Abstract

An ultrasmall spot size scanning laser ophthalmoscope has been developed that employs an annular aberration-corrected incident beam to increase the effective numerical aperture of the eye thereby reducing the width of the probing light spot. Parafovea and foveal cone photoreceptor visibility determined from small area retinal image scans are discussed from the perspective of mode matching between the focused incident beam and the waveguide modes of individual cones. The cone visibility near the fovea centralis can be increased with the annular illumination scheme whereas the visibility of larger parafovea cones drops significantly as a consequence of poorer mode match. With further improvements of the implemented wavefront correction technology it holds promise for individual cone-photoreceptor imaging at the fovea centralis and for optical targeting of the retina with increased resolution.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19(17), 2991–2997 (1980).
    [CrossRef] [PubMed]
  2. B. Vohnsen, I. Iglesias, and P. Artal, “Directional imaging of the retinal cone mosaic,” Opt. Lett. 29(9), 968–970 (2004).
    [CrossRef] [PubMed]
  3. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [PubMed]
  4. Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006).
    [CrossRef] [PubMed]
  5. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A 27(11), A265–A277 (2010).
    [CrossRef] [PubMed]
  6. K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010).
    [CrossRef] [PubMed]
  7. E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
    [CrossRef] [PubMed]
  8. J. M. Enoch, “Optical properties of the retinal receptors,” J. Opt. Soc. Am. 53(1), 71–85 (1963).
    [CrossRef]
  9. B. Vohnsen, I. Iglesias, and P. Artal, “Guided light and diffraction model of human-eye photoreceptors,” J. Opt. Soc. Am. A 22(11), 2318–2328 (2005).
    [CrossRef] [PubMed]
  10. P. J. Delint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37(2), 243–248 (1997).
    [CrossRef] [PubMed]
  11. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 4 (2002).
    [CrossRef] [PubMed]
  12. B. Vohnsen, “Photoreceptor waveguides and effective retinal image quality,” J. Opt. Soc. Am. A 24(3), 597–607 (2007).
    [CrossRef] [PubMed]
  13. B. Vohnsen and D. Rativa, “Absence of an integrated Stiles-Crawford function for coherent light,” J. Vis. 11(1), 19 (2011).
    [CrossRef] [PubMed]
  14. B. Vohnsen, I. Iglesias, and P. Artal, “Directional light scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 22(12), 2606–2612 (2005).
    [CrossRef] [PubMed]
  15. Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, “Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation,” Vis. Neurosci. 19(04), 395–407 (2002).
    [CrossRef] [PubMed]
  16. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, “Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography,” Opt. Express 16(9), 6486–6501 (2008).
    [CrossRef] [PubMed]
  17. A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
    [CrossRef] [PubMed]
  18. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010).
    [CrossRef] [PubMed]
  19. M. Pircher, J. S. Kroisamer, F. Felberer, H. Sattmann, E. Götzinger, and C. K. Hitzenberger, “Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT,” Biomed. Opt. Express 2(1), 100–112 (2011).
    [CrossRef] [PubMed]
  20. G. Toraldo di Francia, “Retina cones as dielectric antennas,” J. Opt. Soc. Am. 39(4), 324 (1949).
    [CrossRef]
  21. T. Y. P. Chui, H. Song, and S. A. Burns, “Adaptive-optics imaging of human cone photoreceptor distribution,” J. Opt. Soc. Am. A 25(12), 3021–3029 (2008).
    [CrossRef] [PubMed]
  22. N. M. Putnam, D. X. Hammer, Y. Zhang, D. Merino, and A. Roorda, “Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy,” Opt. Express 18(24), 24902–24916 (2010).
    [CrossRef] [PubMed]
  23. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
    [CrossRef] [PubMed]
  24. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
    [CrossRef] [PubMed]
  25. N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 3 (2005).
    [CrossRef] [PubMed]
  26. M. Born and E. Wolf, “Principles of Optics,” 6th Edition (Pergamon Press, Oxford) p. 416 (1991).
  27. C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta (Lond.) 24, 1051–1073 (1977).
  28. G. J. Brakenhoff, P. Blom, and P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Micros. (Oxford) 117, 219–232 (1979).
  29. T. Wilson and S. J. Hewlett, “The use of annular pupil plane filters to tune the imaging properties in confocal microscopy,” J. Mod. Opt. 37(12), 2025–2046 (1990).
    [CrossRef]
  30. E. H. Linfoot and E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66(2), 145–149 (1953).
    [CrossRef]
  31. W. T. Welford, “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am. 50(8), 749–753 (1960).
    [CrossRef]
  32. S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1-2), 20–24 (1995).
    [CrossRef]
  33. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43(22), 4322–4327 (2004).
    [CrossRef] [PubMed]
  34. G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cim. 9(S3Suppl.), 426–438 (1952).
    [CrossRef]
  35. D. Rativa and B. Vohnsen, “Analysis of individual cone-photoreceptor directionality using scanning laser ophthalmoscopy,” Biomed. Opt. Express 2(6), 1423–1431 (2011).
    [CrossRef]
  36. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
    [CrossRef] [PubMed]
  37. N. Doble, S. S. Choi, J. L. Codona, J. Christou, J. M. Enoch, and D. R. Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36(1), 31–33 (2011).
    [CrossRef] [PubMed]
  38. R. Seth and P. Gouras, “Assessing macular pigment from SLO images,” Doc. Ophthalmol. 108(3), 197–202 (2004).
    [CrossRef] [PubMed]
  39. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011).
    [CrossRef] [PubMed]
  40. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
    [CrossRef] [PubMed]
  41. D. Rativa and B. Vohnsen, “Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber,” Biomed. Opt. Express 2(3), 543–551 (2011).
    [CrossRef] [PubMed]
  42. E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
    [CrossRef] [PubMed]

2011 (8)

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

B. Vohnsen and D. Rativa, “Absence of an integrated Stiles-Crawford function for coherent light,” J. Vis. 11(1), 19 (2011).
[CrossRef] [PubMed]

M. Pircher, J. S. Kroisamer, F. Felberer, H. Sattmann, E. Götzinger, and C. K. Hitzenberger, “Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT,” Biomed. Opt. Express 2(1), 100–112 (2011).
[CrossRef] [PubMed]

D. Rativa and B. Vohnsen, “Analysis of individual cone-photoreceptor directionality using scanning laser ophthalmoscopy,” Biomed. Opt. Express 2(6), 1423–1431 (2011).
[CrossRef]

N. Doble, S. S. Choi, J. L. Codona, J. Christou, J. M. Enoch, and D. R. Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36(1), 31–33 (2011).
[CrossRef] [PubMed]

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011).
[CrossRef] [PubMed]

D. Rativa and B. Vohnsen, “Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber,” Biomed. Opt. Express 2(3), 543–551 (2011).
[CrossRef] [PubMed]

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

2010 (4)

2009 (1)

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[CrossRef] [PubMed]

2008 (4)

2007 (2)

2006 (1)

Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (3)

2003 (1)

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[CrossRef] [PubMed]

2002 (3)

Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, “Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation,” Vis. Neurosci. 19(04), 395–407 (2002).
[CrossRef] [PubMed]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 4 (2002).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

1997 (1)

P. J. Delint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37(2), 243–248 (1997).
[CrossRef] [PubMed]

1995 (1)

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1-2), 20–24 (1995).
[CrossRef]

1990 (1)

T. Wilson and S. J. Hewlett, “The use of annular pupil plane filters to tune the imaging properties in confocal microscopy,” J. Mod. Opt. 37(12), 2025–2046 (1990).
[CrossRef]

1980 (1)

1979 (1)

G. J. Brakenhoff, P. Blom, and P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Micros. (Oxford) 117, 219–232 (1979).

1977 (1)

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta (Lond.) 24, 1051–1073 (1977).

1963 (1)

1960 (1)

1953 (1)

E. H. Linfoot and E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66(2), 145–149 (1953).
[CrossRef]

1952 (1)

G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cim. 9(S3Suppl.), 426–438 (1952).
[CrossRef]

1949 (1)

Ahnelt, P. K.

Arathorn, D. W.

Artal, P.

Barends, P.

G. J. Brakenhoff, P. Blom, and P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Micros. (Oxford) 117, 219–232 (1979).

Bartz-Schmidt, K. U.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Benav, H.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Berendschot, T. T. J. M.

P. J. Delint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37(2), 243–248 (1997).
[CrossRef] [PubMed]

Besch, D.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Besecker, J. R.

Blom, P.

G. J. Brakenhoff, P. Blom, and P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Micros. (Oxford) 117, 219–232 (1979).

Brakenhoff, G. J.

G. J. Brakenhoff, P. Blom, and P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Micros. (Oxford) 117, 219–232 (1979).

Bruckmann, A.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Burns, S. A.

Campbell, M. C. W.

Carroll, J.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 3 (2005).
[CrossRef] [PubMed]

Cense, B.

Chen, L.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 3 (2005).
[CrossRef] [PubMed]

Choi, S. S.

Choudhury, A.

C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43(22), 4322–4327 (2004).
[CrossRef] [PubMed]

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta (Lond.) 24, 1051–1073 (1977).

Christou, J.

Chui, T. Y. P.

Chung, C. K.

Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, “Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation,” Vis. Neurosci. 19(04), 395–407 (2002).
[CrossRef] [PubMed]

Chung, M.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

Codona, J. L.

Curcio, C. A.

Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, “Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation,” Vis. Neurosci. 19(04), 395–407 (2002).
[CrossRef] [PubMed]

Delint, P. J.

P. J. Delint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37(2), 243–248 (1997).
[CrossRef] [PubMed]

Deng, C.

Derby, J. C.

Doble, N.

N. Doble, S. S. Choi, J. L. Codona, J. Christou, J. M. Enoch, and D. R. Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36(1), 31–33 (2011).
[CrossRef] [PubMed]

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 3 (2005).
[CrossRef] [PubMed]

Donnelly Iii, W.

Drexler, W.

Dubra, A.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

Enoch, J. M.

Felberer, F.

Ferguson, R. D.

Fernández, E. J.

Gabel, V.-P.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Gao, W.

Gekeler, F.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Götzinger, E.

Gouras, P.

R. Seth and P. Gouras, “Assessing macular pigment from SLO images,” Doc. Ophthalmol. 108(3), 197–202 (2004).
[CrossRef] [PubMed]

Greppmaier, U.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Hammer, D. X.

Hänninen, P. E.

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1-2), 20–24 (1995).
[CrossRef]

Harscher, A.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Hebert, T. J.

Hell, S. W.

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1-2), 20–24 (1995).
[CrossRef]

Herde, A. E.

Hermann, B.

Hewlett, S. J.

T. Wilson and S. J. Hewlett, “The use of annular pupil plane filters to tune the imaging properties in confocal microscopy,” J. Mod. Opt. 37(12), 2025–2046 (1990).
[CrossRef]

Hitzenberger, C. K.

Hoang, Q. V.

Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, “Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation,” Vis. Neurosci. 19(04), 395–407 (2002).
[CrossRef] [PubMed]

Hofer, B.

Hofer, H.

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[CrossRef] [PubMed]

Hofer, H. J.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 3 (2005).
[CrossRef] [PubMed]

Horton, J. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[CrossRef] [PubMed]

Hughes, G. W.

Hunter, J. J.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

Iglesias, I.

Jonnal, R. S.

Kibbel, S.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Kocaoglu, O. P.

Koch, J.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Kroisamer, J. S.

Kusnyerik, A.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Kuusisto, A.

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1-2), 20–24 (1995).
[CrossRef]

Lee, S.

Li, K. Y.

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

Linfoot, E. H.

E. H. Linfoot and E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66(2), 145–149 (1953).
[CrossRef]

Linsenmeier, R. A.

Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, “Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation,” Vis. Neurosci. 19(04), 395–407 (2002).
[CrossRef] [PubMed]

Merigan, W. H.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

Merino, D.

Miller, D. T.

Mujat, M.

Pallikaris, A.

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[CrossRef] [PubMed]

Patel, A. H.

Peters, T.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Pircher, M.

Pomerantzeff, O.

Považay, B.

Putnam, N. M.

Queener, H.

Rativa, D.

Romero-Borja, F.

Roorda, A.

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

N. M. Putnam, D. X. Hammer, Y. Zhang, D. Merino, and A. Roorda, “Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy,” Opt. Express 18(24), 24902–24916 (2010).
[CrossRef] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[CrossRef] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[CrossRef] [PubMed]

Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006).
[CrossRef] [PubMed]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 4 (2002).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

Rossi, E. A.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

Sachs, H.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Sattmann, H.

Schrader, M.

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1-2), 20–24 (1995).
[CrossRef]

Seth, R.

R. Seth and P. Gouras, “Assessing macular pigment from SLO images,” Doc. Ophthalmol. 108(3), 197–202 (2004).
[CrossRef] [PubMed]

Sheppard, C. J. R.

C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43(22), 4322–4327 (2004).
[CrossRef] [PubMed]

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta (Lond.) 24, 1051–1073 (1977).

Sincich, L. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[CrossRef] [PubMed]

Soini, E.

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1-2), 20–24 (1995).
[CrossRef]

Song, H.

Stett, A.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Stingl, K.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Szurman, P.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Tiruveedhula, P.

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[CrossRef] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[CrossRef] [PubMed]

Toraldo di Francia, G.

G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cim. 9(S3Suppl.), 426–438 (1952).
[CrossRef]

G. Toraldo di Francia, “Retina cones as dielectric antennas,” J. Opt. Soc. Am. 39(4), 324 (1949).
[CrossRef]

Unterhuber, A.

van Norren, D.

P. J. Delint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37(2), 243–248 (1997).
[CrossRef] [PubMed]

Vogel, C. R.

Vohnsen, B.

Wang, Q.

Webb, R. H.

Welford, W. T.

Werner, J. S.

Wilhelm, B.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Wilke, R.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Williams, D. R.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

N. Doble, S. S. Choi, J. L. Codona, J. Christou, J. M. Enoch, and D. R. Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36(1), 31–33 (2011).
[CrossRef] [PubMed]

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 3 (2005).
[CrossRef] [PubMed]

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[CrossRef] [PubMed]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 4 (2002).
[CrossRef] [PubMed]

Wilson, T.

T. Wilson and S. J. Hewlett, “The use of annular pupil plane filters to tune the imaging properties in confocal microscopy,” J. Mod. Opt. 37(12), 2025–2046 (1990).
[CrossRef]

Wolf, E.

E. H. Linfoot and E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66(2), 145–149 (1953).
[CrossRef]

Yang, Q.

Zawadzki, R. J.

Zhang, Y.

Zhong, Z.

Zou, W.

Zrenner, E.

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (4)

Doc. Ophthalmol. (1)

R. Seth and P. Gouras, “Assessing macular pigment from SLO images,” Doc. Ophthalmol. 108(3), 197–202 (2004).
[CrossRef] [PubMed]

Eye (Lond.) (1)

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006).
[CrossRef] [PubMed]

J. Micros. (Oxford) (1)

G. J. Brakenhoff, P. Blom, and P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Micros. (Oxford) 117, 219–232 (1979).

J. Mod. Opt. (1)

T. Wilson and S. J. Hewlett, “The use of annular pupil plane filters to tune the imaging properties in confocal microscopy,” J. Mod. Opt. 37(12), 2025–2046 (1990).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (5)

J. Vis. (3)

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 3 (2005).
[CrossRef] [PubMed]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 4 (2002).
[CrossRef] [PubMed]

B. Vohnsen and D. Rativa, “Absence of an integrated Stiles-Crawford function for coherent light,” J. Vis. 11(1), 19 (2011).
[CrossRef] [PubMed]

Nat. Neurosci. (1)

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[CrossRef] [PubMed]

Nuovo Cim. (1)

G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cim. 9(S3Suppl.), 426–438 (1952).
[CrossRef]

Opt. Acta (Lond.) (1)

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta (Lond.) 24, 1051–1073 (1977).

Opt. Commun. (1)

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1-2), 20–24 (1995).
[CrossRef]

Opt. Express (7)

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[CrossRef] [PubMed]

R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010).
[CrossRef] [PubMed]

N. M. Putnam, D. X. Hammer, Y. Zhang, D. Merino, and A. Roorda, “Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy,” Opt. Express 18(24), 24902–24916 (2010).
[CrossRef] [PubMed]

E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, “Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography,” Opt. Express 16(9), 6486–6501 (2008).
[CrossRef] [PubMed]

Opt. Lett. (2)

Proc. Biol. Sci. (1)

E. Zrenner, K. U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, and R. Wilke, “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. 278(1711), 1489–1497 (2011).
[CrossRef] [PubMed]

Proc. Phys. Soc. B (1)

E. H. Linfoot and E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66(2), 145–149 (1953).
[CrossRef]

Vis. Neurosci. (1)

Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, “Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation,” Vis. Neurosci. 19(04), 395–407 (2002).
[CrossRef] [PubMed]

Vision Res. (1)

P. J. Delint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37(2), 243–248 (1997).
[CrossRef] [PubMed]

Other (1)

M. Born and E. Wolf, “Principles of Optics,” 6th Edition (Pergamon Press, Oxford) p. 416 (1991).

Supplementary Material (20)

» Media 1: MOV (1765 KB)     
» Media 2: MOV (1936 KB)     
» Media 3: MOV (3138 KB)     
» Media 4: MOV (3082 KB)     
» Media 5: MOV (2584 KB)     
» Media 6: MOV (3295 KB)     
» Media 7: MOV (1533 KB)     
» Media 8: MOV (1444 KB)     
» Media 9: MOV (1381 KB)     
» Media 10: MOV (2169 KB)     
» Media 11: MOV (1072 KB)     
» Media 12: MOV (1204 KB)     
» Media 13: MOV (2815 KB)     
» Media 14: MOV (1549 KB)     
» Media 15: MOV (3434 KB)     
» Media 16: MOV (1969 KB)     
» Media 17: MOV (3779 KB)     
» Media 18: MOV (3490 KB)     
» Media 19: MOV (3149 KB)     
» Media 20: MOV (4493 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic layout of the annular illumination confocal SLO with adaptive optics for wavefront correction of the eye and system. The wavefront is sensed in the backward direction with a dilated unrestricted pupil whereas in the entrance path an annular aperture restricts the profile of the beam incident on the eye to an annulus of 5 mm outer diameter.

Fig. 2
Fig. 2

Theoretical analysis of the PSF attainable with annular illumination in terms of (a) PSF focal spot size with and without the central obstruction schematically coupled to the fundamental mode of a central waveguide cone; (b) FW and FWHM for the central Airy disc as a function of the size of the circular beam obstruction for a schematic eye with f eye = 22.2 mm and n eye = 1.33, d pupil = 5 mm outer-beam diameter, and adjustable stop diameter d stop. For convenience also the equivalent PSF spot diameter 2w r for a Gaussian beam has been shown (dashed line); (c) Theoretical power-coupling efficiency, T, when the incident PSF is assumed to be Gaussian with a spot size of w r and the cone waveguide to which light is coupled is specified by a Gaussian mode with spot size w m. The mode matching is illustrated for a schematic cone and an incident Gaussian-like PSF.

Fig. 3
Fig. 3

Experimental verification of the PSF recorded in the actual system using a 5 mm beam without and with wavefront correction and with the use of annular illumination of increasing central blockage from 1 to 4 mm. A 6 × magnification telescope together with an f 25 mm achromatic lens and a CCD (pixel size 4.7 μm) was inserted in place of the eye to record the experimental PSF. The most significant improvement was obtained with the adaptive optics correction of predominantly system astigmatism (uncorrected RMS wavefront error was ~0.58 μm) but the Airy disc narrowed further with the increase of the effective NA*. Note the different scale of the PSF images prior to and after wavefront correction.

Fig. 4
Fig. 4

Superior parafovea retina at 10° viewing angle. Image size is 230 μm × 280 μm. Upper row shows images recorded without wavefront correction (only Badal defocus correction) without an annulus (Media 1), with annulus 1 (Media 2), and with annulus 2 (Media 3). The lower row shows images recorded after wavefront correction with the deformable mirror without an annulus (Media 4), with annulus 1 (Media 5), and with annulus 2 (Media 6). Average image brightness is 75/255, 51/255, and 73/255 without and 67/255, 60/255, and 70/255 with wavefront correction.

Fig. 5
Fig. 5

Superior parafovea retina at 5° viewing angle. Image size is 230 μm × 280 μm. Image videos have been recorded as follows: without an annulus and without deformable mirror wavefront correction (Media 7), without an annulus but with deformable mirror wavefront correction (Media 8), with annulus 1 (Media 9), with annulus 2 (Media 10), with annulus 3 (Media 11), and with annulus 4 (Media 12). Average image brightness is 49/255, 63/255, 69/255, 73/255, 85/255, and 101/255 respectively.

Fig. 6
Fig. 6

Temporal parafovea retina at 2° viewing angle. Image size is 230 μm × 280 μm. Image videos have been recorded as follows: With wavefront correction and without annulus (Media 13), with annulus 1 (Media 14), with annulus 2 (Media 15), and with annulus 3 (Media 16). Average image brightness is 75/255, 80/255, 106/255, and 89/255 respectively.

Fig. 7
Fig. 7

Small-area fovea-centralis imaging all obtained with wavefront correction. Image size is 230 μm × 280 μm. Videos have been recorded as follows: Without an annulus (Media 17), with annulus 1 (Media 18), with annulus 2 (Media 19), and with annulus 3 (Media 20). Average image brightness is 94/255, 87/255, 101/255 and 117/255 respectively. Selected magnified regions are shown below the images from which the reduced spot size with annular apertures may be appreciated.

Fig. 8
Fig. 8

Normalized averaged image brightness, <signal>/255, for different cases considered as a function of beam blockage d stop/d pupil.

Fig. 9
Fig. 9

Numerical estimate of the PSF with remnant aberrations as recorded by the Hartmann-Shack wavefront sensor (left) for the subject’s eye in the SLO setup. The corresponding PSF’s have been analyzed in the absence of the annulus and with the 1 to 4 mm central beam stop. The results have been obtained without (top) and with (bottom) wavefront correction. The calculated Strehl intensity ratios are also shown for each PSF. The wavefront has been measured, corrected, and analyzed including up to 4th-order Zernike polynomials.

Tables (1)

Tables Icon

Table 1 Predicted PSF Gaussian spot diameter 2w r with different blockage of a 5 and 8 mm pupil

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d FW = α λ N A
N A * = 1.22 α N A 1.59 N A
T = ( 2 w r / w m ( w r / w m ) 2 + 1 ) 2

Metrics