Abstract

The optimization of the coated metallic nanoparticles and nanoshells is a current challenge for biological applications, especially for cancer photothermal therapy, considering both the continuous improvement of their fabrication and the increasing requirement of efficiency. The efficiency of the coupling between illumination with such nanostructures for burning purposes depends unevenly on their geometrical parameters (radius, thickness of the shell) and material parameters (permittivities which depend on the illumination wavelength). Through a Monte-Carlo method, we propose a numerical study of such nanodevice, to evaluate tolerances (or uncertainty) on these parameters, given a threshold of efficiency, to facilitate the design of nanoparticles. The results could help to focus on the relevant parameters of the engineering process for which the absorbed energy is the most dependant. The Monte-Carlo method confirms that the best burning efficiency are obtained for hollow nanospheres and exhibit the sensitivity of the absorbed electromagnetic energy as a function of each parameter. The proposed method is general and could be applied in design and development of new embedded coated nanomaterials used in biomedicine applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
    [CrossRef]
  2. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
    [CrossRef] [PubMed]
  3. Y. G. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
    [CrossRef] [PubMed]
  4. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
    [CrossRef]
  5. C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
    [CrossRef] [PubMed]
  6. S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
    [CrossRef] [PubMed]
  7. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
    [CrossRef]
  8. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
    [CrossRef]
  9. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372–374 (2000).
    [CrossRef]
  10. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
    [CrossRef]
  11. F. Tam and N. J. Halas, “Plasmon response of nanoshell dopants in organic films: a simulation study,” Prog. Org. Coat. 47, 275–278 (2003).
    [CrossRef]
  12. S. Link, Z.L. Wang, and M.A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103, 3529–3533 (1999).
    [CrossRef]
  13. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  14. K. L. Kelly, C. Eduardo, L .L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Chem. Phys. B 107 (3), 668–677 (2003).
    [CrossRef]
  15. E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004).
    [CrossRef] [PubMed]
  16. D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microsc. 229(3), 525–532 (2008).
    [CrossRef] [PubMed]
  17. D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008).
    [CrossRef]
  18. C. Liu, C.C. Mi, and B.Q. Li, “Energy Absorption of Gold Nanoshells in Hyperthermia Therapy,” IEEE Transactions on Nanobioscience 7, 206–214 (2008).
    [CrossRef] [PubMed]
  19. C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett. 30(9), 1012–1014 (2005).
    [CrossRef] [PubMed]
  20. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004).
    [CrossRef]
  21. T. Grosges, D. Barchesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett. 33(23), 2812–2814 (2008).
    [CrossRef] [PubMed]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Willey & Sons, Inc., 2003).
  23. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908).
    [CrossRef]
  24. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
    [CrossRef]
  25. C. Gréhan, G. Gouesbet, and F. Guilloteau, “Comparison of the diffraction theory and the generalized lorenz-mie theory for a sphere arbitrarily located into a laser beam,” Opt. Commun. 90, 1–6 (1992).
    [CrossRef]
  26. H. Du, “Mie-scattering calculation,” Appl. Opt. 43, 1951–1956 (2004).
    [CrossRef] [PubMed]
  27. T. Grosges, A. Vial, and D. Barchiesi, “Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods,” Opt. Express 13(21), 8483–8497 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8483 .
    [CrossRef]
  28. D. Barchiesi, B. Guizal, and T. Grosges, “Accuracy of local field enhancement models: toward predictive models?,” Appl. Phys. B, Lasers Opt. 84(1–2), 55–60 (2006).
  29. T. Grosges, H. Borouchaki, and D. Barchiesi, “Improved scheme for accurate computation of high electric near-field gradients,” Opt. Express 15(3), 1307–1321 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1307 .
    [CrossRef]
  30. H. Borouchaki, T. Grosges, and D. Barchiesi, “Improved 3D adaptive remeshing scheme applied in high electromagnetic field gradient computation,” Finite Elem. Anal. Des. 46(1–2), 84–95 (2010).
    [CrossRef]
  31. E. D. Palik, Handbook of Optical Constants of Solid I (Academic Press, 1985).
  32. D. Barchiesi and D. van Labeke, “Application of Mie scattering of evanescent waves to scanning optical microscopy theory,” J. Mod. Opt. 40(7), 1239–1254 (1993).
    [CrossRef]
  33. D. Macias, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-field optics,” J. Opt. Soc. Am. A 21, 1465–1471 (2004).
    [CrossRef]
  34. A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110, 19935–19944 (2006).
    [CrossRef] [PubMed]
  35. Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, H. R. Zhang, J. Q. Li, and H. J. Gao, “Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles,” Nanotechnology 18, 115608 (2007).
    [CrossRef]
  36. D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in Proceedings of International Conference on Computers and Industrial Ingineering (CIE39), IEEE 1, 542–547 (2009).
  37. S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm optimization: application to plasmonic design,” Int. J. Appl. Meta. Comput. 2(1), 18–28 (2011).
  38. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (SIAM, 2005).
  39. F. A. Duck, Physical Properties of Tissue A Comprehensive Reference Book (Academic Press, 1990).
  40. P. Stoller, V. Jacobsen, and V. Sandoghdar, “Measurement of the complex dielectric constant of a single gold nanoparticle,” Opt. Lett. 31(16), 2474–2476 (2006).
    [CrossRef] [PubMed]
  41. W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A, Pure Appl. Opt. 11, 114002 (2009).
    [CrossRef]
  42. L. B. Scaffardi, M. Lester, D. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
    [CrossRef]
  43. X. Huang and M. A. El-Sayed, “Gold nanoparticles optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
    [CrossRef]

2011

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm optimization: application to plasmonic design,” Int. J. Appl. Meta. Comput. 2(1), 18–28 (2011).

2010

H. Borouchaki, T. Grosges, and D. Barchiesi, “Improved 3D adaptive remeshing scheme applied in high electromagnetic field gradient computation,” Finite Elem. Anal. Des. 46(1–2), 84–95 (2010).
[CrossRef]

X. Huang and M. A. El-Sayed, “Gold nanoparticles optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[CrossRef]

2009

D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in Proceedings of International Conference on Computers and Industrial Ingineering (CIE39), IEEE 1, 542–547 (2009).

W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A, Pure Appl. Opt. 11, 114002 (2009).
[CrossRef]

2008

T. Grosges, D. Barchesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett. 33(23), 2812–2814 (2008).
[CrossRef] [PubMed]

D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microsc. 229(3), 525–532 (2008).
[CrossRef] [PubMed]

D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008).
[CrossRef]

C. Liu, C.C. Mi, and B.Q. Li, “Energy Absorption of Gold Nanoshells in Hyperthermia Therapy,” IEEE Transactions on Nanobioscience 7, 206–214 (2008).
[CrossRef] [PubMed]

2007

L. B. Scaffardi, M. Lester, D. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
[CrossRef]

Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, H. R. Zhang, J. Q. Li, and H. J. Gao, “Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles,” Nanotechnology 18, 115608 (2007).
[CrossRef]

2006

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110, 19935–19944 (2006).
[CrossRef] [PubMed]

P. Stoller, V. Jacobsen, and V. Sandoghdar, “Measurement of the complex dielectric constant of a single gold nanoparticle,” Opt. Lett. 31(16), 2474–2476 (2006).
[CrossRef] [PubMed]

D. Barchiesi, B. Guizal, and T. Grosges, “Accuracy of local field enhancement models: toward predictive models?,” Appl. Phys. B, Lasers Opt. 84(1–2), 55–60 (2006).

2005

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett. 30(9), 1012–1014 (2005).
[CrossRef] [PubMed]

2004

H. Du, “Mie-scattering calculation,” Appl. Opt. 43, 1951–1956 (2004).
[CrossRef] [PubMed]

D. Macias, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-field optics,” J. Opt. Soc. Am. A 21, 1465–1471 (2004).
[CrossRef]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004).
[CrossRef] [PubMed]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004).
[CrossRef]

2003

K. L. Kelly, C. Eduardo, L .L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Chem. Phys. B 107 (3), 668–677 (2003).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

F. Tam and N. J. Halas, “Plasmon response of nanoshell dopants in organic films: a simulation study,” Prog. Org. Coat. 47, 275–278 (2003).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

2002

Y. G. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
[CrossRef] [PubMed]

2000

S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
[CrossRef] [PubMed]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
[CrossRef]

T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372–374 (2000).
[CrossRef]

1999

S. Link, Z.L. Wang, and M.A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103, 3529–3533 (1999).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

1998

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

1993

D. Barchiesi and D. van Labeke, “Application of Mie scattering of evanescent waves to scanning optical microscopy theory,” J. Mod. Opt. 40(7), 1239–1254 (1993).
[CrossRef]

1992

C. Gréhan, G. Gouesbet, and F. Guilloteau, “Comparison of the diffraction theory and the generalized lorenz-mie theory for a sphere arbitrarily located into a laser beam,” Opt. Commun. 90, 1–6 (1992).
[CrossRef]

1988

1908

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Atwater, H. A.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
[CrossRef]

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Barchesi, D.

Barchiesi, D.

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm optimization: application to plasmonic design,” Int. J. Appl. Meta. Comput. 2(1), 18–28 (2011).

H. Borouchaki, T. Grosges, and D. Barchiesi, “Improved 3D adaptive remeshing scheme applied in high electromagnetic field gradient computation,” Finite Elem. Anal. Des. 46(1–2), 84–95 (2010).
[CrossRef]

D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in Proceedings of International Conference on Computers and Industrial Ingineering (CIE39), IEEE 1, 542–547 (2009).

D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008).
[CrossRef]

D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microsc. 229(3), 525–532 (2008).
[CrossRef] [PubMed]

D. Barchiesi, B. Guizal, and T. Grosges, “Accuracy of local field enhancement models: toward predictive models?,” Appl. Phys. B, Lasers Opt. 84(1–2), 55–60 (2006).

D. Macias, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-field optics,” J. Opt. Soc. Am. A 21, 1465–1471 (2004).
[CrossRef]

D. Barchiesi and D. van Labeke, “Application of Mie scattering of evanescent waves to scanning optical microscopy theory,” J. Mod. Opt. 40(7), 1239–1254 (1993).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A, Pure Appl. Opt. 11, 114002 (2009).
[CrossRef]

Belmar-Letellier, L.

D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Willey & Sons, Inc., 2003).

Borouchaki, H.

H. Borouchaki, T. Grosges, and D. Barchiesi, “Improved 3D adaptive remeshing scheme applied in high electromagnetic field gradient computation,” Finite Elem. Anal. Des. 46(1–2), 84–95 (2010).
[CrossRef]

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
[CrossRef]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Chang, E.

de Abajo, F. J. G.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Drezek, R.

C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett. 30(9), 1012–1014 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

Du, H.

Duck, F. A.

F. A. Duck, Physical Properties of Tissue A Comprehensive Reference Book (Academic Press, 1990).

Eduardo, C.

K. L. Kelly, C. Eduardo, L .L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Chem. Phys. B 107 (3), 668–677 (2003).
[CrossRef]

El-Sayed, M. A.

X. Huang and M. A. El-Sayed, “Gold nanoparticles optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

El-Sayed, M.A.

S. Link, Z.L. Wang, and M.A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103, 3529–3533 (1999).
[CrossRef]

Gao, H. J.

Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, H. R. Zhang, J. Q. Li, and H. J. Gao, “Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles,” Nanotechnology 18, 115608 (2007).
[CrossRef]

Giraud-Moreau, L.

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm optimization: application to plasmonic design,” Int. J. Appl. Meta. Comput. 2(1), 18–28 (2011).

Gouesbet, G.

C. Gréhan, G. Gouesbet, and F. Guilloteau, “Comparison of the diffraction theory and the generalized lorenz-mie theory for a sphere arbitrarily located into a laser beam,” Opt. Commun. 90, 1–6 (1992).
[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[CrossRef]

Grady, N. K.

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004).
[CrossRef]

Gréhan, C.

C. Gréhan, G. Gouesbet, and F. Guilloteau, “Comparison of the diffraction theory and the generalized lorenz-mie theory for a sphere arbitrarily located into a laser beam,” Opt. Commun. 90, 1–6 (1992).
[CrossRef]

Gréhan, G.

Grosges, T.

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm optimization: application to plasmonic design,” Int. J. Appl. Meta. Comput. 2(1), 18–28 (2011).

H. Borouchaki, T. Grosges, and D. Barchiesi, “Improved 3D adaptive remeshing scheme applied in high electromagnetic field gradient computation,” Finite Elem. Anal. Des. 46(1–2), 84–95 (2010).
[CrossRef]

D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microsc. 229(3), 525–532 (2008).
[CrossRef] [PubMed]

T. Grosges, D. Barchesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett. 33(23), 2812–2814 (2008).
[CrossRef] [PubMed]

D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008).
[CrossRef]

D. Barchiesi, B. Guizal, and T. Grosges, “Accuracy of local field enhancement models: toward predictive models?,” Appl. Phys. B, Lasers Opt. 84(1–2), 55–60 (2006).

Guilloteau, F.

C. Gréhan, G. Gouesbet, and F. Guilloteau, “Comparison of the diffraction theory and the generalized lorenz-mie theory for a sphere arbitrarily located into a laser beam,” Opt. Commun. 90, 1–6 (1992).
[CrossRef]

Guizal, B.

D. Barchiesi, B. Guizal, and T. Grosges, “Accuracy of local field enhancement models: toward predictive models?,” Appl. Phys. B, Lasers Opt. 84(1–2), 55–60 (2006).

Halas, N.

Halas, N. J.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004).
[CrossRef]

F. Tam and N. J. Halas, “Plasmon response of nanoshell dopants in organic films: a simulation study,” Prog. Org. Coat. 47, 275–278 (2003).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
[CrossRef] [PubMed]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
[CrossRef]

Hirsch, L.

Hirsch, L. R.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Huang, X.

X. Huang and M. A. El-Sayed, “Gold nanoparticles optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Willey & Sons, Inc., 2003).

Jackson, J. B.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Jacobsen, V.

Kall, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, C. Eduardo, L .L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Chem. Phys. B 107 (3), 668–677 (2003).
[CrossRef]

Kessentini, S.

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm optimization: application to plasmonic design,” Int. J. Appl. Meta. Comput. 2(1), 18–28 (2011).

Kobayashi, T.

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Kremer, E.

D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008).
[CrossRef]

D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microsc. 229(3), 525–532 (2008).
[CrossRef] [PubMed]

Lamy de la Chapelle, M.

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm optimization: application to plasmonic design,” Int. J. Appl. Meta. Comput. 2(1), 18–28 (2011).

D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008).
[CrossRef]

Lee, M. H.

Lester, M.

L. B. Scaffardi, M. Lester, D. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
[CrossRef]

Li, B.Q.

C. Liu, C.C. Mi, and B.Q. Li, “Energy Absorption of Gold Nanoshells in Hyperthermia Therapy,” IEEE Transactions on Nanobioscience 7, 206–214 (2008).
[CrossRef] [PubMed]

Li, J. Q.

Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, H. R. Zhang, J. Q. Li, and H. J. Gao, “Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles,” Nanotechnology 18, 115608 (2007).
[CrossRef]

Link, S.

S. Link, Z.L. Wang, and M.A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103, 3529–3533 (1999).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Liu, C.

C. Liu, C.C. Mi, and B.Q. Li, “Energy Absorption of Gold Nanoshells in Hyperthermia Therapy,” IEEE Transactions on Nanobioscience 7, 206–214 (2008).
[CrossRef] [PubMed]

Loo, C.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett. 30(9), 1012–1014 (2005).
[CrossRef] [PubMed]

Lowery, A.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

Macias, D.

D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008).
[CrossRef]

D. Macias, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-field optics,” J. Opt. Soc. Am. A 21, 1465–1471 (2004).
[CrossRef]

Maheu, B.

Mai, V. P.

D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microsc. 229(3), 525–532 (2008).
[CrossRef] [PubMed]

Mi, C.C.

C. Liu, C.C. Mi, and B.Q. Li, “Energy Absorption of Gold Nanoshells in Hyperthermia Therapy,” IEEE Transactions on Nanobioscience 7, 206–214 (2008).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Moreau, L.

D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008).
[CrossRef]

Nordlander, P.

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004).
[CrossRef]

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004).
[CrossRef] [PubMed]

O’Neal, D. P.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

Okamoto, T.

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Olson, T. Y.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110, 19935–19944 (2006).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solid I (Academic Press, 1985).

Payne, J. D.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

Prodan, E.

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004).
[CrossRef] [PubMed]

Sandoghdar, V.

Scaffardi, L. B.

L. B. Scaffardi, M. Lester, D. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
[CrossRef]

Schatz, G. C.

K. L. Kelly, C. Eduardo, L .L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Chem. Phys. B 107 (3), 668–677 (2003).
[CrossRef]

Schwartzberg, A. M.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110, 19935–19944 (2006).
[CrossRef] [PubMed]

Sershen, S. R.

S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
[CrossRef] [PubMed]

Shen, C. M.

Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, H. R. Zhang, J. Q. Li, and H. J. Gao, “Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles,” Nanotechnology 18, 115608 (2007).
[CrossRef]

Skigin, D.

L. B. Scaffardi, M. Lester, D. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
[CrossRef]

Stoller, P.

Sun, Y. G.

Y. G. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
[CrossRef] [PubMed]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Talley, C. E.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110, 19935–19944 (2006).
[CrossRef] [PubMed]

Tam, F.

F. Tam and N. J. Halas, “Plasmon response of nanoshell dopants in organic films: a simulation study,” Prog. Org. Coat. 47, 275–278 (2003).
[CrossRef]

Tarantola, A.

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (SIAM, 2005).

Tocho, J. O.

L. B. Scaffardi, M. Lester, D. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
[CrossRef]

Toury, T.

D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008).
[CrossRef]

T. Grosges, D. Barchesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett. 33(23), 2812–2814 (2008).
[CrossRef] [PubMed]

van Labeke, D.

D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008).
[CrossRef]

D. Barchiesi and D. van Labeke, “Application of Mie scattering of evanescent waves to scanning optical microscopy theory,” J. Mod. Opt. 40(7), 1239–1254 (1993).
[CrossRef]

Vial, A.

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Wang, Z.L.

S. Link, Z.L. Wang, and M.A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103, 3529–3533 (1999).
[CrossRef]

West, J.

West, J. L.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
[CrossRef] [PubMed]

Westcott, S. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
[CrossRef] [PubMed]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Xia, Y. N.

Y. G. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
[CrossRef] [PubMed]

Xiao, C. W.

Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, H. R. Zhang, J. Q. Li, and H. J. Gao, “Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles,” Nanotechnology 18, 115608 (2007).
[CrossRef]

Xu, Z. C.

Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, H. R. Zhang, J. Q. Li, and H. J. Gao, “Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles,” Nanotechnology 18, 115608 (2007).
[CrossRef]

Yamaguchi, I.

Yang, T. Z.

Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, H. R. Zhang, J. Q. Li, and H. J. Gao, “Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles,” Nanotechnology 18, 115608 (2007).
[CrossRef]

Zhang, H. R.

Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, H. R. Zhang, J. Q. Li, and H. J. Gao, “Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles,” Nanotechnology 18, 115608 (2007).
[CrossRef]

Zhang, J. Z.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110, 19935–19944 (2006).
[CrossRef] [PubMed]

Zhao, L .L.

K. L. Kelly, C. Eduardo, L .L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Chem. Phys. B 107 (3), 668–677 (2003).
[CrossRef]

Ann. Phys.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Appl. Opt.

Appl. Phys. B, Lasers Opt.

D. Barchiesi, B. Guizal, and T. Grosges, “Accuracy of local field enhancement models: toward predictive models?,” Appl. Phys. B, Lasers Opt. 84(1–2), 55–60 (2006).

D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008).
[CrossRef]

Appl. Phys. Lett.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Cancer Lett.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

Chem. Phys. Lett.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004).
[CrossRef]

Finite Elem. Anal. Des.

H. Borouchaki, T. Grosges, and D. Barchiesi, “Improved 3D adaptive remeshing scheme applied in high electromagnetic field gradient computation,” Finite Elem. Anal. Des. 46(1–2), 84–95 (2010).
[CrossRef]

IEEE Transactions on Nanobioscience

C. Liu, C.C. Mi, and B.Q. Li, “Energy Absorption of Gold Nanoshells in Hyperthermia Therapy,” IEEE Transactions on Nanobioscience 7, 206–214 (2008).
[CrossRef] [PubMed]

Int. J. Appl. Meta. Comput.

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm optimization: application to plasmonic design,” Int. J. Appl. Meta. Comput. 2(1), 18–28 (2011).

J. Adv. Res.

X. Huang and M. A. El-Sayed, “Gold nanoparticles optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[CrossRef]

J. Biomed. Mater. Res.

S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000).
[CrossRef] [PubMed]

J. Chem. Phys.

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004).
[CrossRef] [PubMed]

J. Chem. Phys. B

K. L. Kelly, C. Eduardo, L .L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Chem. Phys. B 107 (3), 668–677 (2003).
[CrossRef]

J. Microsc.

D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microsc. 229(3), 525–532 (2008).
[CrossRef] [PubMed]

J. Mod. Opt.

D. Barchiesi and D. van Labeke, “Application of Mie scattering of evanescent waves to scanning optical microscopy theory,” J. Mod. Opt. 40(7), 1239–1254 (1993).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A, Pure Appl. Opt. 11, 114002 (2009).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. B

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110, 19935–19944 (2006).
[CrossRef] [PubMed]

S. Link, Z.L. Wang, and M.A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103, 3529–3533 (1999).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Nano Lett.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

Nanotechnology

Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, H. R. Zhang, J. Q. Li, and H. J. Gao, “Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles,” Nanotechnology 18, 115608 (2007).
[CrossRef]

L. B. Scaffardi, M. Lester, D. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
[CrossRef]

Opt. Commun.

C. Gréhan, G. Gouesbet, and F. Guilloteau, “Comparison of the diffraction theory and the generalized lorenz-mie theory for a sphere arbitrarily located into a laser beam,” Opt. Commun. 90, 1–6 (1992).
[CrossRef]

Opt. Lett.

Phys. Rev. B

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
[CrossRef]

Phys. Rev. Lett.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Proceedings of International Conference on Computers and Industrial Ingineering (CIE39), IEEE

D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in Proceedings of International Conference on Computers and Industrial Ingineering (CIE39), IEEE 1, 542–547 (2009).

Prog. Org. Coat.

F. Tam and N. J. Halas, “Plasmon response of nanoshell dopants in organic films: a simulation study,” Prog. Org. Coat. 47, 275–278 (2003).
[CrossRef]

Science

Y. G. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
[CrossRef] [PubMed]

Other

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (SIAM, 2005).

F. A. Duck, Physical Properties of Tissue A Comprehensive Reference Book (Academic Press, 1990).

E. D. Palik, Handbook of Optical Constants of Solid I (Academic Press, 1985).

T. Grosges, H. Borouchaki, and D. Barchiesi, “Improved scheme for accurate computation of high electric near-field gradients,” Opt. Express 15(3), 1307–1321 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1307 .
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Willey & Sons, Inc., 2003).

T. Grosges, A. Vial, and D. Barchiesi, “Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods,” Opt. Express 13(21), 8483–8497 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8483 .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Nanoshell: inner radius r 1 and shell thickness e.

Fig. 2
Fig. 2

Relative error between the exact computation of Qabs and its approximation in the small particle limit for radii, as a function of the real εr and imaginary part εi of the material permittivity for particle radii: (a) r 1 = 0.089 and e/λ = 0.003, (b) r 1 = 0.021 and e/λ = 0.001.

Fig. 3
Fig. 3

Histograms of (a) the wavelength, (b) the optical index of the core ( n 1 = ɛ 1 ) (c) the radius of the core, (d) the thickness of the shell, (e) the absorption efficiency. The relative frequency is plotted in percents, and the number of class is deduced from the uncertainty in Table 3, except for the absorption efficiency where the size of each class is fixed to 0.5%max NM (Qabs ).

Fig. 4
Fig. 4

Example of the convergence of the boundaries as a function of the iterations: (a) the optical index of the core ( n 1 = ɛ 1 ) (b) the radius of the core, (c) the thickness of the shell, (d) the absorption efficiency. The minimum and the maximum for each parameter for the last iteration are the final results. The plot of the convergence of the wavelength is useless since its interval remains almost the same at each iteration.

Tables (3)

Tables Icon

Table 1 Summary of Acceptable Intervals of Parameters r 1, e, λ, εr (λ) and εr (λ)

Tables Icon

Table 2 Benchmark of the Adaptive Monte-Carlo Model Sensitivity Study: Comparison with Systematic Study [21]

Tables Icon

Table 3 Parametric Setting: Domain and Accuracy

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W abs = 1 2 { Ω [ E i × H s * + E s × H i * ] d Ω } 1 2 { Ω [ E s × H s * ] d Ω } ,
C abs = W abs I i = 2 π k 2 n = 1 ( 2 n + 1 ) { [ a n + b n ] [ | a n | 2 + | b n | 2 ] } ,
Q abs = C abs S = 2 k 2 ( r 1 + e ) 2 n = 1 ( 2 n + 1 ) { [ a n + b n ] [ | a n | 2 + | b n | 2 ] } .

Metrics