Abstract

We have developed a new optical procedure to determine the optimum power of intraocular lenses (IOLs) for cataract surgery. The procedure is based on personalized eye models, where biometric data of anterior corneal shape and eye axial length are used. A polychromatic exact ray-tracing through the surfaces defining the eye model is performed for each possible IOL power and the area under the radial MTF is used as a metric. The IOL power chosen by the procedure maximizes this parameter. The IOL power for 19 normal eyes has been determined and compared with standard regression-based predictions. The impact of the anterior corneal monochromatic aberrations and the eye’s chromatic aberration on the power predictions has been studied, being significant for those eyes with severe monochromatic aberrations, such as post-LASIK cataract patients, and for specific IOLs with low Abbe numbers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Dupps., “Intraocular lens calculations: call for more deterministic models,” J. Cataract Refract. Surg. 36(9), 1447–1448 (2010).
    [CrossRef] [PubMed]
  2. W. Haigis, “Intraocular lens calculation in extreme myopia,” J. Cataract Refract. Surg. 35(5), 906–911 (2009).
    [CrossRef] [PubMed]
  3. K. J. Hoffer, “Intraocular lens power calculation for eyes after refractive keratotomy,” J. Refract. Surg. 11(6), 490–493 (1995).
    [PubMed]
  4. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
    [PubMed]
  5. J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
    [PubMed]
  6. J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007).
    [CrossRef] [PubMed]
  7. J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
    [CrossRef] [PubMed]
  8. W. Haigis, “The Haigis formula,” in Intraocular Lens power calculations, J. Shammas, ed. (Slack Incorporated, 2004).
  9. K. J. Hoffer, “The Hoffer Q formula: a comparison of theoretic and regression formulas,” J. Cataract Refract. Surg. 19(6), 700–712 (1993).
    [PubMed]
  10. J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refract. Surg. 14(1), 17–24 (1988).
    [PubMed]
  11. J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990).
    [PubMed]
  12. J. Shammas, “Basic optics for intraocular lens power calculations,” in Intraocular Lens Power Calculations, J. Shammas, ed. (Slack Incorporated, 2004).
  13. P. C. Hoffmann and W. W. Hütz, “Analysis of biometry and prevalence data for corneal astigmatism in 23,239 eyes,” J. Cataract Refract. Surg. 36(9), 1479–1485 (2010).
    [CrossRef] [PubMed]
  14. S. Norrby, “Using the lens haptic plane concept and thick-lens ray tracing to calculate intraocular lens power,” J. Cataract Refract. Surg. 30(5), 1000–1005 (2004).
    [CrossRef] [PubMed]
  15. T. Olsen, “The Olsen formula,” in Intraocular Lens Power Calculations, Shammas J, ed. (Slack Incorporated, 2004).
  16. P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg. 28(8), 1412–1419 (2002).
    [CrossRef] [PubMed]
  17. P. R. Preussner, T. Olsen, P. Hoffmann, and O. Findl, “Intraocular lens calculation accuracy limits in normal eyes,” J. Cataract Refract. Surg. 34(5), 802–808 (2008).
    [CrossRef] [PubMed]
  18. S. Norrby, “The Dubbelman eye model analysed by ray tracing through aspheric surfaces,” Ophthalmic Physiol. Opt. 25(2), 153–161 (2005).
    [CrossRef] [PubMed]
  19. S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 34(3), 368–376 (2008).
    [CrossRef] [PubMed]
  20. E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
    [PubMed]
  21. A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147(3), 424–431e1 (2009).
    [CrossRef] [PubMed]
  22. H. J. Shammas, M. C. Shammas, A. Garabet, J. H. Kim, A. Shammas, and L. LaBree, “Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis,” Am. J. Ophthalmol. 136(3), 426–432 (2003).
    [CrossRef] [PubMed]
  23. J. Aramberri, “Intraocular lens power calculation after corneal refractive surgery: double-K method,” J. Cataract Refract. Surg. 29(11), 2063–2068 (2003).
    [CrossRef] [PubMed]
  24. P. R. Preussner, J. Wahl, and D. Weitzel, “Topography-based intraocular lens power selection,” J. Cataract Refract. Surg. 31(3), 525–533 (2005).
    [CrossRef] [PubMed]
  25. A. Guirao and P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17(6), 955–965 (2000).
    [CrossRef] [PubMed]
  26. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007).
    [CrossRef] [PubMed]
  27. S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “A validation of the estimation of corneal aberrations from videokeratography: test on keratoconus eyes,” J. Refract. Surg. 18, 267–270 (2002).
  28. Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag, 1980).
  29. T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmol. 70(2), 152–154 (1986).
    [CrossRef] [PubMed]
  30. M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
    [CrossRef] [PubMed]
  31. T. Olsen, “Calculation of intraocular lens power: a review,” Acta Ophthalmol. Scand. 85(5), 472–485 (2007).
    [CrossRef] [PubMed]
  32. A. van Meeteren, “Calculations of the optical modulation transfer function of the human eye for white light,” Opt. Acta (Lond.) 21, 395–412 (1974).
  33. P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1), 1–7 (2006).
    [CrossRef] [PubMed]
  34. P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2(10), 586–589 (2008).
    [CrossRef]
  35. P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
    [CrossRef] [PubMed]
  36. H. Zhao and M. A. Mainster, “The effect of chromatic dispersion on pseudophakic optical performance,” Br. J. Ophthalmol. 91(9), 1225–1229 (2007).
    [CrossRef] [PubMed]
  37. I. De Loewenfeld, “Pupillary changes related to age,” in Topics in Neuro-ophthalmology, H. S. Thompson, ed. (Williams & Wilkins, Baltimore, 1979), pp. 124–150.
  38. S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Clinical application of the lens haptic plane concept with transformed axial lengths,” J. Cataract Refract. Surg. 31(7), 1338–1344 (2005).
    [CrossRef] [PubMed]
  39. S. Norrby, O. Findl, N. Hirnschall, Y. Nishi, and R. Bergman, “Modeling the pseudo-phakic eye for the purpose of sphero-cylindrical IOL power calculation,” presented at ARVO annual meeting, Fort Lauderdale, Fla., May 2–6, 2010.
  40. S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Reduction of trend errors in power calculation by linear transformation of measured axial lengths,” J. Cataract Refract. Surg. 29(1), 100–105 (2003).
    [CrossRef] [PubMed]
  41. A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci. 45(12), 4312–4319 (2004).
    [CrossRef] [PubMed]

2010 (3)

P. C. Hoffmann and W. W. Hütz, “Analysis of biometry and prevalence data for corneal astigmatism in 23,239 eyes,” J. Cataract Refract. Surg. 36(9), 1479–1485 (2010).
[CrossRef] [PubMed]

W. J. Dupps., “Intraocular lens calculations: call for more deterministic models,” J. Cataract Refract. Surg. 36(9), 1447–1448 (2010).
[CrossRef] [PubMed]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[CrossRef] [PubMed]

2009 (2)

W. Haigis, “Intraocular lens calculation in extreme myopia,” J. Cataract Refract. Surg. 35(5), 906–911 (2009).
[CrossRef] [PubMed]

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147(3), 424–431e1 (2009).
[CrossRef] [PubMed]

2008 (3)

P. R. Preussner, T. Olsen, P. Hoffmann, and O. Findl, “Intraocular lens calculation accuracy limits in normal eyes,” J. Cataract Refract. Surg. 34(5), 802–808 (2008).
[CrossRef] [PubMed]

S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 34(3), 368–376 (2008).
[CrossRef] [PubMed]

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2(10), 586–589 (2008).
[CrossRef]

2007 (4)

H. Zhao and M. A. Mainster, “The effect of chromatic dispersion on pseudophakic optical performance,” Br. J. Ophthalmol. 91(9), 1225–1229 (2007).
[CrossRef] [PubMed]

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007).
[CrossRef] [PubMed]

T. Olsen, “Calculation of intraocular lens power: a review,” Acta Ophthalmol. Scand. 85(5), 472–485 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[CrossRef] [PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1), 1–7 (2006).
[CrossRef] [PubMed]

2005 (3)

S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Clinical application of the lens haptic plane concept with transformed axial lengths,” J. Cataract Refract. Surg. 31(7), 1338–1344 (2005).
[CrossRef] [PubMed]

S. Norrby, “The Dubbelman eye model analysed by ray tracing through aspheric surfaces,” Ophthalmic Physiol. Opt. 25(2), 153–161 (2005).
[CrossRef] [PubMed]

P. R. Preussner, J. Wahl, and D. Weitzel, “Topography-based intraocular lens power selection,” J. Cataract Refract. Surg. 31(3), 525–533 (2005).
[CrossRef] [PubMed]

2004 (2)

S. Norrby, “Using the lens haptic plane concept and thick-lens ray tracing to calculate intraocular lens power,” J. Cataract Refract. Surg. 30(5), 1000–1005 (2004).
[CrossRef] [PubMed]

A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci. 45(12), 4312–4319 (2004).
[CrossRef] [PubMed]

2003 (3)

S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Reduction of trend errors in power calculation by linear transformation of measured axial lengths,” J. Cataract Refract. Surg. 29(1), 100–105 (2003).
[CrossRef] [PubMed]

H. J. Shammas, M. C. Shammas, A. Garabet, J. H. Kim, A. Shammas, and L. LaBree, “Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis,” Am. J. Ophthalmol. 136(3), 426–432 (2003).
[CrossRef] [PubMed]

J. Aramberri, “Intraocular lens power calculation after corneal refractive surgery: double-K method,” J. Cataract Refract. Surg. 29(11), 2063–2068 (2003).
[CrossRef] [PubMed]

2002 (4)

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “A validation of the estimation of corneal aberrations from videokeratography: test on keratoconus eyes,” J. Refract. Surg. 18, 267–270 (2002).

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg. 28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

2001 (1)

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

2000 (1)

1995 (1)

K. J. Hoffer, “Intraocular lens power calculation for eyes after refractive keratotomy,” J. Refract. Surg. 11(6), 490–493 (1995).
[PubMed]

1993 (1)

K. J. Hoffer, “The Hoffer Q formula: a comparison of theoretic and regression formulas,” J. Cataract Refract. Surg. 19(6), 700–712 (1993).
[PubMed]

1990 (1)

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990).
[PubMed]

1988 (1)

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refract. Surg. 14(1), 17–24 (1988).
[PubMed]

1986 (1)

T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmol. 70(2), 152–154 (1986).
[CrossRef] [PubMed]

1974 (1)

A. van Meeteren, “Calculations of the optical modulation transfer function of the human eye for white light,” Opt. Acta (Lond.) 21, 395–412 (1974).

Aramberri, J.

J. Aramberri, “Intraocular lens power calculation after corneal refractive surgery: double-K method,” J. Cataract Refract. Surg. 29(11), 2063–2068 (2003).
[CrossRef] [PubMed]

Artal, P.

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[CrossRef] [PubMed]

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147(3), 424–431e1 (2009).
[CrossRef] [PubMed]

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2(10), 586–589 (2008).
[CrossRef]

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007).
[CrossRef] [PubMed]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1), 1–7 (2006).
[CrossRef] [PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci. 45(12), 4312–4319 (2004).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[PubMed]

A. Guirao and P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17(6), 955–965 (2000).
[CrossRef] [PubMed]

Barbero, S.

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “A validation of the estimation of corneal aberrations from videokeratography: test on keratoconus eyes,” J. Refract. Surg. 18, 267–270 (2002).

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

Benito, A.

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147(3), 424–431e1 (2009).
[CrossRef] [PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1), 1–7 (2006).
[CrossRef] [PubMed]

Chandler, T. Y.

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refract. Surg. 14(1), 17–24 (1988).
[PubMed]

Dick, B.

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg. 28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

Dubbelman, M.

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[CrossRef] [PubMed]

Dupps, W. J.

W. J. Dupps., “Intraocular lens calculations: call for more deterministic models,” J. Cataract Refract. Surg. 36(9), 1447–1448 (2010).
[CrossRef] [PubMed]

Findl, O.

P. R. Preussner, T. Olsen, P. Hoffmann, and O. Findl, “Intraocular lens calculation accuracy limits in normal eyes,” J. Cataract Refract. Surg. 34(5), 802–808 (2008).
[CrossRef] [PubMed]

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg. 28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

Garabet, A.

H. J. Shammas, M. C. Shammas, A. Garabet, J. H. Kim, A. Shammas, and L. LaBree, “Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis,” Am. J. Ophthalmol. 136(3), 426–432 (2003).
[CrossRef] [PubMed]

Geraghty, E.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[PubMed]

Guirao, A.

A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci. 45(12), 4312–4319 (2004).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[PubMed]

A. Guirao and P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17(6), 955–965 (2000).
[CrossRef] [PubMed]

Haigis, W.

W. Haigis, “Intraocular lens calculation in extreme myopia,” J. Cataract Refract. Surg. 35(5), 906–911 (2009).
[CrossRef] [PubMed]

Hoffer, K. J.

K. J. Hoffer, “Intraocular lens power calculation for eyes after refractive keratotomy,” J. Refract. Surg. 11(6), 490–493 (1995).
[PubMed]

K. J. Hoffer, “The Hoffer Q formula: a comparison of theoretic and regression formulas,” J. Cataract Refract. Surg. 19(6), 700–712 (1993).
[PubMed]

Hoffmann, P.

P. R. Preussner, T. Olsen, P. Hoffmann, and O. Findl, “Intraocular lens calculation accuracy limits in normal eyes,” J. Cataract Refract. Surg. 34(5), 802–808 (2008).
[CrossRef] [PubMed]

Hoffmann, P. C.

P. C. Hoffmann and W. W. Hütz, “Analysis of biometry and prevalence data for corneal astigmatism in 23,239 eyes,” J. Cataract Refract. Surg. 36(9), 1479–1485 (2010).
[CrossRef] [PubMed]

Holladay, J. T.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refract. Surg. 14(1), 17–24 (1988).
[PubMed]

Hütz, W. W.

P. C. Hoffmann and W. W. Hütz, “Analysis of biometry and prevalence data for corneal astigmatism in 23,239 eyes,” J. Cataract Refract. Surg. 36(9), 1479–1485 (2010).
[CrossRef] [PubMed]

Kim, J. H.

H. J. Shammas, M. C. Shammas, A. Garabet, J. H. Kim, A. Shammas, and L. LaBree, “Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis,” Am. J. Ophthalmol. 136(3), 426–432 (2003).
[CrossRef] [PubMed]

Koranyi, G.

S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Clinical application of the lens haptic plane concept with transformed axial lengths,” J. Cataract Refract. Surg. 31(7), 1338–1344 (2005).
[CrossRef] [PubMed]

S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Reduction of trend errors in power calculation by linear transformation of measured axial lengths,” J. Cataract Refract. Surg. 29(1), 100–105 (2003).
[CrossRef] [PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Kraff, M. C.

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990).
[PubMed]

LaBree, L.

H. J. Shammas, M. C. Shammas, A. Garabet, J. H. Kim, A. Shammas, and L. LaBree, “Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis,” Am. J. Ophthalmol. 136(3), 426–432 (2003).
[CrossRef] [PubMed]

Lahdo, H.

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg. 28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

Lewis, J. W.

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refract. Surg. 14(1), 17–24 (1988).
[PubMed]

Llorente, L.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

Lloves, J. M.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

Lydahl, E.

S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Clinical application of the lens haptic plane concept with transformed axial lengths,” J. Cataract Refract. Surg. 31(7), 1338–1344 (2005).
[CrossRef] [PubMed]

S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Reduction of trend errors in power calculation by linear transformation of measured axial lengths,” J. Cataract Refract. Surg. 29(1), 100–105 (2003).
[CrossRef] [PubMed]

Mainster, M. A.

H. Zhao and M. A. Mainster, “The effect of chromatic dispersion on pseudophakic optical performance,” Br. J. Ophthalmol. 91(9), 1225–1229 (2007).
[CrossRef] [PubMed]

Manzanera, S.

Marcos, S.

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “A validation of the estimation of corneal aberrations from videokeratography: test on keratoconus eyes,” J. Refract. Surg. 18, 267–270 (2002).

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

Merayo-Lloves, J.

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “A validation of the estimation of corneal aberrations from videokeratography: test on keratoconus eyes,” J. Refract. Surg. 18, 267–270 (2002).

Moreno-Barriuso, E.

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “A validation of the estimation of corneal aberrations from videokeratography: test on keratoconus eyes,” J. Refract. Surg. 18, 267–270 (2002).

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

Musgrove, K. H.

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refract. Surg. 14(1), 17–24 (1988).
[PubMed]

Navarro, R.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

Norrby, N. E.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Norrby, S.

S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 34(3), 368–376 (2008).
[CrossRef] [PubMed]

S. Norrby, “The Dubbelman eye model analysed by ray tracing through aspheric surfaces,” Ophthalmic Physiol. Opt. 25(2), 153–161 (2005).
[CrossRef] [PubMed]

S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Clinical application of the lens haptic plane concept with transformed axial lengths,” J. Cataract Refract. Surg. 31(7), 1338–1344 (2005).
[CrossRef] [PubMed]

S. Norrby, “Using the lens haptic plane concept and thick-lens ray tracing to calculate intraocular lens power,” J. Cataract Refract. Surg. 30(5), 1000–1005 (2004).
[CrossRef] [PubMed]

S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Reduction of trend errors in power calculation by linear transformation of measured axial lengths,” J. Cataract Refract. Surg. 29(1), 100–105 (2003).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[PubMed]

Olsen, T.

P. R. Preussner, T. Olsen, P. Hoffmann, and O. Findl, “Intraocular lens calculation accuracy limits in normal eyes,” J. Cataract Refract. Surg. 34(5), 802–808 (2008).
[CrossRef] [PubMed]

T. Olsen, “Calculation of intraocular lens power: a review,” Acta Ophthalmol. Scand. 85(5), 472–485 (2007).
[CrossRef] [PubMed]

T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmol. 70(2), 152–154 (1986).
[CrossRef] [PubMed]

Piers, P.

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[CrossRef] [PubMed]

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007).
[CrossRef] [PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[PubMed]

Piers, P. A.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Prager, T. C.

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refract. Surg. 14(1), 17–24 (1988).
[PubMed]

Preussner, P. R.

P. R. Preussner, T. Olsen, P. Hoffmann, and O. Findl, “Intraocular lens calculation accuracy limits in normal eyes,” J. Cataract Refract. Surg. 34(5), 802–808 (2008).
[CrossRef] [PubMed]

P. R. Preussner, J. Wahl, and D. Weitzel, “Topography-based intraocular lens power selection,” J. Cataract Refract. Surg. 31(3), 525–533 (2005).
[CrossRef] [PubMed]

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg. 28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

Redondo, M.

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147(3), 424–431e1 (2009).
[CrossRef] [PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[PubMed]

Retzlaff, J. A.

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990).
[PubMed]

Rosales, P.

Ruiz, R. S.

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refract. Surg. 14(1), 17–24 (1988).
[PubMed]

Sanders, D. R.

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990).
[PubMed]

Shammas, A.

H. J. Shammas, M. C. Shammas, A. Garabet, J. H. Kim, A. Shammas, and L. LaBree, “Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis,” Am. J. Ophthalmol. 136(3), 426–432 (2003).
[CrossRef] [PubMed]

Shammas, H. J.

H. J. Shammas, M. C. Shammas, A. Garabet, J. H. Kim, A. Shammas, and L. LaBree, “Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis,” Am. J. Ophthalmol. 136(3), 426–432 (2003).
[CrossRef] [PubMed]

Shammas, M. C.

H. J. Shammas, M. C. Shammas, A. Garabet, J. H. Kim, A. Shammas, and L. LaBree, “Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis,” Am. J. Ophthalmol. 136(3), 426–432 (2003).
[CrossRef] [PubMed]

Sicam, V. A.

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[CrossRef] [PubMed]

Tabernero, J.

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2(10), 586–589 (2008).
[CrossRef]

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007).
[CrossRef] [PubMed]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1), 1–7 (2006).
[CrossRef] [PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

Taube, M.

S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Clinical application of the lens haptic plane concept with transformed axial lengths,” J. Cataract Refract. Surg. 31(7), 1338–1344 (2005).
[CrossRef] [PubMed]

S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Reduction of trend errors in power calculation by linear transformation of measured axial lengths,” J. Cataract Refract. Surg. 29(1), 100–105 (2003).
[CrossRef] [PubMed]

Tejedor, J.

A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci. 45(12), 4312–4319 (2004).
[CrossRef] [PubMed]

Van der Heijde, G. L.

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[CrossRef] [PubMed]

van der Mooren, M.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

van Meeteren, A.

A. van Meeteren, “Calculations of the optical modulation transfer function of the human eye for white light,” Opt. Acta (Lond.) 21, 395–412 (1974).

Wahl, J.

P. R. Preussner, J. Wahl, and D. Weitzel, “Topography-based intraocular lens power selection,” J. Cataract Refract. Surg. 31(3), 525–533 (2005).
[CrossRef] [PubMed]

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg. 28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

Weeber, H.

Weitzel, D.

P. R. Preussner, J. Wahl, and D. Weitzel, “Topography-based intraocular lens power selection,” J. Cataract Refract. Surg. 31(3), 525–533 (2005).
[CrossRef] [PubMed]

Zhao, H.

H. Zhao and M. A. Mainster, “The effect of chromatic dispersion on pseudophakic optical performance,” Br. J. Ophthalmol. 91(9), 1225–1229 (2007).
[CrossRef] [PubMed]

Acta Ophthalmol. Scand. (1)

T. Olsen, “Calculation of intraocular lens power: a review,” Acta Ophthalmol. Scand. 85(5), 472–485 (2007).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (2)

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147(3), 424–431e1 (2009).
[CrossRef] [PubMed]

H. J. Shammas, M. C. Shammas, A. Garabet, J. H. Kim, A. Shammas, and L. LaBree, “Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis,” Am. J. Ophthalmol. 136(3), 426–432 (2003).
[CrossRef] [PubMed]

Arch. Ophthalmol. (1)

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[PubMed]

Br. J. Ophthalmol. (2)

H. Zhao and M. A. Mainster, “The effect of chromatic dispersion on pseudophakic optical performance,” Br. J. Ophthalmol. 91(9), 1225–1229 (2007).
[CrossRef] [PubMed]

T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmol. 70(2), 152–154 (1986).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci. 45(12), 4312–4319 (2004).
[CrossRef] [PubMed]

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (14)

P. C. Hoffmann and W. W. Hütz, “Analysis of biometry and prevalence data for corneal astigmatism in 23,239 eyes,” J. Cataract Refract. Surg. 36(9), 1479–1485 (2010).
[CrossRef] [PubMed]

S. Norrby, “Using the lens haptic plane concept and thick-lens ray tracing to calculate intraocular lens power,” J. Cataract Refract. Surg. 30(5), 1000–1005 (2004).
[CrossRef] [PubMed]

K. J. Hoffer, “The Hoffer Q formula: a comparison of theoretic and regression formulas,” J. Cataract Refract. Surg. 19(6), 700–712 (1993).
[PubMed]

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refract. Surg. 14(1), 17–24 (1988).
[PubMed]

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990).
[PubMed]

S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 34(3), 368–376 (2008).
[CrossRef] [PubMed]

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg. 28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

P. R. Preussner, T. Olsen, P. Hoffmann, and O. Findl, “Intraocular lens calculation accuracy limits in normal eyes,” J. Cataract Refract. Surg. 34(5), 802–808 (2008).
[CrossRef] [PubMed]

J. Aramberri, “Intraocular lens power calculation after corneal refractive surgery: double-K method,” J. Cataract Refract. Surg. 29(11), 2063–2068 (2003).
[CrossRef] [PubMed]

P. R. Preussner, J. Wahl, and D. Weitzel, “Topography-based intraocular lens power selection,” J. Cataract Refract. Surg. 31(3), 525–533 (2005).
[CrossRef] [PubMed]

S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Clinical application of the lens haptic plane concept with transformed axial lengths,” J. Cataract Refract. Surg. 31(7), 1338–1344 (2005).
[CrossRef] [PubMed]

W. J. Dupps., “Intraocular lens calculations: call for more deterministic models,” J. Cataract Refract. Surg. 36(9), 1447–1448 (2010).
[CrossRef] [PubMed]

W. Haigis, “Intraocular lens calculation in extreme myopia,” J. Cataract Refract. Surg. 35(5), 906–911 (2009).
[CrossRef] [PubMed]

S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Reduction of trend errors in power calculation by linear transformation of measured axial lengths,” J. Cataract Refract. Surg. 29(1), 100–105 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (3)

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

K. J. Hoffer, “Intraocular lens power calculation for eyes after refractive keratotomy,” J. Refract. Surg. 11(6), 490–493 (1995).
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “A validation of the estimation of corneal aberrations from videokeratography: test on keratoconus eyes,” J. Refract. Surg. 18, 267–270 (2002).

J. Vis. (1)

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1), 1–7 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2(10), 586–589 (2008).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

S. Norrby, “The Dubbelman eye model analysed by ray tracing through aspheric surfaces,” Ophthalmic Physiol. Opt. 25(2), 153–161 (2005).
[CrossRef] [PubMed]

Opt. Acta (Lond.) (1)

A. van Meeteren, “Calculations of the optical modulation transfer function of the human eye for white light,” Opt. Acta (Lond.) 21, 395–412 (1974).

Opt. Express (2)

Opt. Lett. (1)

Vision Res. (1)

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[CrossRef] [PubMed]

Other (6)

S. Norrby, O. Findl, N. Hirnschall, Y. Nishi, and R. Bergman, “Modeling the pseudo-phakic eye for the purpose of sphero-cylindrical IOL power calculation,” presented at ARVO annual meeting, Fort Lauderdale, Fla., May 2–6, 2010.

I. De Loewenfeld, “Pupillary changes related to age,” in Topics in Neuro-ophthalmology, H. S. Thompson, ed. (Williams & Wilkins, Baltimore, 1979), pp. 124–150.

Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag, 1980).

J. Shammas, “Basic optics for intraocular lens power calculations,” in Intraocular Lens Power Calculations, J. Shammas, ed. (Slack Incorporated, 2004).

T. Olsen, “The Olsen formula,” in Intraocular Lens Power Calculations, Shammas J, ed. (Slack Incorporated, 2004).

W. Haigis, “The Haigis formula,” in Intraocular Lens power calculations, J. Shammas, ed. (Slack Incorporated, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of the customized modeling for predicting IOL power. For every IOL power, an eye model is built from patient’s biometric data from which the area under the radial MTF is retrieved, being chosen the IOL power that maximizes this metric.

Fig. 2
Fig. 2

Anterior chamber depth prior to the surgery as function of the anterior chamber depth after the surgery. From this result, we extracted the predictive model described by Eq. (1).

Fig. 3
Fig. 3

Scatter diagram showing the IOL power predicted by different paraxial formulas as a function of the result of our customized procedure.

Fig. 4
Fig. 4

(a) Average difference between the IOL power calculated by our procedure and different existing formulas for all the subjects included in the study and (b) absolute difference between our procedure and standard formulas.

Fig. 5
Fig. 5

Difference between the ray tracing prediction and standard IOL power calculations as a function of subject’s refractive state.

Fig. 6
Fig. 6

Most myopic (−8.5D) patient’s overview. Top. Area under the radial MTF calculated with the customized model for a wide range of IOL powers. Bottom: PSF retrieved for the same range of IOL powers. Symbols indicate the IOL power retrieved for this patient by different standard calculations.

Fig. 7
Fig. 7

Most hyperopic ( +4.0D) patient’s overview. Top. Area under the radial MTF calculated with the customized model for a wide range of IOL powers. Bottom: PSF retrieved for the same range of IOL powers. Symbols indicated the IOL power retrieved for this patient by different standard calculations.

Fig. 8
Fig. 8

IOL power differences between the customized ray tracing procedure and standard formulas versus (a) corneal RMS and (b) corneal higher order RMS calculated for 4mm pupil.

Fig. 9
Fig. 9

Standard deviation for different corneal aberrations (a, RMS and astigmatism, and b, higher order RMS, third order coma, trefoil and spherical aberration) for both, the group of subjects with no difference in computed IOL power through the 3 corneal topographies considered and those with 0.5D difference.

Fig. 10
Fig. 10

Area under the radial MTF calculated with our customized procedure, correcting corneal aberrations, as a function of the IOL power with different IOL materials. Therefore, in this plot we show the pure chromatic aberration effect due to the IOL material dispersion.

Fig. 11
Fig. 11

Area under the radial MTF calculated with our customized procedure, including corneal aberrations, as a function of the IOL power with different IOL materials. Therefore, in this plot we show the combined effect between chromatic aberration due to the IOL material dispersion and corneal aberrations.

Fig. 12
Fig. 12

Area under the radial MTF calculated with our customized procedure as a function of the IOL power for different amounts of corneal aberrations (CWA) referred to 4mm pupil. Their impact on IOL power calculation is studied by increasing the original aberration pattern up to 5 times.

Fig. 13
Fig. 13

(a) ACD prediction presented in this paper described by Eq. (1) versus the Norrby prediction [39] for all the study population and (b) difference between both ACD predictions as a function of the axial length.

Fig. 14
Fig. 14

IOL power difference between ray tracing considering the ACD prediction described by Eq. (1) and that presented by Norrby et al. [39] as a function of the difference between ACD predictions. In both cases, the Norrby’s prediction is considered as a reference. Therefore, both the IOL power and ACD differences are our approach minus Norrby’s.

Tables (1)

Tables Icon

Table 1 Predicted IOL power over the population

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A C D _ p o s t = 0.88 × A C D _ p r e + 1.63
A r e a _ u n d e r _ M T F = 0 30 r a d i a l M T F ( f ) d f

Metrics