010).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express 18(6), 5580–5594 (2010).
[CrossRef] [PubMed]

2009 (6)

S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “‘Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009).
[CrossRef] [PubMed]

C. Lee, W. M. Whelan, and I. A. Vitkin, “Information content of point radiance measurements in turbid media: implications for interstitial optical property quantification,” Appl. Opt. 45(9), 2101–2114 (2009).

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
[CrossRef] [PubMed]

M. Canpolat, M. Akyuz, G. A. Gokhan, E. I. Gurer, and R. Tuncer, “Intra-operative brain tumor detection using elastic light single-scattering spectroscopy: a feasibility study,” J. Biomed. Opt. 14(5), 054021 (2009).
[CrossRef] [PubMed]

P. B. Garcia-Allende, V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, O. M. Conde, and B. W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt. 14(3), 034034 (2009).
[CrossRef] [PubMed]

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008).
[CrossRef] [PubMed]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
[CrossRef] [PubMed]

2007 (2)

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46 (29), 7317–7328 (2007).
[CrossRef] [PubMed]

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, (1)23–34 (2007).
[CrossRef]

2005 (2)

R. L. P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. C. M. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol. 50(11), 2573–2581 (2005).
[CrossRef] [PubMed]

M. Johns, C. Giller, D. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13(13), 4828–4842 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (5)

K. R. Diamond, M. S. Patterson, and T. J. Farrell, “Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber,” Appl. Opt. 42(13), 2436–2442 (2003).
[CrossRef] [PubMed]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42(16), 3187–3197 (2003).
[CrossRef] [PubMed]

A. Amelink, M. P. Bard, S. A. Burgers, and H. J. C. M. Sterenborg, “Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media,” Appl. Opt. 42(19), 4095–4101 (2003).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[CrossRef] [PubMed]

I. Georgakoudi and J. Van Dam, “Characterization of dysplastic tissue morphology and biochemistry in Barrett’s esophagus using diffuse reflectance and light scattering spectroscopy,” Gastrointest. Endosc. Clin. N. Am. 13(2), 297–308 (2003).
[CrossRef] [PubMed]

2002 (1)

K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002).
[CrossRef] [PubMed]

2001 (5)

1999 (3)

1998 (2)

1996 (1)

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

1979 (1)

1963 (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11(2), 431–441 (1963).
[CrossRef]

A’Amar, O.

Aerts, J. G.

S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15(1), 017004 (2010).
[CrossRef] [PubMed]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5(7), 981–987 (2010).

Akyuz, M.

M. Canpolat, M. Akyuz, G. A. Gokhan, E. I. Gurer, and R. Tuncer, “Intra-operative brain tumor detection using elastic light single-scattering spectroscopy: a feasibility study,” J. Biomed. Opt. 14(5), 054021 (2009).
[CrossRef] [PubMed]

Amelink, A.

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5(7), 981–987 (2010).

S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15(1), 017004 (2010).
[CrossRef] [PubMed]

S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “‘Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
[CrossRef] [PubMed]

A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008).
[CrossRef] [PubMed]

R. L. P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. C. M. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol. 50(11), 2573–2581 (2005).
[CrossRef] [PubMed]

A. Amelink, H. J. C. M. Sterenborg, M. P. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004).
[CrossRef] [PubMed]

A. Amelink and H. J. C. M. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43(15), 3048–3054 (2004).
[CrossRef] [PubMed]

A. Amelink, M. P. Bard, S. A. Burgers, and H. J. C. M. Sterenborg, “Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media,” Appl. Opt. 42(19), 4095–4101 (2003).
[CrossRef] [PubMed]

Arhaliass, A.

Assanto, G.

Backman, V.

A. Wax and V. Backman, Biomedical Applications of Light Scattering (McGraw-Hill, 2010).

Bard, M. P.

Bargo, P. R.

Baumgartner, R.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, (1)23–34 (2007).
[CrossRef]

Beck, T.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, (1)23–34 (2007).
[CrossRef]

Bevilacqua, F.

Beyer, W.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, (1)23–34 (2007).
[CrossRef]

Bigio, I. J.

Boiko, I.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[CrossRef] [PubMed]

Boyer, J.

Bremmer, R. H.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

Brown, J. Q.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[CrossRef] [PubMed]

Burgers, S. A.

Burke, G.

Canpolat, M.

M. Canpolat, M. Akyuz, G. A. Gokhan, E. I. Gurer, and R. Tuncer, “Intra-operative brain tumor detection using elastic light single-scattering spectroscopy: a feasibility study,” J. Biomed. Opt. 14(5), 054021 (2009).
[CrossRef] [PubMed]

M. Canpolat and J. R. Mourant, “Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light,” Appl. Opt. 40(22), 3792–3799 (2001).
[CrossRef]

Collier, T.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[CrossRef] [PubMed]

Conde, O. M.

P. B. Garcia-Allende, V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, O. M. Conde, and B. W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt. 14(3), 034034 (2009).
[CrossRef] [PubMed]

Dadani, F.

de Bruin, D. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

de Kinkelder, R.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

Depeursinge, C.

Diamond, K. R.

Djamin, R. S.

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5(7), 981–987 (2010).

Drezek, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[CrossRef] [PubMed]

Ediger, M. N.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” J. Opt. Soc. Am. B 7(6), 1077–1012 (2001).

Faber, D. J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

Farrell, T. J.

K. R. Diamond, M. S. Patterson, and T. J. Farrell, “Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber,” Appl. Opt. 42(13), 2436–2442 (2003).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Follen, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002).
[CrossRef] [PubMed]

Forster, F. K.

Foschum, F.

Foster, T. H.

Gallo, K.

Garcia-Allende, P. B.

P. B. Garcia-Allende, V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, O. M. Conde, and B. W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt. 14(3), 034034 (2009).
[CrossRef] [PubMed]

Georgakoudi, I.

I. Georgakoudi and J. Van Dam, “Characterization of dysplastic tissue morphology and biochemistry in Barrett’s esophagus using diffuse reflectance and light scattering spectroscopy,” Gastrointest. Endosc. Clin. N. Am. 13(2), 297–308 (2003).
[CrossRef] [PubMed]

German, D.

Giller, C.

Gokhan, G. A.

M. Canpolat, M. Akyuz, G. A. Gokhan, E. I. Gurer, and R. Tuncer, “Intra-operative brain tumor detection using elastic light single-scattering spectroscopy: a feasibility study,” J. Biomed. Opt. 14(5), 054021 (2009).
[CrossRef] [PubMed]

Gross, J. D.

Guillaud, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[CrossRef] [PubMed]

Gurer, E. I.

M. Canpolat, M. Akyuz, G. A. Gokhan, E. I. Gurer, and R. Tuncer, “Intra-operative brain tumor detection using elastic light single-scattering spectroscopy: a feasibility study,” J. Biomed. Opt. 14(5), 054021 (2009).
[CrossRef] [PubMed]

Hibst, R.

Hielscher, A. H.

Hoogsteden, H. C.

S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15(1), 017004 (2010).
[CrossRef] [PubMed]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5(7), 981–987 (2010).

Hoopes, P. J.

P. B. Garcia-Allende, V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, O. M. Conde, and B. W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt. 14(3), 034034 (2009).
[CrossRef] [PubMed]

Horn, B. K.

Hull, E. L.

Jacques, S. L.

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42(16), 3187–3197 (2003).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Janssens, A. M.

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5(7), 981–987 (2010).

Johns, M.

Kanick, S. C.

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5(7), 981–987 (2010).

S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15(1), 017004 (2010).
[CrossRef] [PubMed]

S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “‘Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
[CrossRef] [PubMed]

Kascakova, S.

S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15(1), 017004 (2010).
[CrossRef] [PubMed]

Kepner, G. R.

G. R. Kepner, “Saturation behavior: a general relationship described by a simple second-order differential equation,” Theor. Biol. Med. Model 7, 11 (2010).
[CrossRef] [PubMed]

Kienle, A.

Kim, A.

Kodach, V. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

Krishnaswamy, V.

P. B. Garcia-Allende, V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, O. M. Conde, and B. W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt. 14(3), 034034 (2009).
[CrossRef] [PubMed]

Lee, C.

Liu, H.

Macaulay, C.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[CrossRef] [PubMed]

Malpica, A.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[CrossRef] [PubMed]

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11(2), 431–441 (1963).
[CrossRef]

Marquet, P.

Menke-Pluymers, M.

R. L. P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. C. M. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol. 50(11), 2573–2581 (2005).
[CrossRef] [PubMed]

Michels, R.

Moffitt, T. P.

T. P. Moffitt and S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001).
[CrossRef]

Mourant, J. R.

Nishioka, N. S.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” J. Opt. Soc. Am. B 7(6), 1077–1012 (2001).

Palmer, G. M.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[CrossRef] [PubMed]

Patterson, M. S.

K. R. Diamond, M. S. Patterson, and T. J. Farrell, “Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber,” Appl. Opt. 42(13), 2436–2442 (2003).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Pfaller, C.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, (1)23–34 (2007).
[CrossRef]

Pfefer, T. J.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” J. Opt. Soc. Am. B 7(6), 1077–1012 (2001).

Piguet, D.

Pogue, B. W.

P. B. Garcia-Allende, V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, O. M. Conde, and B. W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt. 14(3), 034034 (2009).
[CrossRef] [PubMed]

B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37(31), 7429–7436 (1998).
[CrossRef]

Prahl, S. A.

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42(16), 3187–3197 (2003).
[CrossRef] [PubMed]

T. P. Moffitt and S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001).
[CrossRef]

Ramanujam, N.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[CrossRef] [PubMed]

Reif, R.

Richards-Kortum, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002).
[CrossRef] [PubMed]

Robinson, D. J.

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
[CrossRef] [PubMed]

A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008).
[CrossRef] [PubMed]

Roy, M.

Samkoe, K. S.

P. B. Garcia-Allende, V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, O. M. Conde, and B. W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt. 14(3), 034034 (2009).
[CrossRef] [PubMed]

Schomacker, K. T.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” J. Opt. Soc. Am. B 7(6), 1077–1012 (2001).

Schuppler, M.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, (1)23–34 (2007).
[CrossRef]

Sjoberg, R. W.

Snabre, P.

Sokolov, K.

K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002).
[CrossRef] [PubMed]

Sroka, R.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, (1)23–34 (2007).
[CrossRef]

Stepp, H.

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, (1)23–34 (2007).
[CrossRef]

Sterenborg, H. J. C. M.

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5(7), 981–987 (2010).

S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15(1), 017004 (2010).
[CrossRef] [PubMed]

S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “‘Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
[CrossRef] [PubMed]

A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008).
[CrossRef] [PubMed]

R. L. P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. C. M. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol. 50(11), 2573–2581 (2005).
[CrossRef] [PubMed]

A. Amelink, H. J. C. M. Sterenborg, M. P. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004).
[CrossRef] [PubMed]

A. Amelink and H. J. C. M. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43(15), 3048–3054 (2004).
[CrossRef] [PubMed]

A. Amelink, M. P. Bard, S. A. Burgers, and H. J. C. M. Sterenborg, “Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media,” Appl. Opt. 42(19), 4095–4101 (2003).
[CrossRef] [PubMed]

Tromberg, B. J.

Tuncer, R.

M. Canpolat, M. Akyuz, G. A. Gokhan, E. I. Gurer, and R. Tuncer, “Intra-operative brain tumor detection using elastic light single-scattering spectroscopy: a feasibility study,” J. Biomed. Opt. 14(5), 054021 (2009).
[CrossRef] [PubMed]

Van Dam, J.

I. Georgakoudi and J. Van Dam, “Characterization of dysplastic tissue morphology and biochemistry in Barrett’s esophagus using diffuse reflectance and light scattering spectroscopy,” Gastrointest. Endosc. Clin. N. Am. 13(2), 297–308 (2003).
[CrossRef] [PubMed]

van der Leest, C.

S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15(1), 017004 (2010).
[CrossRef] [PubMed]

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5(7), 981–987 (2010).

van der Pol, C.

R. L. P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. C. M. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol. 50(11), 2573–2581 (2005).
[CrossRef] [PubMed]

van Leeuwen, T. G.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

van Marle, J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

van Veen, R. L. P.

R. L. P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. C. M. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol. 50(11), 2573–2581 (2005).
[CrossRef] [PubMed]

Vishwanath, K.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[CrossRef] [PubMed]

Vitkin, I. A.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Wax, A.

A. Wax and V. Backman, Biomedical Applications of Light Scattering (McGraw-Hill, 2010).

Whelan, W. M.

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Appl. Opt. (11)

B. K. Horn and R. W. Sjoberg, “Calculating the reflectance map,” Appl. Opt. 18(11), 1770–1779 (1979).
[CrossRef] [PubMed]

B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37(31), 7429–7436 (1998).
[CrossRef]

P. Snabre and A. Arhaliass, “Anisotropic scattering of light in random media: incoherent backscattered spotlight,” Appl. Opt. 37(18), 4017–4026 (1998).
[CrossRef]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
[CrossRef]

M. Canpolat and J. R. Mourant, “Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light,” Appl. Opt. 40(22), 3792–3799 (2001).
[CrossRef]

K. R. Diamond, M. S. Patterson, and T. J. Farrell, “Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber,” Appl. Opt. 42(13), 2436–2442 (2003).
[CrossRef] [PubMed]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42(16), 3187–3197 (2003).
[CrossRef] [PubMed]

A. Amelink, M. P. Bard, S. A. Burgers, and H. J. C. M. Sterenborg, “Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media,” Appl. Opt. 42(19), 4095–4101 (2003).
[CrossRef] [PubMed]

C. Lee, W. M. Whelan, and I. A. Vitkin, “Information content of point radiance measurements in turbid media: implications for interstitial optical property quantification,” Appl. Opt. 45(9), 2101–2114 (2009).

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46 (29), 7317–7328 (2007).
[CrossRef] [PubMed]

A. Amelink and H. J. C. M. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43(15), 3048–3054 (2004).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol. (1)

K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002).
[CrossRef] [PubMed]

Gastrointest. Endosc. Clin. N. Am. (1)

I. Georgakoudi and J. Van Dam, “Characterization of dysplastic tissue morphology and biochemistry in Barrett’s esophagus using diffuse reflectance and light scattering spectroscopy,” Gastrointest. Endosc. Clin. N. Am. 13(2), 297–308 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

T. P. Moffitt and S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001).
[CrossRef]

J. Biomed. Opt. (6)

S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15(1), 017004 (2010).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[CrossRef] [PubMed]

M. Canpolat, M. Akyuz, G. A. Gokhan, E. I. Gurer, and R. Tuncer, “Intra-operative brain tumor detection using elastic light single-scattering spectroscopy: a feasibility study,” J. Biomed. Opt. 14(5), 054021 (2009).
[CrossRef] [PubMed]

P. B. Garcia-Allende, V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, O. M. Conde, and B. W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt. 14(3), 034034 (2009).
[CrossRef] [PubMed]

A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B 16, 267–269 (1999).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” J. Opt. Soc. Am. B 7(6), 1077–1012 (2001).

J. Thorac. Oncol. (1)

S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5(7), 981–987 (2010).

Med. Laser Appl. (1)

H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, (1)23–34 (2007).
[CrossRef]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Med. Biol. (2)

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
[CrossRef] [PubMed]

R. L. P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. C. M. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol. 50(11), 2573–2581 (2005).
[CrossRef] [PubMed]

SIAM J. Appl. Math. (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11(2), 431–441 (1963).
[CrossRef]

Theor. Biol. Med. Model (1)

G. R. Kepner, “Saturation behavior: a general relationship described by a simple second-order differential equation,” Theor. Biol. Med. Model 7, 11 (2010).
[CrossRef] [PubMed]

Other (2)

T. P. Moffitt and S. A. Prahl, “The specular reflection problem with a single fiber for emission and collection,” SPIE Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV , 5068, (2003).

A. Wax and V. Backman, Biomedical Applications of Light Scattering (McGraw-Hill, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of single fiber reflectance probe machinery.

Fig. 2
Fig. 2

Angular distribution of scattering events for selected scattering phase functions.

Fig. 3
Fig. 3

Single fiber reflectance vs dimensionless scattering for HG phase function (g=[0.5,0.7,0.8,0.9] and MHG phase function (g=[0.9]).

Fig. 4
Fig. 4

(A) Single fiber reflectance and mathematical model fit for HG phase function (g=0.8). Model estimates of incident photons contacting fiber face (B) and collection efficiency of fiber (C).

Fig. 5
Fig. 5

MC simulated single fiber reflectance vs. model estimate.

Fig. 6
Fig. 6

Single fiber reflectance measured on TiO2 phantoms and simulated by MC model (HG phase function with g=0.8).

Fig. 7
Fig. 7

Single fiber reflectance measured (A) and simulated (B) from Intralipid optical phantoms at multiple wavelengths λ = [400, 500, 600, 800, 900] nm; other wavelengths measured in this range not shown to improve clarity.

Fig. 8
Fig. 8

Comparison of (A) single fiber reflectance intensity from MC simulations with experimental measurements from Intralipid phantoms λ = [400 – 900] nm; (B) μ s estimated from R SF meas abs vs. known value.

Tables (1)

Tables Icon

Table 1 Estimated Parameter Values Resulting from Fits of Single Fiber Reflectance Model (Eqs. (2)(4)) to RSF Simulated by Monte Carlo Models for HG and MHG Phase Function (top) and Wavelength-Dependent Phase Functions [36] in Intralipid (bottom)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R SF MC = TPC TPL
R SF Model = TPC TPL = η c Φ
Φ = TPH TPL = [ ( μ s d fib ) ρ 2 ρ 1 + ( μ s d fib ) ρ 2 ]
η c = TPC TPH = η limit ( 1 + ρ 3 e ρ 1 ( μ s d fib ) )
R SF meas rel = [ I I water I white I black ]
R SF meas abs ( IL ) = R SF meas rel ( IL ) [ R SF meas abs ( phantom ) R SF meas rel ( phantom ) ]

Metrics